Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 511
Filter
1.
Nature ; 617(7960): 409-416, 2023 05.
Article in English | MEDLINE | ID: mdl-37138077

ABSTRACT

CrAssphage and related viruses of the order Crassvirales (hereafter referred to as crassviruses) were originally discovered by cross-assembly of metagenomic sequences. They are the most abundant viruses in the human gut, are found in the majority of individual gut viromes, and account for up to 95% of the viral sequences in some individuals1-4. Crassviruses are likely to have major roles in shaping the composition and functionality of the human microbiome, but the structures and roles of most of the virally encoded proteins are unknown, with only generic predictions resulting from bioinformatic analyses4,5. Here we present a cryo-electron microscopy reconstruction of Bacteroides intestinalis virus ΦcrAss0016, providing the structural basis for the functional assignment of most of its virion proteins. The muzzle protein forms an assembly about 1 MDa in size at the end of the tail and exhibits a previously unknown fold that we designate the 'crass fold', that is likely to serve as a gatekeeper that controls the ejection of cargos. In addition to packing the approximately 103 kb of virus DNA, the ΦcrAss001 virion has extensive storage space for virally encoded cargo proteins in the capsid and, unusually, within the tail. One of the cargo proteins is present in both the capsid and the tail, suggesting a general mechanism for protein ejection, which involves partial unfolding of proteins during their extrusion through the tail. These findings provide a structural basis for understanding the mechanisms of assembly and infection of these highly abundant crassviruses.


Subject(s)
DNA Viruses , Intestines , Viral Proteins , Virion , Humans , Capsid/chemistry , Capsid/metabolism , Capsid/ultrastructure , Cryoelectron Microscopy , DNA Viruses/chemistry , DNA Viruses/classification , DNA Viruses/isolation & purification , DNA Viruses/metabolism , DNA Viruses/ultrastructure , Virion/chemistry , Virion/metabolism , Virion/ultrastructure , Virus Assembly , Intestines/microbiology , Intestines/virology , Viral Proteins/chemistry , Viral Proteins/metabolism , Viral Proteins/ultrastructure , Protein Unfolding , Protein Folding
2.
Nature ; 578(7795): 432-436, 2020 02.
Article in English | MEDLINE | ID: mdl-31968354

ABSTRACT

Our current knowledge about nucleocytoplasmic large DNA viruses (NCLDVs) is largely derived from viral isolates that are co-cultivated with protists and algae. Here we reconstructed 2,074 NCLDV genomes from sampling sites across the globe by building on the rapidly increasing amount of publicly available metagenome data. This led to an 11-fold increase in phylogenetic diversity and a parallel 10-fold expansion in functional diversity. Analysis of 58,023 major capsid proteins from large and giant viruses using metagenomic data revealed the global distribution patterns and cosmopolitan nature of these viruses. The discovered viral genomes encoded a wide range of proteins with putative roles in photosynthesis and diverse substrate transport processes, indicating that host reprogramming is probably a common strategy in the NCLDVs. Furthermore, inferences of horizontal gene transfer connected viral lineages to diverse eukaryotic hosts. We anticipate that the global diversity of NCLDVs that we describe here will establish giant viruses-which are associated with most major eukaryotic lineages-as important players in ecosystems across Earth's biomes.


Subject(s)
Biodiversity , DNA Viruses/classification , DNA Viruses/genetics , Eukaryotic Cells/metabolism , Eukaryotic Cells/virology , Host Microbial Interactions/genetics , Metagenomics , Animals , Capsid Proteins/genetics , Gene Transfer, Horizontal , Genome, Viral/genetics , Giant Viruses/classification , Giant Viruses/genetics , Phylogeny
3.
J Infect Dis ; 230(1): 109-119, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052700

ABSTRACT

BACKGROUND: Cutavirus (CuV) is associated with mycosis fungoides; however, the CuV status in parapsoriasis en plaques (PP), a premalignant inflammatory condition of mycosis fungoides, has not been fully delineated. METHODS: Fifty-five Japanese patients with chronic inflammatory skin diseases, including 13 patients with PP, were studied. RESULTS: CuV DNA was detected significantly more frequently in biopsies of the lesional skin from patients with PP (38%; 4 of 13) than in those from patients with other inflammatory skin diseases (2%; 1 of 42; P = .009). All CuV-positive PP cases were of the large-plaque parapsoriasis (LPP) subtype. The viral loads ranged from 83 450 to 2 164 170 copies/103 cells. We recovered near-full-length CuV sequences from the CuV-positive LPP biopsies, all of which were of the Japanese/Asian genotype. The CuV genome appeared to be present within lymphoid cells infiltrating the epidermis and dermis. CuV NS1 and VP1 gene transcripts were also detected in the affected tissues. CONCLUSIONS: The detection of high levels of CuV DNA with the expression of viral mRNA suggests a potential role for CuV in the pathogenesis of LPP, making it necessary to study further the impact of CuV, especially regarding the viral genotype, on the outcomes of patients with CuV-positive LPP.


Subject(s)
Mycosis Fungoides , Parapsoriasis , Humans , Mycosis Fungoides/virology , Mycosis Fungoides/pathology , Male , Female , Middle Aged , Aged , Parapsoriasis/virology , Parapsoriasis/pathology , Adult , DNA, Viral/genetics , Skin/pathology , Skin/virology , Viral Load , Japan , Aged, 80 and over , Biopsy , Skin Neoplasms/virology , Skin Neoplasms/pathology , Precancerous Conditions/virology , Precancerous Conditions/pathology , DNA Viruses/genetics , DNA Viruses/isolation & purification , DNA Viruses/classification
4.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38959058

ABSTRACT

The family Turriviridae includes viruses with a dsDNA genome of 16-17 kbp. Virions are spherical with a diameter of approximately 75 nm and comprise a host-derived internal lipid membrane surrounded by a proteinaceous capsid shell. Members of the family Turriviridae infect extremophilic archaea of the genera Sulfolobus and Saccharolobus. Viral infection results in cell lysis for Sulfolobus turreted icosahedral virus 1 infection but other members of the family can be temperate. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Turriviridae, which is available at ictv.global/report/turriviridae.


Subject(s)
DNA Viruses , Genome, Viral , Virion , DNA Viruses/classification , DNA Viruses/genetics , DNA Viruses/ultrastructure , Virion/ultrastructure , Archaeal Viruses/classification , Archaeal Viruses/genetics , Archaeal Viruses/ultrastructure , Archaeal Viruses/physiology , Sulfolobus/virology , Sulfolobus/genetics , DNA, Viral/genetics
5.
J Virol ; 97(11): e0130023, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37888981

ABSTRACT

IMPORTANCE: We report here efforts to benchmark performance of two widespread approaches for virome analysis, which target either virion-associated nucleic acids (VANA) or highly purified double-stranded RNAs (dsRNAs). This was achieved using synthetic communities of varying complexity levels, up to a highly complex community of 72 viral agents (115 viral molecules) comprising isolates from 21 families and 61 genera of plant viruses. The results obtained confirm that the dsRNA-based approach provides a more complete representation of the RNA virome, in particular, for high complexity ones. However, for viromes of low to medium complexity, VANA appears a reasonable alternative and would be the preferred choice if analysis of DNA viruses is of importance. Several parameters impacting performance were identified as well as a direct relationship between the completeness of virome description and sample sequencing depth. The strategy, results, and tools used here should prove useful in a range of virome analysis efforts.


Subject(s)
Metagenomics , Synthetic Biology , Virome , Viruses , DNA Viruses/classification , DNA Viruses/genetics , Metagenomics/methods , Metagenomics/standards , Virion/genetics , Virome/genetics , Synthetic Biology/methods , RNA, Double-Stranded/genetics , Viruses/classification , Viruses/genetics , Plant Viruses/classification , Plant Viruses/genetics
6.
J Med Virol ; 96(7): e29750, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953413

ABSTRACT

The Phylum Cressdnaviricota consists of a large number of circular Rep-encoding single-stranded (CRESS)-DNA viruses. Recently, metagenomic analyzes revealed their ubiquitous distribution in a diverse range of eukaryotes. Data relating to CRESS-DNA viruses in humans remains scarce. Our study investigated the presence and genetic diversity of CRESS-DNA viruses in human vaginal secretions. Vaginal swabs were collected from 28 women between 29 and 43 years old attending a fertility clinic in New York City. An exploratory metagenomic analysis was performed and detection of CRESS-DNA viruses was confirmed through analysis of near full-length sequences of the viral isolates. A phylogenetic tree was based on the REP open reading frame sequences of the CRESS-DNA virus genome. Eleven nearly complete CRESS-DNA viral genomes were identified in 16 (57.1%) women. There were no associations between the presence of these viruses and any demographic or clinical parameters. Phylogenetic analysis indicated that one of the sequences belonged to the genus Gemycircularvirus within the Genomoviridae family, while ten sequences represented previously unclassified species of CRESS-DNA viruses. Novel species of CRESS-DNA viruses are present in the vaginal tract of adult women. Although they be transient commensal agents, the potential clinical implications for their presence at this site cannot be dismissed.


Subject(s)
DNA Viruses , Genome, Viral , Metagenomics , Phylogeny , Vagina , Humans , Female , Adult , Vagina/virology , Genome, Viral/genetics , DNA Viruses/genetics , DNA Viruses/classification , DNA Viruses/isolation & purification , DNA, Viral/genetics , New York City , Sequence Analysis, DNA , Genetic Variation
7.
Arch Virol ; 169(6): 132, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822903

ABSTRACT

Orpheoviruses, cedratviruses, and pithoviruses are large DNA viruses that cluster together taxonomically within the order Pimascovirales of the phylum Nucleocytoviricota. However, they were not classified previously by the International Committee on Taxonomy of Viruses (ICTV). Here, we present a comprehensive analysis of the gene content, morphology, and phylogenomics of these viruses, providing data that underpinned the recent proposal to establish new taxa for their initial classification. The new taxonomy, which has now been ratified by the ICTV, includes the family Orpheoviridae and genus Alphaorpheovirus, the family Pithoviridae and genus Alphapithovirus, and the family Cedratviridae and genus Alphacedratvirus, aiming to formally catalogue the isolates covered in this study. Additionally, as per the newly adopted rules, we applied standardized binomial names for the virus species created to classify isolates with complete genome sequences available in public databases at the time of the proposal. The specific epithet of each virus species was chosen as a reference to the location where the exemplar virus was isolated.


Subject(s)
DNA Viruses , Genome, Viral , Phylogeny , Genome, Viral/genetics , DNA Viruses/genetics , DNA Viruses/classification , DNA, Viral/genetics
8.
Arch Virol ; 169(9): 184, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167240

ABSTRACT

Family Smacoviridae (order Cremevirales, class Arfiviricetes, phylum Cressdnaviricota) comprises viruses with small circular genomes of ~2300-3000 nt in length that encode at least two proteins, the rolling-circle replication associated protein (Rep) and the capsid protein (CP). Smacovirids have been discovered in fecal samples of various animals and display remarkable sequence diversity. Here, we provide an overview of the genomic properties of classified smacovirids and report on the latest taxonomy update in the family Smacoviridae. The family has been expanded by 59 new species in the genera Porprismacovirus (n = 25), Inpeasmacovirus (n = 1), Felismacovirus (n = 22), Drosmacovirus (n = 4), Dragsmacovirus (n = 2), Bovismacovirus (n = 4), and Bonzesmacovirus (n = 1) and currently includes 12 genera with 143 species officially recognized by the International Committee on Taxonomy of Viruses (ICTV).


Subject(s)
Genome, Viral , Phylogeny , Genome, Viral/genetics , Animals , Feces/virology , DNA Viruses/genetics , DNA Viruses/classification , Capsid Proteins/genetics , Viral Proteins/genetics
9.
Nature ; 554(7690): 118-122, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29364876

ABSTRACT

The most abundant viruses on Earth are thought to be double-stranded DNA (dsDNA) viruses that infect bacteria. However, tailed bacterial dsDNA viruses (Caudovirales), which dominate sequence and culture collections, are not representative of the environmental diversity of viruses. In fact, non-tailed viruses often dominate ocean samples numerically, raising the fundamental question of the nature of these viruses. Here we characterize a group of marine dsDNA non-tailed viruses with short 10-kb genomes isolated during a study that quantified the diversity of viruses infecting Vibrionaceae bacteria. These viruses, which we propose to name the Autolykiviridae, represent a novel family within the ancient lineage of double jelly roll (DJR) capsid viruses. Ecologically, members of the Autolykiviridae have a broad host range, killing on average 34 hosts in four Vibrio species, in contrast to tailed viruses which kill on average only two hosts in one species. Biochemical and physical characterization of autolykiviruses reveals multiple virion features that cause systematic loss of DJR viruses in sequencing and culture-based studies, and we describe simple procedural adjustments to recover them. We identify DJR viruses in the genomes of diverse major bacterial and archaeal phyla, and in marine water column and sediment metagenomes, and find that their diversity greatly exceeds the diversity that is currently captured by the three recognized families of such viruses. Overall, these data suggest that viruses of the non-tailed dsDNA DJR lineage are important but often overlooked predators of bacteria and archaea that impose fundamentally different predation and gene transfer regimes on microbial systems than on tailed viruses, which form the basis of all environmental models of bacteria-virus interactions.


Subject(s)
Aquatic Organisms/virology , Bacteria/virology , DNA Viruses/classification , DNA Viruses/pathogenicity , Phylogeny , Archaea/virology , Bias , Capsid Proteins/metabolism , DNA Viruses/genetics , DNA Viruses/isolation & purification , Metagenomics , Vibrio/virology
10.
Arch Virol ; 168(9): 223, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37561218

ABSTRACT

The phylum Cressdnaviricota comprises viruses with single-stranded, circular DNA genomes that encode an HUH-type endonuclease (known as Rep). The phylum includes two classes, eight orders, and 11 families. Here, we report the creation of a twelfth family in the order Mulpavirales, class Arfiviricetes of the phylum Cressdnaviricota. The family Amesuviridae comprises viruses that infect plants and is divided into two genera: Temfrudevirus, including the species Temfrudevirus temperatum (with temperate fruit decay-associated virus as a member), and Yermavirus, including the species Yermavirus ilicis (with yerba mate-associated circular DNA virus as a member). Both viruses encode Rep proteins with HUH endonuclease and SH3 superfamily helicase domains. Phylogenetic analysis indicates that the replicative module of amesuviruses constitutes a well-supported monophyletic clade related to Rep proteins from viruses in the order Mulpavirales. Furthermore, both viruses encode a single capsid protein (CP) related to geminivirus CPs. Phylogenetic incongruence between the replicative and structural modules of amesuviruses suggests a chimeric origin resulting from remote recombination events between ancestral mulpavirales and geminivirids. The creation of the family Amesuviridae has been ratified by the International Committee on Taxonomy of Viruses (ICTV).


Subject(s)
DNA Viruses , Plant Viruses , DNA Viruses/classification , DNA Viruses/isolation & purification , DNA, Circular/genetics , DNA, Single-Stranded/genetics , Endonucleases/genetics , Geminiviridae/genetics , Genome, Viral/genetics , Phylogeny , Plant Viruses/genetics
11.
Proc Natl Acad Sci U S A ; 117(28): 16579-16586, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601223

ABSTRACT

Here we report the discovery of Yaravirus, a lineage of amoebal virus with a puzzling origin and evolution. Yaravirus presents 80-nm-sized particles and a 44,924-bp dsDNA genome encoding for 74 predicted proteins. Yaravirus genome annotation showed that none of its genes matched with sequences of known organisms at the nucleotide level; at the amino acid level, six predicted proteins had distant matches in the nr database. Complimentary prediction of three-dimensional structures indicated possible function of 17 proteins in total. Furthermore, we were not able to retrieve viral genomes closely related to Yaravirus in 8,535 publicly available metagenomes spanning diverse habitats around the globe. The Yaravirus genome also contained six types of tRNAs that did not match commonly used codons. Proteomics revealed that Yaravirus particles contain 26 viral proteins, one of which potentially representing a divergent major capsid protein (MCP) with a predicted double jelly-roll domain. Structure-guided phylogeny of MCP suggests that Yaravirus groups together with the MCPs of Pleurochrysis endemic viruses. Yaravirus expands our knowledge of the diversity of DNA viruses. The phylogenetic distance between Yaravirus and all other viruses highlights our still preliminary assessment of the genomic diversity of eukaryotic viruses, reinforcing the need for the isolation of new viruses of protists.


Subject(s)
Acanthamoeba castellanii/virology , DNA Viruses/isolation & purification , DNA Viruses/chemistry , DNA Viruses/classification , DNA Viruses/genetics , Genome, Viral , Phylogeny , Viral Proteins/genetics
12.
Proc Natl Acad Sci U S A ; 117(33): 19643-19652, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32759221

ABSTRACT

Living organisms expend metabolic energy to repair and maintain their genomes, while viruses protect their genetic material by completely passive means. We have used cryo-electron microscopy (cryo-EM) to solve the atomic structures of two filamentous double-stranded DNA viruses that infect archaeal hosts living in nearly boiling acid: Saccharolobus solfataricus rod-shaped virus 1 (SSRV1), at 2.8-Å resolution, and Sulfolobus islandicus filamentous virus (SIFV), at 4.0-Å resolution. The SIFV nucleocapsid is formed by a heterodimer of two homologous proteins and is membrane enveloped, while SSRV1 has a nucleocapsid formed by a homodimer and is not enveloped. In both, the capsid proteins wrap around the DNA and maintain it in an A-form. We suggest that the A-form is due to both a nonspecific desolvation of the DNA by the protein, and a specific coordination of the DNA phosphate groups by positively charged residues. We extend these observations by comparisons with four other archaeal filamentous viruses whose structures we have previously determined, and show that all 10 capsid proteins (from four heterodimers and two homodimers) have obvious structural homology while sequence similarity can be nonexistent. This arises from most capsid residues not being under any strong selective pressure. The inability to detect homology at the sequence level arises from the sampling of viruses in this part of the biosphere being extremely sparse. Comparative structural and genomic analyses suggest that nonenveloped archaeal viruses have evolved from enveloped viruses by shedding the membrane, indicating that this trait may be relatively easily lost during virus evolution.


Subject(s)
Archaeal Viruses/chemistry , DNA Viruses/chemistry , DNA, Viral/chemistry , Sulfolobales/virology , Sulfolobus/virology , Archaeal Viruses/classification , Archaeal Viruses/genetics , Archaeal Viruses/ultrastructure , Biological Evolution , Capsid/chemistry , Capsid/ultrastructure , DNA Viruses/classification , DNA Viruses/genetics , DNA Viruses/ultrastructure , DNA, Viral/genetics , Extreme Environments , Genome, Viral , Phylogeny
13.
J Virol ; 95(15): e0067321, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34011550

ABSTRACT

The International Committee on Taxonomy of Viruses (ICTV) has recently adopted a comprehensive, hierarchical system of virus taxa. The highest ranks in this hierarchy are realms, each of which is considered monophyletic but apparently originated independently of other realms. Here, we announce the creation of a new realm, Adnaviria, which unifies archaeal filamentous viruses with linear A-form double-stranded DNA genomes and characteristic major capsid proteins unrelated to those encoded by other known viruses.


Subject(s)
Archaeal Viruses/classification , Archaeal Viruses/genetics , DNA Viruses/classification , DNA Viruses/genetics , Archaea/virology , Capsid Proteins/genetics , DNA, Viral/genetics , Genome, Viral/genetics , Phylogeny , Virus Replication
14.
J Virol ; 95(21): e0081721, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34406857

ABSTRACT

Redondoviridae is a newly established family of circular Rep-encoding single-stranded (CRESS) DNA viruses found in the human ororespiratory tract. Redondoviruses were previously found in ∼15% of respiratory specimens from U.S. urban subjects; levels were elevated in individuals with periodontitis or critical illness. Here, we report higher redondovirus prevalence in saliva samples: four rural African populations showed 61 to 82% prevalence, and an urban U.S. population showed 32% prevalence. Longitudinal, limiting-dilution single-genome sequencing revealed diverse strains of both redondovirus species (Brisavirus and Vientovirus) in single individuals, persistence over time, and evidence of intergenomic recombination. Computational analysis of viral genomes identified a recombination hot spot associated with a conserved potential DNA stem-loop structure. To assess the possible role of this site in recombination, we carried out in vitro studies which showed that this potential stem-loop was cleaved by the virus-encoded Rep protein. In addition, in reconstructed reactions, a Rep-DNA covalent intermediate was shown to mediate DNA strand transfer at this site. Thus, redondoviruses are highly prevalent in humans, found in individuals on multiple continents, heterogeneous even within individuals and encode a Rep protein implicated in facilitating recombination. IMPORTANCERedondoviridae is a recently established family of DNA viruses predominantly found in the human respiratory tract and associated with multiple clinical conditions. In this study, we found high redondovirus prevalence in saliva from urban North American individuals and nonindustrialized African populations in Botswana, Cameroon, Ethiopia, and Tanzania. Individuals on both continents harbored both known redondovirus species. Global prevalence of both species suggests that redondoviruses have long been associated with humans but have remained undetected until recently due to their divergent genomes. By sequencing single redondovirus genomes in longitudinally sampled humans, we found that redondoviruses persisted over time within subjects and likely evolve by recombination. The Rep protein encoded by redondoviruses catalyzes multiple reactions in vitro, consistent with a role in mediating DNA replication and recombination. In summary, we identify high redondovirus prevalence in humans across multiple continents, longitudinal heterogeneity and persistence, and potential mechanisms of redondovirus evolution by recombination.


Subject(s)
DNA Virus Infections/virology , DNA Viruses/classification , DNA Viruses/genetics , DNA Viruses/metabolism , Mouth/virology , Respiratory System/virology , Saliva/virology , Africa/epidemiology , Biodiversity , Critical Illness , DNA Virus Infections/epidemiology , DNA-Binding Proteins/metabolism , Evolution, Molecular , Genome, Viral , Humans , Metagenomics , Periodontitis/virology , Phylogeny , Prevalence , Rural Population , United States/epidemiology , Viral Proteins/metabolism
15.
J Gen Virol ; 102(12)2021 12.
Article in English | MEDLINE | ID: mdl-34928204

ABSTRACT

Over the last decade, viral metagenomics has been established as a non-targeted approach for identifying viruses in stock animals, including pigs. This has led to the identification of a vast diversity of small circular ssDNA viruses. The present study focuses on the investigation of eukaryotic circular Rep-encoding single-stranded (CRESS) DNA viral genomes present in serum of commercially reared pigs from southern Brazil. Several CRESS DNA viral genomes were detected, including representatives of the families Smacoviridae (n=5), Genomoviridae (n=3), Redondoviridae (n=1), Nenyaviridae (n=1) and other yet unclassified genomes (n=9), plus a circular DNA molecule, which probably belongs to the phylum Cressdnaviricota. A novel genus within the family Smacoviridae, tentatively named 'Suismacovirus', comprising 21 potential new species, is proposed. Although the reported genomes were recovered from pigs with clinical signs of respiratory disease, further studies should examine their potential role as pathogens. Nonetheless, these findings highlight the diversity of circular ssDNA viruses in serum of domestic pigs, expand the knowledge on CRESS DNA viruses' genetic diversity and distribution and contribute to the global picture of the virome of commercially reared pigs.


Subject(s)
DNA Viruses/classification , DNA Viruses/genetics , DNA, Single-Stranded , Genome, Viral , Swine/virology , Animals , Brazil , DNA, Circular/genetics , DNA, Viral/genetics , Eukaryotic Cells/virology , Metagenomics
16.
J Gen Virol ; 102(11)2021 11.
Article in English | MEDLINE | ID: mdl-34723784

ABSTRACT

It is widely recognized that pathogens can be transmitted across the placenta from mother to foetus. Recent re-evaluation of metagenomic studies indicates that the placenta has no unique microbiome of commensal bacteria. However, viral transmission across the placenta, including transmission of DNA viruses such as the human herpesviruses, is possible. A fuller understanding of which DNA virus sequence can be found in the placenta is required. We employed a metagenomic analysis to identify viral DNA sequences in placental metagenomes from full-term births (20 births), pre-term births (13 births), births from pregnancies associated with antenatal infections (12 births) or pre-term births with antenatal infections (three births). Our analysis found only a small number of DNA sequences corresponding to the genomes of human herpesviruses in four of the 48 metagenomes analysed. Therefore, our data suggest that DNA virus infection of the placenta is rare and support the concept that the placenta is largely free of pathogen infection.


Subject(s)
DNA Virus Infections/virology , DNA Viruses/genetics , Metagenome , Placenta/virology , DNA Viruses/classification , DNA Viruses/isolation & purification , Female , Genome, Viral , Humans , Infant, Newborn , Male , Pregnancy , Pregnancy Complications/virology , Premature Birth , Term Birth
17.
J Gen Virol ; 102(1)2021 01.
Article in English | MEDLINE | ID: mdl-33258767

ABSTRACT

Viruses in the family Redondoviridae have a circular genome of 3.0 kb with three open reading frames. The packaged genome is inferred to be single-stranded DNA by analogy to related viruses. Redondoviruses were discovered through metagenomic sequencing methods in samples from human subjects and are inferred to replicate in humans. Evidence of redondovirus infection is associated with periodontitis and critical illness, but redondoviruses have not been shown to be the causative agent of any diseases. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Redondoviridae, which is available at ictv.global/report/redondoviridae.


Subject(s)
DNA Viruses/classification , DNA Viruses/genetics , DNA Viruses/pathogenicity , DNA Viruses/physiology , DNA, Circular , DNA, Single-Stranded , DNA, Viral , Genome, Viral/genetics , Humans , Metagenomics , Open Reading Frames , Virus Replication
18.
J Gen Virol ; 102(7)2021 07.
Article in English | MEDLINE | ID: mdl-34328827

ABSTRACT

Members of the family Thaspiviridae have linear dsDNA genomes of 27 to 29 kbp and are the first viruses known to infect mesophilic ammonia-oxidizing archaea of the phylum Thaumarchaeota. The spindle-shaped virions of Nitrosopumilus spindle-shaped virus 1 possess short tails at one pole and measure 64±3 nm in diameter and 112±6 nm in length. This morphology is similar to that of members of the families Fuselloviridae and Halspiviridae. Virus replication is not lytic but leads to growth inhibition of the host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Thaspiviridae, which is available at ictv.global/report/thaspiviridae.


Subject(s)
Archaea/virology , Archaeal Viruses/classification , DNA Viruses/classification , Archaeal Viruses/genetics , Archaeal Viruses/physiology , Archaeal Viruses/ultrastructure , DNA Viruses/genetics , DNA Viruses/physiology , DNA Viruses/ultrastructure , Genome, Viral , Host Specificity , Virion/ultrastructure , Virus Replication
19.
J Gen Virol ; 102(5)2021 05.
Article in English | MEDLINE | ID: mdl-33961544

ABSTRACT

Members of the family Plectroviridae produce particles that are non-enveloped rigid rods (70-280×10-16 nm). The supercoiled, circular, single-stranded DNA genome of about 4.5-8.3 kb, encodes 4-13 proteins. Viruses of this family infect cell wall-less bacteria, adsorbing to the bacterial surface, replicating their DNA by a rolling-circle mechanism or transposition, and releasing progeny from cells by extrusion, without killing the host. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Plectroviridae which is available at ictv.global/report/plectroviridae.


Subject(s)
Bacteriophages/classification , DNA Viruses/classification , Acholeplasma/virology , Bacteriophages/physiology , Bacteriophages/ultrastructure , DNA Viruses/physiology , DNA Viruses/ultrastructure , DNA, Single-Stranded , Genome, Viral , Host Specificity , Virion/ultrastructure , Virus Replication
20.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: mdl-33331812

ABSTRACT

Ovaliviridae is a family of enveloped viruses with a linear dsDNA genome. The virions are ellipsoidal, and contain a multi-layered spool-like capsid. The viral genome is presumably replicated through protein priming by a putative DNA polymerase encoded by the virus. Progeny virions are released through hexagonal openings resulting from the rupture of virus-associated pyramids formed on the surface of infected cells. The only known host is a hyperthermophilic archaeon of the genus Sulfolobus. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Ovaliviridae, which is available at ictv.global/report/ovaliviridae.


Subject(s)
Archaeal Viruses/classification , Archaeal Viruses/physiology , DNA Viruses/classification , DNA Viruses/physiology , Archaeal Viruses/genetics , Archaeal Viruses/ultrastructure , Capsid/ultrastructure , DNA Viruses/genetics , DNA Viruses/ultrastructure , Genome, Viral , Sulfolobus/virology , Virion/genetics , Virion/physiology , Virion/ultrastructure , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL