Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.860
Filter
1.
Nature ; 630(8017): 752-761, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867045

ABSTRACT

Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.


Subject(s)
Base Pair Mismatch , DNA Damage , DNA, Single-Stranded , Sequence Analysis, DNA , Single Molecule Imaging , Humans , Aging/genetics , APOBEC Deaminases/genetics , APOBEC Deaminases/metabolism , Base Pair Mismatch/genetics , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Cytosine/metabolism , Deamination , DNA Damage/genetics , DNA Mismatch Repair/genetics , DNA Replication/genetics , DNA, Single-Stranded/genetics , Genome, Mitochondrial/genetics , Mutation , Neoplasms/genetics , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards , Single Molecule Imaging/methods , Male , Female
2.
Nat Rev Genet ; 23(8): 505-518, 2022 08.
Article in English | MEDLINE | ID: mdl-35256818

ABSTRACT

The AID/APOBEC polynucleotide cytidine deaminases have historically been classified as either DNA mutators or RNA editors based on their first identified nucleic acid substrate preference. DNA mutators can generate functional diversity at antibody genes but also cause genomic instability in cancer. RNA editors can generate informational diversity in the transcriptome of innate immune cells, and of cancer cells. Members of both classes can act as antiviral restriction factors. Recent structural work has illuminated differences and similarities between AID/APOBEC enzymes that can catalyse DNA mutation, RNA editing or both, suggesting that the strict functional classification of members of this family should be reconsidered. As many of these enzymes have been employed for targeted genome (or transcriptome) editing, a more holistic understanding will help improve the design of therapeutically relevant programmable base editors.


Subject(s)
Cytidine Deaminase , RNA , Cytidine Deaminase/chemistry , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , DNA/genetics , DNA/metabolism , Deamination , RNA/genetics , RNA/metabolism , RNA Editing
3.
Mol Cell ; 79(5): 703-704, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888434

ABSTRACT

Jin et al. (2020) engineered new variants of CRISPR base editors that make precise genomic edits in rice protoplasts while minimizing untargeted mutagenesis.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , CRISPR-Cas Systems , Cytosine , DNA, Single-Stranded , Deamination
4.
Genome Res ; 34(6): 904-913, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38858087

ABSTRACT

Multiomics require concerted recording of independent information, ideally from a single experiment. In this study, we introduce RIMS-seq2, a high-throughput technique to simultaneously sequence genomes and overlay methylation information while requiring only a small modification of the experimental protocol for high-throughput DNA sequencing to include a controlled deamination step. Importantly, the rate of deamination of 5-methylcytosine is negligible and thus does not interfere with standard DNA sequencing and data processing. Thus, RIMS-seq2 libraries from whole- or targeted-genome sequencing show the same germline variation calling accuracy and sensitivity compared with standard DNA-seq. Additionally, regional methylation levels provide an accurate map of the human methylome.


Subject(s)
DNA Methylation , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , Deamination , High-Throughput Nucleotide Sequencing/methods , Epigenome , Cytosine/metabolism , 5-Methylcytosine/metabolism , Sequence Analysis, DNA/methods
5.
Proc Natl Acad Sci U S A ; 121(4): e2310854121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38241433

ABSTRACT

Noncoding mutation hotspots have been identified in melanoma and many of them occur at the binding sites of E26 transformation-specific (ETS) proteins; however, their formation mechanism and functional impacts are not fully understood. Here, we used UV (Ultraviolet) damage sequencing data and analyzed cyclobutane pyrimidine dimer (CPD) formation, DNA repair, and CPD deamination in human cells at single-nucleotide resolution. Our data show prominent CPD hotspots immediately after UV irradiation at ETS binding sites, particularly at sites with a conserved TTCCGG motif, which correlate with mutation hotspots identified in cutaneous melanoma. Additionally, CPDs are repaired slower at ETS binding sites than in flanking DNA. Cytosine deamination in CPDs to uracil is suggested as an important step for UV mutagenesis. However, we found that CPD deamination is significantly suppressed at ETS binding sites, particularly for the CPD hotspot on the 5' side of the ETS motif, arguing against a role for CPD deamination in promoting ETS-associated UV mutations. Finally, we analyzed a subset of frequently mutated promoters, including the ribosomal protein genes RPL13A and RPS20, and found that mutations in the ETS motif can significantly reduce the promoter activity. Thus, our data identify high UV damage and low repair, but not CPD deamination, as the main mechanism for ETS-associated mutations in melanoma and uncover important roles of often-overlooked mutation hotspots in perturbing gene transcription.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Cytosine , Deamination , Skin Neoplasms/genetics , Mutation , Pyrimidine Dimers , Binding Sites , Ultraviolet Rays , DNA Damage , DNA Repair/genetics
6.
Cell ; 145(5): 773-86, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21620139

ABSTRACT

Mammalian CpG islands are key epigenomic elements that were first characterized experimentally as genomic fractions with low levels of DNA methylation. Currently, CpG islands are defined based on their genomic sequences alone. Here, we develop evolutionary models to show that several distinct evolutionary processes generate and maintain CpG islands. One central evolutionary regime resulting in enriched CpG content is driven by low levels of DNA methylation and consequentially low rates of CpG deamination. Another major force forming CpG islands is biased gene conversion that stabilizes constitutively methylated CpG islands by balancing rapid deamination with CpG fixation. Importantly, evolutionary analysis and population genetics data suggest that selection for high CpG content is not a significant factor contributing to conservation of CpGs in differentially methylated regions. The heterogeneous, but not selective, origins of CpG islands have direct implications for the understanding of DNA methylation patterns in healthy and diseased cells.


Subject(s)
CpG Islands , Evolution, Molecular , Mammals/genetics , Animals , DNA Methylation , Deamination , Gene Conversion , Humans , Mice , Models, Genetic , Phylogeny
7.
Mol Cell Proteomics ; 23(5): 100755, 2024 May.
Article in English | MEDLINE | ID: mdl-38548018

ABSTRACT

Human APOBEC3 enzymes are a family of single-stranded (ss)DNA and RNA cytidine deaminases that act as part of the intrinsic immunity against viruses and retroelements. These enzymes deaminate cytosine to form uracil which can functionally inactivate or cause degradation of viral or retroelement genomes. In addition, APOBEC3s have deamination-independent antiviral activity through protein and nucleic acid interactions. If expression levels are misregulated, some APOBEC3 enzymes can access the human genome leading to deamination and mutagenesis, contributing to cancer initiation and evolution. While APOBEC3 enzymes are known to interact with large ribonucleoprotein complexes, the function and RNA dependence are not entirely understood. To further understand their cellular roles, we determined by affinity purification mass spectrometry (AP-MS) the protein interaction network for the human APOBEC3 enzymes and mapped a diverse set of protein-protein and protein-RNA mediated interactions. Our analysis identified novel RNA-mediated interactions between APOBEC3C, APOBEC3H Haplotype I and II, and APOBEC3G with spliceosome proteins, and APOBEC3G and APOBEC3H Haplotype I with proteins involved in tRNA methylation and ncRNA export from the nucleus. In addition, we identified RNA-independent protein-protein interactions with APOBEC3B, APOBEC3D, and APOBEC3F and the prefoldin family of protein-folding chaperones. Interaction between prefoldin 5 (PFD5) and APOBEC3B disrupted the ability of PFD5 to induce degradation of the oncogene cMyc, implicating the APOBEC3B protein interaction network in cancer. Altogether, the results uncover novel functions and interactions of the APOBEC3 family and suggest they may have fundamental roles in cellular RNA biology, their protein-protein interactions are not redundant, and there are protein-protein interactions with tumor suppressors, suggesting a role in cancer biology. Data are available via ProteomeXchange with the identifier PXD044275.


Subject(s)
Cytidine Deaminase , Protein Interaction Maps , Humans , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Deamination , APOBEC Deaminases/metabolism , Aminohydrolases/metabolism , Aminohydrolases/genetics , HEK293 Cells , Cytosine Deaminase/metabolism , APOBEC-3G Deaminase/metabolism , APOBEC-3G Deaminase/genetics , Spliceosomes/metabolism , Protein Binding , Mass Spectrometry , RNA/metabolism , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/genetics
8.
Nucleic Acids Res ; 52(4): 1720-1735, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38109317

ABSTRACT

Nucleotide excision repair (NER) removes helix-distorting DNA lesions and is therefore critical for genome stability. During NER, DNA is unwound on either side of the lesion and excised, but the rules governing incision site selection, particularly in eukaryotic cells, are unclear. Excision repair-sequencing (XR-seq) sequences excised NER fragments, but analysis has been limited because the lesion location is unknown. Here, we exploit accelerated cytosine deamination rates in UV-induced CPD (cyclobutane pyrimidine dimer) lesions to precisely map their locations at C to T mismatches in XR-seq reads, revealing general and species-specific patterns of incision site selection during NER. Our data indicate that the 5' incision site occurs preferentially in HYV (i.e. not G; C/T; not T) sequence motifs, a pattern that can be explained by sequence preferences of the XPF-ERCC1 endonuclease. In contrast, the 3' incision site does not show strong sequence preferences, once truncated reads arising from mispriming events are excluded. Instead, the 3' incision is partially determined by the 5' incision site distance, indicating that the two incision events are coupled. Finally, our data reveal unique and coupled NER incision patterns at nucleosome boundaries. These findings reveal key principles governing NER incision site selection in eukaryotic cells.


Subject(s)
Cytosine , Excision Repair , Cytosine/chemistry , Deamination , DNA Damage , Eukaryotic Cells/chemistry
9.
J Biol Chem ; 300(6): 107410, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38796062

ABSTRACT

Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination assay. This assay offers a single-step set-up and real-time fluorescent read-out, and it is capable of providing insights into enzyme kinetics. The assay also offers a high-sensitivity and easily scalable method for identifying APOBEC3 inhibitors. This assay serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit and possesses the versatility to be readily adapted into a high-throughput format for inhibitor discovery.


Subject(s)
Cytidine Deaminase , DNA , Humans , Deamination , Cytidine Deaminase/metabolism , DNA/metabolism , DNA/chemistry , Kinetics , APOBEC Deaminases/metabolism , Enzyme Inhibitors/pharmacology
10.
J Biol Chem ; 300(6): 107350, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718865

ABSTRACT

The obligate intracellular bacterium, Chlamydia trachomatis, has evolved to depend on its human host for many metabolites, including most amino acids and three of the four nucleotides. Given this, it is not surprising that depletion of a single amino acid in the host cell growth medium blocks chlamydial replication. Paradoxically, supra-normal levels of some amino acids also block productive replication of Chlamydia. Here, we have determined how elevated serine levels, generated by exogenous supplementation, impede chlamydial inclusion development and reduce the generation of infectious progeny. Our findings reveal that human serine racemase, which is broadly expressed in multiple tissues, potentiates the anti-chlamydial effect of elevated serine concentrations. In addition to reversibly converting l-serine to d-serine, serine racemase also deaminates serine via ß-elimination. We have determined that d-serine does not directly impact Chlamydia; rather, ammonia generated by serine deamination limits the productive chlamydial replication. Our findings imply that ammonia produced within host cells can traverse the chlamydial inclusion membrane. Further, this property of serine deaminase can be exploited to sensitize Chlamydia to concentrations of doxycycline that are otherwise not bactericidal. Because exogenously elevated levels of serine can be tolerated over extended periods, the broad expression pattern of serine racemase indicates it to be a host enzyme whose activity can be directed against multiple intracellular bacterial pathogens. From a therapeutic perspective, demonstrating host metabolism can be skewed to generate an anti-bacterial metabolite that synergizes with antibiotics, we believe our results provide a new approach to target intracellular pathogens.


Subject(s)
Anti-Bacterial Agents , Chlamydia trachomatis , Serine , Humans , Chlamydia trachomatis/metabolism , Chlamydia trachomatis/drug effects , Serine/metabolism , Anti-Bacterial Agents/pharmacology , HeLa Cells , Racemases and Epimerases/metabolism , Deamination , Chlamydia Infections/metabolism , Chlamydia Infections/drug therapy , Chlamydia Infections/microbiology
11.
Nature ; 569(7756): 433-437, 2019 05.
Article in English | MEDLINE | ID: mdl-30995674

ABSTRACT

CRISPR-Cas base-editor technology enables targeted nucleotide alterations, and is being increasingly used for research and potential therapeutic applications1,2. The most widely used cytosine base editors (CBEs) induce deamination of DNA cytosines using the rat APOBEC1 enzyme, which is targeted by a linked Cas protein-guide RNA complex3,4. Previous studies of the specificity of CBEs have identified off-target DNA edits in mammalian cells5,6. Here we show that a CBE with rat APOBEC1 can cause extensive transcriptome-wide deamination of RNA cytosines in human cells, inducing tens of thousands of C-to-U edits with frequencies ranging from 0.07% to 100% in 38-58% of expressed genes. CBE-induced RNA edits occur in both protein-coding and non-protein-coding sequences and generate missense, nonsense, splice site, and 5' and 3' untranslated region mutations. We engineered two CBE variants bearing mutations in rat APOBEC1 that substantially decreased the number of RNA edits (by more than 390-fold and more than 3,800-fold) in human cells. These variants also showed more precise on-target DNA editing than the wild-type CBE and, for most guide RNAs tested, no substantial reduction in editing efficiency. Finally, we show that an adenine base editor7 can also induce transcriptome-wide RNA edits. These results have implications for the use of base editors in both research and clinical settings, illustrate the feasibility of engineering improved variants with reduced RNA editing activities, and suggest the need to more fully define and characterize the RNA off-target effects of deaminase enzymes in base editor platforms.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing , RNA Editing , Substrate Specificity/genetics , Transcriptome/genetics , APOBEC-1 Deaminase/chemistry , APOBEC-1 Deaminase/genetics , APOBEC-1 Deaminase/metabolism , Animals , Base Sequence , Cytosine/metabolism , Deamination , HEK293 Cells , Hep G2 Cells , Humans , Mutation , RNA/chemistry , RNA/metabolism , Rats
12.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35064076

ABSTRACT

Adenosine deaminases acting on RNA (ADAR) are RNA-editing enzymes that may restrict viral infection. We have utilized deep sequencing to determine adenosine to guanine (A→G) mutations, signifying ADAR activity, in clinical samples retrieved from 93 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients in the early phase of the COVID-19 pandemic. A→G mutations were detected in 0.035% (median) of RNA residues and were predominantly nonsynonymous. These mutations were rarely detected in the major viral population but were abundant in minor viral populations in which A→G was more prevalent than any other mutation (P < 0.001). The A→G substitutions accumulated in the spike protein gene at positions corresponding to amino acids 505 to 510 in the receptor binding motif and at amino acids 650 to 655. The frequency of A→G mutations in minor viral populations was significantly associated with low viral load (P < 0.001). We additionally analyzed A→G mutations in 288,247 SARS-CoV-2 major (consensus) sequences representing the dominant viral population. The A→G mutations observed in minor viral populations in the initial patient cohort were increasingly detected in European consensus sequences between March and June 2020 (P < 0.001) followed by a decline of these mutations in autumn and early winter (P < 0.001). We propose that ADAR-induced deamination of RNA is a significant source of mutated SARS-CoV-2 and hypothesize that the degree of RNA deamination may determine or reflect viral fitness and infectivity.


Subject(s)
Adenosine Deaminase/genetics , COVID-19/epidemiology , Point Mutation , RNA Editing , RNA, Viral/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Adenosine/metabolism , Adenosine Deaminase/metabolism , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , COVID-19/genetics , COVID-19/transmission , COVID-19/virology , Deamination , Female , Genetic Fitness , Genome, Viral , Guanine/metabolism , Host-Pathogen Interactions/genetics , Humans , Male , Middle Aged , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Signal Transduction , Spike Glycoprotein, Coronavirus/metabolism , Sweden/epidemiology , Viral Load , Virulence
13.
Anal Chem ; 96(11): 4726-4735, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38450632

ABSTRACT

DNA cytosine methylation (5-methylcytosine, 5mC) is a predominant epigenetic modification that plays a critical role in a variety of biological and pathological processes in mammals. In active DNA demethylation, the 10-11 translocation (TET) dioxygenases can sequentially oxidize 5mC to generate three modified forms of cytosine, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Beyond being a demethylation intermediate, recent studies have shown that 5fC has regulatory functions in gene expression and chromatin organization. While some methods have been developed to detect 5fC, genome-wide mapping of 5fC at base resolution is still highly desirable. Herein, we propose a chemical labeling enrichment and deamination sequencing (CLED-seq) method for detecting 5fC in genomic DNA at single-base resolution. The CLED-seq method utilizes selective labeling and enrichment of 5fC-containing DNA fragments, followed by deamination mediated by apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (APOBEC3A or A3A) and sequencing. In the CLED-seq process, while all C, 5mC, and 5hmC are interpreted as T during sequencing, 5fC is still read as C, enabling the precise detection of 5fC in DNA. Using the proposed CLED-seq method, we accomplished genome-wide mapping of 5fC in mouse embryonic stem cells. The mapping study revealed that promoter regions enriched with 5fC overlapped with H3K4me1, H3K4me3, and H3K27ac marks. These findings suggest a correlation between 5fC marks and active gene expression in mESCs. In conclusion, CLED-seq is a straightforward, bisulfite-free method that offers a valuable tool for detecting 5fC in genomes at a single-base resolution.


Subject(s)
Cytidine Deaminase , Cytosine , Cytosine/analogs & derivatives , Epigenesis, Genetic , Proteins , Animals , Mice , Deamination , Cytosine/metabolism , 5-Methylcytosine/metabolism , Chromosome Mapping , DNA/genetics , DNA/metabolism , DNA Methylation , Mammals/metabolism
14.
Anal Chem ; 96(21): 8730-8739, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38743814

ABSTRACT

Adenosine-to-inosine (A-to-I) editing and N6-methyladenosine (m6A) modifications are pivotal RNA modifications with widespread functional significance in physiological and pathological processes. Although significant effort has been dedicated to developing methodologies for identifying and quantifying these modifications, traditional approaches have often focused on each modification independently, neglecting the potential co-occurrence of A-to-I editing and m6A modifications at the same adenosine residues. This limitation has constrained our understanding of the intricate regulatory mechanisms governing RNA function and the interplay between different types of RNA modifications. To address this gap, we introduced an innovative technique called deamination-assisted reverse transcription stalling (DARTS), specifically designed for the simultaneous quantification of A-to-I editing and m6A at the same RNA sites. DARTS leverages the selective deamination activity of the engineered TadA-TadA8e protein, which converts adenosine residues to inosine, in combination with the unique property of Bst 2.0 DNA polymerase, which stalls when encountering inosine during reverse transcription. This approach enables the accurate quantification of A-to-I editing, m6A, and unmodified adenosine at identical RNA sites. The DARTS method is remarkable for its ability to directly quantify two distinct types of RNA modifications simultaneously, a capability that has remained largely unexplored in the field of RNA biology. By facilitating a comprehensive analysis of the co-occurrence and interaction between A-to-I editing and m6A modifications, DARTS opens new avenues for exploring the complex regulatory networks modulated by different RNA modifications.


Subject(s)
Adenosine , Inosine , RNA Editing , Adenosine/analogs & derivatives , Adenosine/analysis , Adenosine/metabolism , Inosine/metabolism , Inosine/analogs & derivatives , Inosine/chemistry , Deamination , RNA/metabolism , RNA/genetics , RNA/analysis , Reverse Transcription , Humans
15.
RNA ; 28(7): 917-926, 2022 07.
Article in English | MEDLINE | ID: mdl-35508354

ABSTRACT

The high mutation rate of SARS-CoV-2 largely complicates our control of the pandemic. In particular, it is currently unclear why the spike (S) gene has an extraordinarily high mutation rate among all SARS-CoV-2 genes. By analyzing the occurrence of fixed synonymous mutations between SARS-CoV-2 and RaTG13, and profiling the DAF (derived allele frequency) of polymorphic synonymous sites among millions of worldwide SARS-CoV-2 strains, we found that both fixed and polymorphic mutations show higher mutation rates in the S gene than other genes. The majority of mutations are C-to-T, representing the APOBEC-mediated C-to-U deamination instead of the previously proposed A-to-I deamination. Both in silico and in vivo evidence indicated that the S gene is more likely to be single-stranded compared to other SARS-CoV-2 genes, agreeing with the APOBEC preference of ssRNA. We conclude that the single-stranded property of the S gene makes it a favorable target for C-to-U deamination, leading to its excessively high mutation rate compared to other non-S genes. In conclusion, APOBEC, rather than ADAR, is the "editor-in-chief" of SARS-CoV-2 RNAs. This work helps us to understand the molecular mechanism underlying the mutation and evolution of SARS-CoV-2, and we believe it will contribute to the control of the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Deamination , Humans , Mutation , Mutation Rate , Pandemics , SARS-CoV-2/genetics
16.
Biotechnol Bioeng ; 121(9): 2893-2906, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38822747

ABSTRACT

D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin (l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO's low activity toward unnatural substrates like d-phosphinothricin (d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.


Subject(s)
Aminobutyrates , Caenorhabditis elegans , D-Amino-Acid Oxidase , Escherichia coli , Protein Engineering , D-Amino-Acid Oxidase/metabolism , D-Amino-Acid Oxidase/genetics , D-Amino-Acid Oxidase/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/metabolism , Protein Engineering/methods , Animals , Aminobutyrates/metabolism , Aminobutyrates/chemistry , Deamination , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/chemistry
17.
Nucleic Acids Res ; 50(11): 6038-6051, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35687141

ABSTRACT

Nucleobase deamination, such as A-to-I editing, represents an important posttranscriptional modification of RNA. When deamination affects guanosines, a xanthosine (X) containing RNA is generated. However, the biological significance and chemical consequences on RNA are poorly understood. We present a comprehensive study on the preparation and biophysical properties of X-modified RNA. Thermodynamic analyses revealed that base pairing strength is reduced to a level similar to that observed for a G•U replacement. Applying NMR spectroscopy and X-ray crystallography, we demonstrate that X can form distinct wobble geometries with uridine depending on the sequence context. In contrast, X pairing with cytidine occurs either through wobble geometry involving protonated C or in Watson-Crick-like arrangement. This indicates that the different pairing modes are of comparable stability separated by low energetic barriers for switching. Furthermore, we demonstrate that the flexible pairing properties directly affect the recognition of X-modified RNA by reverse transcription enzymes. Primer extension assays and PCR-based sequencing analysis reveal that X is preferentially read as G or A and that the ratio depends on the type of reverse transcriptase. Taken together, our results elucidate important properties of X-modified RNA paving the way for future studies on its biological significance.


Subject(s)
RNA Processing, Post-Transcriptional , RNA , Xanthines , Base Pairing , Deamination , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , Ribonucleosides , Xanthines/chemistry
18.
Nucleic Acids Res ; 50(21): 12039-12057, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36444883

ABSTRACT

The human APOBEC family of eleven cytosine deaminases use RNA and single-stranded DNA (ssDNA) as substrates to deaminate cytosine to uracil. This deamination event has roles in lipid metabolism by altering mRNA coding, adaptive immunity by causing evolution of antibody genes, and innate immunity through inactivation of viral genomes. These benefits come at a cost where some family members, primarily from the APOBEC3 subfamily (APOBEC3A-H, excluding E), can cause off-target deaminations of cytosine to form uracil on transiently single-stranded genomic DNA, which induces mutations that are associated with cancer evolution. Since uracil is only promutagenic, the mutations observed in cancer genomes originate only when uracil is not removed by uracil DNA glycosylase (UNG) or when the UNG-induced abasic site is erroneously repaired. However, when ssDNA is present, replication protein A (RPA) binds and protects the DNA from nucleases or recruits DNA repair proteins, such as UNG. Thus, APOBEC enzymes must compete with RPA to access their substrate. Certain APOBEC enzymes can displace RPA, bind and scan ssDNA efficiently to search for cytosines, and can become highly overexpressed in tumor cells. Depending on the DNA replication conditions and DNA structure, RPA can either be in excess or deficient. Here we discuss the interplay between these factors and how despite RPA, multiple cancer genomes have a mutation bias at cytosines indicative of APOBEC activity.


Subject(s)
DNA, Single-Stranded , Replication Protein A , Humans , Replication Protein A/genetics , Replication Protein A/metabolism , DNA, Single-Stranded/genetics , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism , DNA Replication/genetics , Cytosine/metabolism , DNA/metabolism , Uracil/metabolism , APOBEC Deaminases/genetics , APOBEC Deaminases/metabolism , Deamination
19.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33658373

ABSTRACT

Spontaneous deamination of DNA cytosine and adenine into uracil and hypoxanthine, respectively, causes C to T and A to G transition mutations if left unrepaired. Endonuclease Q (EndoQ) initiates the repair of these premutagenic DNA lesions in prokaryotes by cleaving the phosphodiester backbone 5' of either uracil or hypoxanthine bases or an apurinic/apyrimidinic (AP) lesion generated by the excision of these damaged bases. To understand how EndoQ achieves selectivity toward these structurally diverse substrates without cleaving undamaged DNA, we determined the crystal structures of Pyrococcus furiosus EndoQ bound to DNA substrates containing uracil, hypoxanthine, or an AP lesion. The structures show that substrate engagement by EndoQ depends both on a highly distorted conformation of the DNA backbone, in which the target nucleotide is extruded out of the helix, and direct hydrogen bonds with the deaminated bases. A concerted swing motion of the zinc-binding and C-terminal helical domains of EndoQ toward its catalytic domain allows the enzyme to clamp down on a sharply bent DNA substrate, shaping a deep active-site pocket that accommodates the extruded deaminated base. Within this pocket, uracil and hypoxanthine bases interact with distinct sets of amino acid residues, with positioning mediated by an essential magnesium ion. The EndoQ-DNA complex structures reveal a unique mode of damaged DNA recognition and provide mechanistic insights into the initial step of DNA damage repair by the alternative excision repair pathway. Furthermore, we demonstrate that the unique activity of EndoQ is useful for studying DNA deamination and repair in mammalian systems.


Subject(s)
Archaeal Proteins/chemistry , DNA, Archaeal/chemistry , Endonucleases/chemistry , Pyrococcus furiosus/enzymology , Archaeal Proteins/genetics , Catalytic Domain , DNA, Archaeal/genetics , Deamination , Endonucleases/genetics , Pyrococcus furiosus/genetics
20.
Int J Mol Sci ; 25(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38255875

ABSTRACT

It has been proposed that antidiabetic drugs, such as metformin and imatinib, at least in part, promote improved glucose tolerance in type 2 diabetic patients via increased production of the inflammatory cytokine GDF15. This is supported by studies, performed in rodent cell lines and mouse models, in which the addition or production of GDF15 improved beta-cell function and survival. The aim of the present study was to determine whether human beta cells produce GDF15 in response to antidiabetic drugs and, if so, to further elucidate the mechanisms by which GDF15 modulates the function and survival of such cells. The effects and expression of GDF15 were analyzed in human insulin-producing EndoC-betaH1 cells and human islets. We observed that alpha and beta cells exhibit considerable heterogeneity in GDF15 immuno-positivity. The predominant form of GDF15 present in islet and EndoC-betaH1 cells was pro-GDF15. Imatinib, but not metformin, increased pro-GDF15 levels in EndoC-betaH1 cells. Under basal conditions, exogenous GDF15 increased human islet oxygen consumption rates. In EndoC-betaH1 cells and human islets, exogenous GDF15 partially ameliorated cytokine- or palmitate + high-glucose-induced loss of function and viability. GDF15-induced cell survival was paralleled by increased inosine levels, suggesting a more efficient disposal of intracellular adenosine. Knockdown of adenosine deaminase, the enzyme that converts adenosine to inosine, resulted in lowered inosine levels and loss of protection against cytokine- or palmitate + high-glucose-induced cell death. It is concluded that imatinib-induced GDF15 production may protect human beta cells partially against inflammatory and metabolic stress. Furthermore, it is possible that the GDF15-mediated activation of adenosine deaminase and the increased disposal of intracellular adenosine participate in protection against beta-cell death.


Subject(s)
Insulins , Metformin , Mice , Humans , Animals , Cytokines , Adenosine Deaminase , Deamination , Imatinib Mesylate , Adenosine/pharmacology , Hypoglycemic Agents , Inosine , Metformin/pharmacology , Palmitates , Stress, Physiological , Glucose , Growth Differentiation Factor 15/genetics
SELECTION OF CITATIONS
SEARCH DETAIL