Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 351
Filter
1.
Lasers Med Sci ; 39(1): 174, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969931

ABSTRACT

PURPOSE: Laser irradiation activates a range of cellular processes in the periodontal components and promotes tissue repair. However, its effect on osteogenic differentiation of human cementoblast lineage cells remains unclear. This study aimed to examine the effects of high-frequency semiconductor laser irradiation on the osteogenic differentiation of human cementoblast lineage (HCEM) cells. METHODS: HCEM cells were cultured to reach 80% confluence and irradiated with a gallium-aluminum-arsenide (Ga-Al-As) semiconductor laser with a pulse width of 200 ns and wavelength of 910 at a dose of 0-2.0 J/cm2. The outcomes were assessed by analyzing the mRNA levels of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and type I collagen (COLL1) using real-time polymerase chain reaction (PCR) analysis 24 h after laser irradiation. Cell mineralization was evaluated using ALP activity, calcium deposition, and Alizarin Red staining. RESULTS: The laser-irradiated HCEM cells showed significantly enhanced gene expression levels of ALP, RUNX2, and COLL1 as well as ALP activity and calcium concentration in the culture medium compared with the non-irradiated cells. In addition, enhanced calcification deposits were confirmed in the laser-irradiated group compared with the non-irradiated group at 21 and 28 days after the induction of osteogenic differentiation. CONCLUSION: High-frequency semiconductor laser irradiation enhances the osteogenic differentiation potential of cultured HCEM cells, underscoring its potential utility for periodontal tissue regeneration.


Subject(s)
Cell Differentiation , Dental Cementum , Lasers, Semiconductor , Osteogenesis , Humans , Lasers, Semiconductor/therapeutic use , Cell Differentiation/radiation effects , Osteogenesis/radiation effects , Dental Cementum/radiation effects , Dental Cementum/cytology , Alkaline Phosphatase/metabolism , Cells, Cultured , Low-Level Light Therapy/methods , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Collagen Type I/genetics , Collagen Type I/metabolism
2.
Lasers Med Sci ; 38(1): 121, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37160506

ABSTRACT

The aim of this study was to evaluate the effects of photobiomodulation (PBM) on cell migration and alkaline phosphatase (ALP), type I collagen (Col-1), runt-related transcription factor 2 (RUNX-2), and Osterix (OSX) gene expression in a cementoblast culture (OCCM-30), in a microenvironment mimicking an injury on the cementoblast layer, such as it occurs during root resorption. For this, OCCM-30 cells were cultured in 6-well plates and the following parameters were assayed: (1) migration by scratch assay and ALP, Col-1, Runx2, and Osx by real-time PCR. PBM was performed in two protocols using a LED device emitting light at 660 nm (± 30 nm). OCCM-30 cementoblasts were grown and divided into four groups: (1) negative control; (2) positive control (scratch); (3) scratch + PBM with a total energy of 36 J and energy density 1.6 J/cm2; and (4) scratch + PBM with a total energy of 72 J and energy density of 3.2 J/cm2. Data were statistically analyzed, with the level of significance set at 5%. Cementoblasts migrated from the edge of the scratch toward the center, and the wound closed after 24 h, with the PBM3.2J/cm2 group showing the higher cell migration compared with the other groups at 2 h, 6 h, 8 h, and 13 h (p < 0.05). The control and PBM1.6J/cm2 groups showed similar levels of cell migration, with no significant differences (p > 0.05). PBM3.2J/cm2 group exhibited greater ALP, Col-1, OSX, and RUNX2 in comparison with the other experimental groups (p < 0.05). Similar levels of all genes evaluated were observed between the PBM1.6J/cm2 group and the positive control group (p > 0.05). In conclusion, our findings support the effectiveness of photobiomodulation on cementoblast migration and gene expression, which may contribute to the formation of a new cementum layer.


Subject(s)
Alkaline Phosphatase , Dental Cementum , Alkaline Phosphatase/genetics , Cell Movement/genetics , Coloring Agents , Core Binding Factor Alpha 1 Subunit/genetics , Dental Cementum/cytology , Gene Expression , Animals , Mice
3.
Biochem Biophys Res Commun ; 587: 9-15, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34861472

ABSTRACT

OBJECTIVE: The role of circadian clock in cementogenesis is unclear. This study examines the role of REV-ERBs, one of circadian clock proteins, in proliferation, migration and mineralization of cementoblasts to fill the gap in knowledge. METHODS: Expression pattern of REV-ERBα in cementoblasts was investigated in vivo and in vitro. CCK-8 assay, scratch wound healing assay, alkaline phosphatase (ALP) and alizarin red S (ARS) staining were performed to evaluate the effects of REV-ERBs activation by SR9009 on proliferation, migration and mineralization of OCCM-30, an immortalized cementoblast cell line. Furthermore, mineralization related markers including osterix (OSX), ALP, bone sialoprotein (BSP) and osteocalcin (OCN) were evaluated. RESULTS: Strong expression of REV-ERBα was found in cellular cementum around tooth apex. Rev-erbα mRNA oscillated periodically in OCCM-30 and declined after mineralization induction. REV-ERBs activation by SR9009 inhibited proliferation but promoted migration of OCCM-30 in vitro. Results of ALP and ARS staining suggested that REV-ERBs activation negatively regulated mineralization of OCCM-30. Mechanically, REV-ERBs activation attenuated the expression of OSX and its downstream targets including ALP, BSP and OCN. CONCLUSIONS: REV-ERBs are involved in cementogenesis and negatively regulate mineralization of cementoblasts via inhibiting OSX expression. Our study provides a potential target regarding periodontal and cementum regeneration.


Subject(s)
Biological Clocks/genetics , Calcification, Physiologic/genetics , Dental Cementum/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Cell Differentiation/drug effects , Cell Line, Transformed , Cell Proliferation/drug effects , Cementogenesis/drug effects , Cementogenesis/genetics , Dental Cementum/cytology , Dental Cementum/drug effects , Female , Gene Expression Regulation , Humans , Integrin-Binding Sialoprotein/genetics , Integrin-Binding Sialoprotein/metabolism , Mice , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , Pyrrolidines/pharmacology , Signal Transduction , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Thiophenes/pharmacology
4.
Differentiation ; 112: 47-57, 2020.
Article in English | MEDLINE | ID: mdl-31951879

ABSTRACT

BACKGROUND: The periodontal ligament contains periodontal ligament cells, which is a heterogeneous cell population, and includes progenitor cells that can differentiate into osteoblasts/cementoblasts. Mesenchymal stem cells (MSCs) can differentiate into various cells and can be used for periodontal regenerative therapy. Therefore, transplanted MSCs can be affected by humoral factors from periodontal ligament cells via the transcription factors or microRNAs (miRNAs) of MSCs. In addition, periostin (POSTN) is secreted from HPL cells and can regulate periodontal regeneration and homeostasis. To clarify the regulatory mechanism of humoral factors from periodontal ligament cells, we attempted to identify key genes, specifically microRNAs, involved in this process. METHODS: Human MSCs (hMSCs) were indirectly co-cultured with human periodontal ligament cells (HPL cells) and then evaluated for osteogenesis, undifferentiated MSCs markers, and miRNA profiles. Furthermore, hMSCs were indirectly co-cultured with HPL cells in the presence of anti-POSTN monoclonal antibody (anti-POSTN Ab) to block the effect of POSTN from HPL cells, and then evaluated for osteogenesis or undifferentiated MSC markers. Moreover, hMSCs showed alterations in miRNA expression or cultured with HPL were challenged with POSTN during osteogenesis, and cells were evaluated for osteogenesis or undifferentiated MSC markers. RESULTS: hMSCs co-cultured with HPL cells showed suppressed osteogenesis and characteristic expression of SOX11, an undifferentiated MSC marker, as well as miR-299-5p. Overexpression of miR-299-5p regulated osteogenesis and SOX11 expression as observed with indirect co-culture with HPL cells. Furthermore, MSCs co-cultured with HPL cells were recovered from the suppression of osteogenesis and SOX11 mRNA expression by anti-POSTN Ab. However, POSTN induced miR-299-5p and SOX11 expression, and enhanced osteogenesis. CONCLUSION: Humoral factors from HPL cells suppressed osteogenesis in hMSCs. The suppressive effect was mediated by miR-299-5p and SOX11 in hMSCs.


Subject(s)
Cell Adhesion Molecules/genetics , Cell Differentiation/genetics , MicroRNAs/genetics , Periodontal Ligament/growth & development , SOXC Transcription Factors/genetics , Cell Lineage/genetics , Coculture Techniques , Dental Cementum/cytology , Dental Cementum/metabolism , Gene Expression Regulation, Developmental , Humans , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis/genetics , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Regenerative Endodontics/trends
5.
J Cell Biochem ; 121(3): 2606-2617, 2020 03.
Article in English | MEDLINE | ID: mdl-31680324

ABSTRACT

Cementum regeneration is considered the gold standard for the treatment of periodontitis. As one of the most important primary proinflammatory cytokines, interleukin 1ß (IL1ß) plays an essential role during the early stage of periodontitis and its amounts simultaneously increase dramatically during this stage. Though promising, the differentiation of cementoblasts upon IL1ß-induced inflammation of the microenvironment and the relative interaction mechanism are still unknown. Here, we found that IL1ß inhibited cementoblast differentiation and microRNA-325-3p (miR-325-3p) was increased during IL1ß-stimulated cementoblasts. Bioinformatics analysis and luciferase reporter assay demonstrated miR-325-3p targeted runt-related transcription factor 2 directly. Transfection of miR-325-3p suppressed cementoblast differentiation in vitro and the formation of cementum-like tissues in vivo. The inhibitor of miR-325-3p could mitigate the above effects induced by IL1ß. Accordingly, our finding suggests a critical role of miR-325-3p in linking inflammation to impaired cementum regeneration and provides a potential possibility for applying miR-325-3p inhibitors in the treatment of periodontitis-related bone loss.


Subject(s)
Cell Differentiation , Cementogenesis , Core Binding Factor Alpha 1 Subunit/metabolism , Dental Cementum/cytology , Gene Expression Regulation , Interleukin-1beta/pharmacology , MicroRNAs/genetics , Animals , Cell Proliferation , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/genetics , Dental Cementum/drug effects , Dental Cementum/metabolism , Male , Mice , Mice, Inbred C57BL
6.
Biochem Biophys Res Commun ; 523(3): 595-601, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31941604

ABSTRACT

Iatrogenic external root resorption can become a serious pathological condition with clinical tooth movement. Little is known regarding how cementum responds to mechanical loading in contrast to bone, especially under compressive stress. In the field of bone biology, several studies have established the contribution of sphingosine-1-phosphate (S1P) signaling in bone remodeling, mechanical transduction and homeostasis. As osteocytes and cementocytes share similar morphological and functional characteristics, this study aimed to investigate the mechanotransduction ability of cementocytes and to explore the contribution of S1P signaling under compressive stress induced mechanotransduction. We found that compressive stress inhibited major S1P signaling and promoted the expression of anabolic factors in IDG-CM6 cells, a novel immortalized murine cementocyte cell line. By inhibiting S1P signaling, we verified that S1P signaling played a vital role in regulating the expression of the mechanotransduction factors prostaglandin E2 (PGE2) and ß-catenin, as well as factors responsible for cementogenesis and cementoclastogenesis in IDG-CM6 cells. These results support the hypothesis that cementocytes act as key mechanically responsive cells in cementum, responding to compressive stress and directing local cementum metabolism.


Subject(s)
Dental Cementum/cytology , Lysophospholipids/metabolism , Mechanotransduction, Cellular , Signal Transduction , Sphingosine/analogs & derivatives , Animals , Cell Line , Dental Cementum/metabolism , Mice , Sphingosine/metabolism , Stress, Mechanical
7.
Stem Cells ; 37(12): 1567-1580, 2019 12.
Article in English | MEDLINE | ID: mdl-31400241

ABSTRACT

Although macrophage (Mφ) polarization has been demonstrated to play crucial roles in cellular osteogenesis across the cascade of events in periodontal regeneration, how polarized Mφ phenotypes influence the cementoblastic differentiation of periodontal ligament stem cells (PDLSCs) remains unknown. In the present study, human monocyte leukemic cells (THP-1) were induced into M0, M1, and M2 subsets, and the influences of these polarized Mφs on the cementoblastic differentiation of PDLSCs were assessed in both conditioned medium-based and Transwell-based coculture systems. Furthermore, the potential pathways and cyto-/chemokines involved in Mφ-mediated cementoblastic differentiation were screened and identified. In both systems, M2 subsets increased cementoblastic differentiation-related gene/protein expression levels in cocultured PDLSCs, induced more PDLSCs to differentiate into polygonal and square cells, and enhanced alkaline phosphatase activity in PDLSCs. Furthermore, Akt and c-Jun N-terminal Kinase (JNK) signaling was identified as a potential pathway involved in M2 Mφ-enhanced PDLSC cementoblastic differentiation, and cyto-/chemokines (interleukin (IL)-10 and vascular endothelial growth factor [VEGF]) secreted by M2 Mφs were found to be key players that promoted cell cementoblastic differentiation by activating Akt signaling. Our data indicate for the first time that Mφs are key modulators during PDLSC cementoblastic differentiation and are hence very important for the regeneration of multiple periodontal tissues, including the cementum. Although the Akt and JNK pathways are involved in M2 Mφ-enhanced cementoblastic differentiation, only the Akt pathway can be activated via a cyto-/chemokine-associated mechanism, suggesting that players other than cyto-/chemokines also participate in the M2-mediated cementoblastic differentiation of PDLSCs. Stem Cells 2019;37:1567-1580.


Subject(s)
Dental Cementum/cytology , JNK Mitogen-Activated Protein Kinases/metabolism , Macrophages/metabolism , Periodontal Ligament/cytology , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Coculture Techniques , Culture Media, Conditioned/pharmacology , Humans , MAP Kinase Signaling System/physiology , Osteogenesis/physiology , Stem Cells/cytology
8.
Int J Mol Sci ; 21(11)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466616

ABSTRACT

The periodontal complex consisting of alveolar bone, cementum, and periodontal ligaments (PDL) supports human teeth through the systematic orchestration of mineralized tissues and fibrous tissues. Importantly, cementum, the outermost mineralized layer of dental roots, plays an essential role by bridging the inner ligaments from the dental root to the alveolar bone. When the periodontal complex is damaged, the regeneration of each component of the periodontal complex is necessary; however, it is still challenging to achieve complete functional regeneration. In this study, we tried to control the regeneration of cementum and PDL by using a human PDL stem cell (hPDLSC) sheet engineering technology with the pretreatment of recombinant human BMP-2 (rhBMP-2). Isolated hPDLSCs obtained from extracted human teeth were pretreated with rhBMP-2 for in vitro osteogenic differentiation and grafted on the micro/macro-porous biphasic calcium phosphate (MBCP) blocks, which represent dental roots. The MBCPs with hPDLSC sheets were implanted in the subcutaneous layer of immune-compromised mice, and rhBMP-2 pretreated hPDLSC sheets showed higher mineralization and collagen ligament deposition than the no-pretreatment group. Therefore, the rhBMP-2-hPDLSC sheet technique could be an effective strategy for the synchronized regeneration of two different tissues: mineralized tissue and fibrous tissues in periodontal complexes.


Subject(s)
Dental Cementum/physiology , Periodontal Ligament/cytology , Regeneration , Stem Cell Transplantation/methods , Animals , Bone Morphogenetic Protein 2/pharmacology , Cells, Cultured , Dental Cementum/cytology , Humans , Hydroxyapatites/chemistry , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred BALB C , Recombinant Proteins/pharmacology , Tissue Engineering/methods , Tissue Scaffolds/chemistry
9.
J Cell Physiol ; 234(4): 4005-4014, 2019 04.
Article in English | MEDLINE | ID: mdl-30256390

ABSTRACT

Cementum, which shares common features with bone in terms of biochemical composition, is important for the homeostasis of periodontium during periodontitis and orthodontic treatment. Sirtuin 6 (SIRT6), as a member of the sirtuin family, plays key roles in the osteogenic differentiation of bone marrow mesenchymal stem cells. However, the involvement of SIRT6 in cementoblast differentiation and mineralization and the underlying mechanisms remain unknown. In this study, we observed that the expression of SIRT6 increased during cementoblast differentiation initially. Analysis of the gain- and loss-of-function indicated that overexpressing SIRT6 in OCCM-30 cells suppresses cementoblast differentiation and mineralization and downregulating SIRT6 promotes cementogenesis. GLUT1, a glucose transporter necessary in cementogenesis, was inhibited by SIRT6. Overexpressing GLUT1 in SIRT6-overexpressed OCCM-30 cells rescued the inhibitory effect of SIRT6 on cementoblast differentiation and mineralization. Moreover, AMPK was activated after overexpressing SIRT6 and inhibited cementoblast differentiation and mineralization. Downregulating the expression of SIRT6 inhibited AMPK activity. Meanwhile, GLUT1 overexpression significantly decreased AMPK activity. Overall, on one hand, SIRT6 inhibited cementoblast differentiation and mineralization by suppressing GLUT1. On the other hand, SIRT6 inhibited cementoblast differentiation and mineralization by activating the AMPK pathway. GLUT1 overexpression also rescued the increased AMPK pathway activated by SIRT6.


Subject(s)
Cementogenesis , Dental Cementum/enzymology , Glucose Transporter Type 1/metabolism , Sirtuins/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Cell Differentiation , Cell Line , Dental Cementum/cytology , Glucose Transporter Type 1/genetics , Mice , Signal Transduction , Sirtuins/genetics , Up-Regulation
10.
Connect Tissue Res ; 60(5): 444-451, 2019 09.
Article in English | MEDLINE | ID: mdl-30897979

ABSTRACT

Aim: The purpose of this study was to investigate the influence of mechanical strain on OCCM-30 cementoblast differentiation and Wnt/ß-catenin pathway activity. Materials and Methods: Mechanical tension in the form of 2500-µ strain was applied to the cells using the Forcel four-point bending system, with or without the Wnt signaling activator, lithium chloride. Changes in cell differentiation and the expression of Wnt/ß-catenin pathway components in response to strain and lithium chloride were assessed by real-time PCR, immunofluorescence, and western blotting. Results: The mRNA expression levels of the cementoblastogenesis-related genes alkaline phosphatase, runt-related transcription factor 2, and collagen 1, were decreased with mechanical strain. Similarly, the Wnt signaling pathway component genes LRP5, AXIN2, and LEF1 were decreased. The immunofluorescence assay demonstrated that scant ß-catenin underwent nuclear translocation after the cells were subjected to mechanical strain. Moreover, western blotting showed that the protein levels of both ß-catenin and phosphorylated ß-catenin were increased after mechanical strain. In the presence of lithium chloride, the differentiation that was suppressed by mechanical strain was attenuated. Conclusions: 2500-µ strain mechanical strain inhibited cementoblast differentiation activity in vitro, which could be alleviated by actviating Wnt/ß-catenin signaling using lithium chloride.


Subject(s)
Cell Differentiation/drug effects , Dental Cementum/cytology , Lithium Chloride/pharmacology , Stress, Mechanical , Animals , Cell Line , Cementogenesis/drug effects , Cementogenesis/genetics , Dental Cementum/drug effects , Gene Expression Regulation/drug effects , Mice , Phosphorylation/drug effects , beta Catenin/metabolism
11.
J Cell Physiol ; 233(3): 2213-2224, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28688217

ABSTRACT

Yes-associated protein 1 (YAP1) transcriptional coactivator is a mediator of mechanosensitive signaling. Cementum, which covers the tooth root surface, continuously senses external mechanical stimulation. Cementoblasts are responsible for the mineralization and maturation of the cementum. However, the effect of YAP1 on cementoblast differentiation remains largely unknown. In this study, we initially demonstrated that YAP1 overexpression enhanced the mineralization ability of cementoblasts. YAP1 upregulated the mRNA and protein expression of several cementogenesis markers, such as alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and dentin matrix acidic phosphoprotein 1 (DMP1). The YAP1 overexpression group showed higher intensities of ALP and Alizarin red stain than the YAP1-knockdown group. Unexpectedly, a sharp increase in the expression of dentin sialophosphoprotein (DSPP) was induced by the overexpression of YAP1. Knockdown of YAP1 suppressed DSPP transcriptional activity. YAP1 overexpression activated Smad-dependent BMP signaling and slightly inhibited Erk1/2 signaling pathway activity. Treatment with specific BMP antagonist (LDN193189) prevented the upregulation of the mRNA levels of ALP, RUNX2, and OCN, as well as intensity of ALP-stained and mineralized nodules in cementoblasts. The Erk1/2 signaling pathway inhibitor (PD 98,059) upregulated these cementogenesis markers. Thus, our study suggested that YAP1 enhanced cementoblast mineralization in vitro. YAP1 exerted its effect on the cementoblast partly by regulating the Smad-dependent BMP and Erk1/2 signaling pathways.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Bone Morphogenetic Protein 1/metabolism , Cementogenesis/physiology , Dental Cementum/cytology , Extracellular Signal-Regulated MAP Kinases/metabolism , Phosphoproteins/metabolism , Smad Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Alkaline Phosphatase/biosynthesis , Animals , Bone Morphogenetic Protein 1/antagonists & inhibitors , Cell Cycle Proteins , Cell Differentiation , Cell Line , Core Binding Factor Alpha 1 Subunit/biosynthesis , Extracellular Matrix Proteins/biosynthesis , Extracellular Matrix Proteins/genetics , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Flavonoids/pharmacology , Mice , Osteocalcin/biosynthesis , Phosphoproteins/biosynthesis , Phosphoproteins/genetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Sialoglycoproteins/biosynthesis , Sialoglycoproteins/genetics , YAP-Signaling Proteins
12.
Cell Tissue Res ; 374(3): 567-575, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30097714

ABSTRACT

Autophagy is a self-digestive process that eliminates impaired or aged proteins and potentially toxic intracellular components to maintain homeostasis. We previously demonstrated that TNF-α played a critical role in cementoblast differentiation, mineralization and apoptosis; however, the effect of TNF-α on cementoblast autophagy has remained unclear. In this study, an elevated immunofluorescence signal of LC3B and autophagic vacuoles, autophagosomes and autolysosomes were detected under TNF-α stimulation in OCCM-30 cells. Autophagy-related genes and proteins, Beclin-1, LC3A and Atg-5, were significantly upregulated by TNF-α in a time- and concentration-dependent manner. During this process, the activity of Stat3 was dramatically enhanced and when the activity of Stat3 was blocked by either a specific chemical inhibitor or siRNA transfection before TNF-α stimulation, the TNF-α-induced upregulation of autophagy-related genes and proteins was strongly inhibited. Our results suggest that TNF-α induced autophagy in cementoblasts was dependent, or partially dependent on the activity of Stat3 signaling pathway.


Subject(s)
Autophagy/drug effects , Dental Cementum/cytology , Dental Cementum/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology , Animals , Cell Line , Dental Cementum/drug effects , Dental Cementum/ultrastructure , Mice
13.
J Periodontal Res ; 53(5): 705-713, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29704238

ABSTRACT

BACKGROUND AND OBJECTIVE: MicroRNAs (miRNAs) are short, noncoding RNAs that interfere with translation of target mRNAs and thereby play a pivotal role in a variety of biological processes. Cementoblasts are the cells that build up cementum. They share a similar gene expression pattern with osteoblasts. Recent studies have suggested that miRNAs are able to control osteoblast-mediated bone formation. However, the effects of miRNA on cementoblast differentiation still remain unsolved. Herein, we wanted to elucidate the role of miR-3064-3p in cementoblast differentiation. MATERIAL AND METHODS: A miRNA microarray was operated to explore the miRNA expression patterns during cementoblast differentiation. miR-3064-3p agomir/antagomir was used to promote or inhibit, respectively, the expression of miR-3064-3p. In order to measure the differentiation level of cementoblasts, quantitative RT-PCR (qRT-PCR), Alizarin red staining, and assessment of alkaline phosphatase activity were performed. Luciferase assays, qRT-PCR, and western blotting were used to identify the target gene of miR-3064-3p. RESULTS: miR-3064-3p showed persistently decreased expression during cementoblast differentiation. Overexpression of miR-3064-3p suppressed cementoblast differentiation, while inhibition of miR-3064-3p promoted cementoblast differentiation. Target prediction-analysis tools and dual-luciferase assay identified Dickkopf WNT signaling pathway inhibitor 1 (DKK1) as a direct target of miR-3064-3p. Results from qRT-PCR and western blotting showed that inhibition of miR-3064-3p led to a remarkable increase in DKK1/Dickkopf related protein 1 (Dkk-1) expression. In addition, pretreatment with recombinant Dickkopf related protein 1 (Dkk-1) rescued the miR-3064-3p-mediated suppression of cementoblast differentiation. CONCLUSION: This study demonstrates, for the first time, that miR-3064-3p suppresses cementoblast differentiation via the regulation of DKK1.


Subject(s)
Cell Differentiation/genetics , Dental Cementum/cytology , Gene Expression Regulation, Developmental/genetics , Intercellular Signaling Peptides and Proteins/physiology , MicroRNAs/genetics , MicroRNAs/physiology , Animals , Cells, Cultured , Mice
14.
Int J Med Sci ; 15(4): 291-299, 2018.
Article in English | MEDLINE | ID: mdl-29511365

ABSTRACT

The tooth root transmits and balances occlusal forces through the periodontium to the alveolar bone. The periodontium, including the gingiva, the periodontal ligament, the cementum and the partial alveolar bone, derives from the dental follicle (DF), except for the gingiva. In the early developmental stages, the DF surrounds the tooth germ as a sphere and functions to promote tooth eruption. However, the morphological dynamics and factors regulating the differentiation of the DF during root elongation remain largely unknown. Miniature pigs are regarded as a useful experimental animal for modeling in craniofacial research because they are similar to humans with respect to dentition and mandible anatomy. In the present study, we used the third deciduous incisor of miniature pig as the model to investigate the factors influencing DF differentiation during root development. We found that the DF was shaped like a crescent and was located between the root apical and the alveolar bone. The expression levels of WNT5a, ß-Catenin, and COL-I gradually increased from the center of the DF (beneath the apical foramen) to the lateral coronal corner, where the DF differentiates into the periodontium. To determine the potential regulatory role of the apical papilla on DF cell differentiation, we co-cultured dental follicle stem cells (DFSCs) with stem cells of the apical papilla (SCAPs). The osteogenesis and fibrogenesis abilities of DFSCs were inhibited when being co-cultured with SCAPs, suggesting that the fate of the DF can be regulated by signals from the apical papilla. The apical papilla may sustain the undifferentiated status of DFSCs before root development finishes. These data yield insight into the interaction between the root apex and surrounding DF tissues in root and periodontium development and shed light on the future study of root regeneration in large mammals.


Subject(s)
Cell Differentiation , Dental Sac/growth & development , Osteogenesis/physiology , Tooth Root/growth & development , Alveolar Bone Grafting , Animals , Cells, Cultured , Dental Cementum/cytology , Dental Cementum/physiology , Humans , Odontogenesis/physiology , Periodontal Ligament/growth & development , Stem Cells/cytology , Swine , Swine, Miniature
15.
Int J Mol Sci ; 19(6)2018 06 12.
Article in English | MEDLINE | ID: mdl-29895782

ABSTRACT

The present study evaluated the protective effects of melatonin in ethanol (EtOH)-induced senescence and osteoclastic differentiation in human periodontal ligament cells (HPDLCs) and cementoblasts and the underlying mechanism. EtOH increased senescence activity, levels of reactive oxygen species (ROS) and the expression of cell cycle regulators (p53, p21 and p16) and senescence-associated secretory phenotype (SASP) genes (interleukin [IL]-1ß, IL-6, IL-8 and tumor necrosis factor-α) in HPDLCs and cementoblasts. Melatonin inhibited EtOH-induced senescence and the production of ROS as well as the increased expression of cell cycle regulators and SASP genes. However, it recovered EtOH-suppressed osteoblastic/cementoblastic differentiation, as evidenced by alkaline phosphatase activity, alizarin staining and mRNA expression levels of Runt-related transcription factor 2 (Runx2) and osteoblastic and cementoblastic markers (glucose transporter 1 and cementum-derived protein-32) in HPDLCs and cementoblasts. Moreover, it inhibited EtOH-induced osteoclastic differentiation in mouse bone marrow⁻derived macrophages (BMMs). Inhibition of protein never in mitosis gene A interacting-1 (PIN1) by juglone or small interfering RNA reversed the effects of melatonin on EtOH-mediated senescence as well as osteoblastic and osteoclastic differentiation. Melatonin blocked EtOH-induced activation of mammalian target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and Nuclear factor of activated T-cells (NFAT) c-1 pathways, which was reversed by inhibition of PIN1. This is the first study to show the protective effects of melatonin on senescence-like phenotypes and osteoclastic differentiation induced by oxidative stress in HPDLCs and cementoblasts through the PIN1 pathway.


Subject(s)
Dental Cementum/cytology , Ethanol/pharmacology , Melatonin/pharmacology , Osteoclasts/drug effects , Osteoclasts/metabolism , Periodontal Ligament/cytology , Cell Differentiation/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Dental Cementum/metabolism , Humans , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoclasts/cytology , Periodontal Ligament/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
16.
Eur J Orthod ; 40(5): 537-543, 2018 09 28.
Article in English | MEDLINE | ID: mdl-29394342

ABSTRACT

Objective: To investigate the regulatory role of type I parathyroid hormone receptor (PTH1R) signalling in the mechanotransduction process of cementoblasts under cyclic tensile stress (CTS). Materials and methods: Immortalized cementoblast cell line OCCM-30 were employed and subjected to cyclic tensile strain applied by a four-point bending system. The expression of PTHrP and PTH1R, as well as cementoblastic transcription factor Runx-2, Osterix, and extracellular matrix protein COL-1 and OPN were assessed by quantitative real-time polymerase chain reaction and western blot analysis. PTH1R expression was knocked down by siPTH1R transfection, and the alteration of cementoblastic biomarkers expression was examined to evaluate the function of PTH1R. Furthermore, to investigate possible downstream molecules, expression of signal molecule ERK1/2 with or without siPTH1R transfection, and the effect of ERK inhibitor PD98059 on the expression of cementoblastic biomarkers was also examined. Results: Cyclic tensile strain elevated the expression of PTHrP and PTH1R, as well as cementoblastic biomarkers Runx-2, Osterix, COL-1, and OPN in a time-dependent manner, which was inhibited by siPTH1R transfection. The expression of phosphorylated ERK1/2 was upregulated time-dependently under cyclic stretch, which was also inhibited by siPTH1R transfection, and pretreatment of p-ERK1/2 inhibitor PD98059 undermined the increase of Runx-2, Osterix, COL-1, and OPN prominently. Conclusion: The findings of the present study indicate that PTH1R signalling plays a regulatory role in the CTS induced cementoblastic differentiation in mature cementoblasts, and ERK1/2 is essentially involved as a downstream intracellular signal molecule in this mechanotransduction process.


Subject(s)
Dental Cementum/cytology , Mechanotransduction, Cellular/physiology , Receptor, Parathyroid Hormone, Type 1/physiology , Animals , Cell Differentiation/physiology , Cell Line , Cells, Cultured , Dental Cementum/metabolism , Flavonoids/pharmacology , Gene Expression Regulation/physiology , Gene Silencing , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Protein Kinase Inhibitors/pharmacology , Receptor, Parathyroid Hormone, Type 1/genetics , Stress, Mechanical
17.
J Cell Physiol ; 232(3): 556-565, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27277399

ABSTRACT

Basic, pre-clinical, and clinical studies have documented the potential of amelogenin, and its variants, to affect cell response and tissue regeneration. However, the mechanisms are unclear. Thus, the aim of the present study was to identify, in cementoblasts, novel binding partners for an alternatively spliced amelogenin form (Leucine-Rich Amelogenin Peptide-LRAP), which is supposed to act as a signaling molecule in epithelial-mesenchymal interactions. LRAP-binding protein complexes from immortalized murine cementoblasts (OCCM-30) were achieved by capture affinity assay (GST pull down) and proteins present in these complexes were identified by mass spectrometry and immunoblotting. Flotillin-1, which functions as a platform for signal transduction, vesicle trafficking, endocytosis, and exocytosis, was identified and confirmed by co-precipitation and co-localization assays as a protein-binding partner for LRAP in OCCM-30 cells. In addition, we found that exogenously added GST-LRAP recombinant protein was internalized by OCCM-30 cells, predominantly localized in the perinuclear region and, that inhibition of flotillin1-dependent functions by small interference RNA (siRNA) methodology significantly affected LRAP uptake and its biological properties on OCCM-30 cells, including LRAP effect on the expression of genes encoding osteocalcin (Ocn), bone sialoprotein (Bsp), and runt-related transcription factor 2 (RunX2). In conclusion, LRAP uptake by cementoblast involves flotillin-assisted endocytosis, which suggests an involvement of LRAP in lipid-raft-dependent signaling pathways which are mediated by flotillin-1. J. Cell. Physiol. 232: 556-565, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Dental Cementum/cytology , Dental Cementum/metabolism , Dental Enamel Proteins/metabolism , Endocytosis , Membrane Proteins/metabolism , Animals , Cell Line , Cell Nucleus/metabolism , Gene Silencing , Immunoprecipitation , Mass Spectrometry , Mice
18.
BMC Cell Biol ; 18(1): 19, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28427342

ABSTRACT

BACKGROUND: External root resorption, commonly starting from cementum, is a severe side effect of orthodontic treatment. In this pathological process and repairing course followed, cementoblasts play a significant role. Previous studies implicated that parathyroid hormone (PTH) could act on committed osteoblast precursors to promote differentiation, and inhibit apoptosis. But little was known about the role of PTH in cementoblasts. The purpose of this study was to investigate the effects of intermittent PTH on cementoblasts and its influence after mechanical strain treatment. RESULTS: Higher levels of cementogenesis- and differentiation-related biomarkers (bone sialoprotein (BSP), osteocalcin (OCN), Collagen type I (COL1) and Osterix (Osx)) were shown in 1-3 cycles of intermittent PTH treated groups than the control group. Additionally, intermittent PTH increased alkaline phosphatase (ALP) activity and mineralized nodules formation, as measured by ALP staining, quantitative ALP assay, Alizarin red S staining and quantitative calcium assay. The morphology of OCCM-30 cells changed after mechanical strain exertion. Expression of BSP, ALP, OCN, osteopontin (OPN) and Osx was restrained after 18 h mechanical strain. Furthermore, intermittent PTH significantly increased the expression of cementogenesis- and differentiation-related biomarkers in mechanical strain treated OCCM-30 cells. CONCLUSIONS: Taken together, these data suggested that intermittent PTH promoted cementum formation through activating cementogenesis- and differentiation-related biomarkers, and attenuated the catabolic effects of mechanical strain in immortalized cementoblasts OCCM-30.


Subject(s)
Cementogenesis/drug effects , Dental Cementum/cytology , Dental Cementum/drug effects , Parathyroid Hormone/pharmacology , Stress, Mechanical , Animals , Cell Differentiation/drug effects , Cell Line , Cementogenesis/genetics , Collagen Type I/genetics , Collagen Type I/metabolism , Dental Cementum/enzymology , Gene Expression Regulation/drug effects , Integrin-Binding Sialoprotein/genetics , Integrin-Binding Sialoprotein/metabolism , Mice , Osteocalcin/genetics , Osteocalcin/metabolism , Osteopontin/genetics , Osteopontin/metabolism , Parathyroid Hormone/administration & dosage , Receptor, Parathyroid Hormone, Type 1/genetics , Receptor, Parathyroid Hormone, Type 1/metabolism , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Time Factors , Tooth Root/cytology , Tooth Root/drug effects
19.
Protein Expr Purif ; 135: 37-44, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28487257

ABSTRACT

Fibroblast growth factor (FGF) is a multifunctional growth factor that induces cell proliferation, survival, migration, and differentiation in various cell types and tissues. With these biological functions, FGF-2 has been evaluated for clinical use in the regeneration of damaged tissues. The expression of hFGF-2 in Escherichia coli and a purification system using the immobilized metal affinity chromatography (IMAC) is well established to generate a continuous supply of FGF-2. Although hexa-histidine tag (H6) is commonly used for IMAC purification, hexa-histidine-asparagine tag (HN6) is also efficient for purification as it is easily exposed on the surface of the protein. In this study, four different tagging constructs of hFGF-2 based on tag positions and types (H6-FGF2, FGF2-H6, HN6-FGF2, and FGF2-HN6) were designed and expressed under the inducible T7 expression system in E. coli. The experimental conditions of expression and purification of each recombinant protein were optimized. The effective dosages of the recombinant proteins were determined based on the increase of cell proliferation in human gingival fibroblast. ED50s of H6-FGF2, FGF2-H6, HN6-FGF2, and FGF2-HN6 were determined (4.42 ng/ml, 3.55 ng/ml, 3.54 ng/ml, and 4.14 ng/ml, respectively) and found to be comparable to commercial FGF-2 (3.67 ng/ml). All the recombinant hFGF-2s inhibit the osteogenic induction and mineralization in human periodontal ligament-derived cells. Our data suggested that biological activities of the recombinant hFGF-2 are irrelevant to types and positions of tags, but may have an influence on the expression efficiency and solubility.


Subject(s)
Escherichia coli/genetics , Fibroblast Growth Factor 2/biosynthesis , Fibroblasts/drug effects , Genetic Vectors/metabolism , Osteoblasts/drug effects , Recombinant Fusion Proteins/biosynthesis , Asparagine/metabolism , Bacteriophage T7/genetics , Bacteriophage T7/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Chromatography, Affinity , Cloning, Molecular , Dental Cementum/cytology , Dental Cementum/drug effects , Dental Cementum/metabolism , Escherichia coli/metabolism , Fibroblast Growth Factor 2/chemistry , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/pharmacology , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Genetic Vectors/chemistry , Gingiva/cytology , Gingiva/drug effects , Gingiva/metabolism , Histidine/genetics , Histidine/metabolism , Humans , Oligopeptides/genetics , Oligopeptides/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Periodontal Ligament/metabolism , Primary Cell Culture , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism
20.
Orthod Craniofac Res ; 20 Suppl 1: 39-43, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28643909

ABSTRACT

OBJECTIVES: Osterix (Osx)-expressing mesenchymal cells are progenitors for tooth root forming cells. The aim of this study was to reveal the fates of Osx-expressing cells during and after root formation using a lineage tracing experiment. MATERIAL AND METHODS: To reveal the fates of Osx-expressing dental mesenchymal progenitors, we took advantage of tamoxifen-inducible Cre reporter system. Osx-creER; R26R-tdTomato mice received tamoxifen (0.1 mg/body) at postnatal day 3 (P3). In this system, Osx-expressing at P3 (Osx-P3) cells undergo recombination, and they and their descendants continue to express Tomato red fluorescence protein permanently. Mandibles were dissected at serial time points ranging from P4 to P116 to investigate how Osx-P3 cells participated in root formation. Tomato+ cells on frozen sections were imaged under fluorescence microscopy. RESULTS: Osx-P3 cells and their descendants differentiated into all kinds of cells that contributed to the root and periodontal tissues, such as odontoblasts, cementoblasts, alveolar bone osteoblasts and periodontal ligament (PDL) cells during root formation. Even after root formation was completed, they persisted in dental pulp and PDL to provide progenitor cells for odontoblasts and cementoblasts. CONCLUSION: Osx-expressing cells play important roles in the entire processes of tooth root formation; their progeny continue to contribute to maintenance of tooth root even after root formation is complete.


Subject(s)
Mesenchymal Stem Cells/metabolism , Sp7 Transcription Factor/metabolism , Tooth Root/cytology , Tooth Root/metabolism , Animals , Cell Differentiation , Dental Cementum/cytology , Dental Pulp/cytology , Mandible , Mice , Odontoblasts/cytology , Tamoxifen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL