Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.783
Filter
1.
Calcif Tissue Int ; 115(2): 185-195, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38809297

ABSTRACT

Medication-related osteonecrosis of the jaw is a serious disease occurring in patients with cancer and osteoporosis, who are undergoing treatment with antiresorptive agents (ARAs) such as bisphosphonate (BP) or denosumab, an antibody targeting receptor activator of NF-κB ligand. Recently, stem cell-based therapy has been shown to be effective in preventing the development of bisphosphonate-related osteonecrosis of the jaw. However, studies on denosumab-related osteonecrosis of the jaw (DRONJ) remain limited. Here, the efficacy of treatment with dental pulp stem cell conditioned media (DPSC-CM) in preventing DRONJ in a murine model was evaluated. Local administration of DPSC-CM into the extraction socket of a mouse with DRONJ decreased the number of empty osteocyte lacunae and the prevalence of ONJ. In tissues surrounding the extraction sockets in the DPSC-CM-treated group, the expression of inflammatory cytokines was attenuated and that of osteogenesis-related molecules was enhanced compared to that in the control group. Further, the expression of Wnt signaling molecules, which had been suppressed, was improved. These findings collectively suggest that DPSC-CM prevents ONJ development in a murine DRONJ model.


Subject(s)
Bisphosphonate-Associated Osteonecrosis of the Jaw , Denosumab , Dental Pulp , RANK Ligand , Stem Cells , Animals , Dental Pulp/drug effects , Stem Cells/drug effects , Culture Media, Conditioned/pharmacology , Mice , Denosumab/pharmacology , Bisphosphonate-Associated Osteonecrosis of the Jaw/prevention & control , RANK Ligand/metabolism , Disease Models, Animal , Male , Humans , Osteogenesis/drug effects
2.
Int J Med Sci ; 21(6): 1155-1164, 2024.
Article in English | MEDLINE | ID: mdl-38774749

ABSTRACT

Introduction: Clinical studies have shown that endodontically-treated nonvital teeth exhibit less root resorption during orthodontic tooth movement. The purpose of this study was to explore whether hypoxic dental pulp stem cells (DPSCs) can promote osteoclastogenesis in orthodontically induced inflammatory root resorption (OIIRR). Methods: Succinate in the supernatant of DPSCs under normal and hypoxic conditions was measured by a succinic acid assay kit. The culture supernatant of hypoxia-treated DPSCs was used as conditioned medium (Hypo-CM). Bone marrow-derived macrophages (BMDMs) from succinate receptor 1 (SUCNR1)-knockout or wild-type mice were cultured with conditioned medium (CM), exogenous succinate or a specific inhibitor of SUCNR1 (4c). Tartrate-resistant acid phosphatase (TRAP) staining, Transwell assays, qPCR, Western blotting, and resorption assays were used to evaluate osteoclastogenesis-related changes. Results: The concentration of succinate reached a maximal concentration at 6 h in the supernatant of hypoxia-treated DPSCs. Hypo-CM-treated macrophages were polarized to M1 proinflammatory macrophages. Hypo-CM treatment significantly increased the formation and differentiation of osteoclasts and increased the expression of osteoclastogenesis-related genes, and this effect was inhibited by the specific succinate inhibitor 4c. Succinate promoted chemotaxis and polarization of M1-type macrophages with increased expression of osteoclast generation-related genes. SUCNR1 knockout decreased macrophage migration, M1 macrophage polarization, differentiation and maturation of osteoclasts, as shown by TRAP and NFATc1 expression and cementum resorption. Conclusions: Hypoxic DPSC-derived succinate may promote osteoclast differentiation and root resorption. The regulation of the succinate-SUCNR1 axis may contribute to the reduction in the OIIRR.


Subject(s)
Dental Pulp , Mice, Knockout , Osteoclasts , Osteogenesis , Root Resorption , Stem Cells , Succinic Acid , Animals , Mice , Dental Pulp/cytology , Dental Pulp/drug effects , Dental Pulp/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Root Resorption/pathology , Root Resorption/metabolism , Humans , Succinic Acid/metabolism , Osteogenesis/drug effects , Stem Cells/metabolism , Stem Cells/drug effects , Cell Differentiation/drug effects , Macrophages/metabolism , Macrophages/drug effects , Cell Hypoxia/drug effects , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Culture Media, Conditioned/pharmacology , Cells, Cultured
3.
J Nanobiotechnology ; 22(1): 537, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227963

ABSTRACT

Preserving pulp viability and promoting pulp regeneration in pulpitis have attracted widespread attention. Restricted by the oxidative stress microenvironment of dental pulpitis, excessive reactive oxygen and nitrogen species (RONS) trigger uncontrolled inflammation and exacerbate pulp tissue destruction. However, modulating redox homeostasis in inflamed pulp tissue to promote pulp regeneration remains a great challenge. Herein, this work proposes an effective antioxidative system (C-NZ/GelMA) consisting of carbon dot nanozymes (C-NZ) with gelatin methacryloyl (GelMA) to modulate the pulpitis microenvironment for dental pulp regeneration by utilizing the antioxidant properties of C-NZ and the mechanical support of an injectable GelMA hydrogel. This system effectively scavenges RONS to normalize intracellular redox homeostasis, relieving oxidative stress damage. Impressively, it can dramatically enhance the polarization of regenerative M2 macrophages. This study revealed that the C-NZ/GelMA hydrogel promoted pulp regeneration and dentin repair through its outstanding antioxidant, antiapoptotic, and anti-inflammatory effects, suggesting that the C-NZ/GelMA hydrogel is highly valuable for pulpitis treatment.


Subject(s)
Antioxidants , Carbon , Dental Pulp , Gelatin , Hydrogels , Oxidative Stress , Pulpitis , Regeneration , Oxidative Stress/drug effects , Dental Pulp/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Carbon/chemistry , Carbon/pharmacology , Pulpitis/drug therapy , Regeneration/drug effects , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , Gelatin/chemistry , Gelatin/pharmacology , Reactive Oxygen Species/metabolism , Humans , Male , Rats , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Methacrylates
4.
Eur J Oral Sci ; 132(5): e13019, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39302740

ABSTRACT

In response to pro-inflammatory cytokines such as interleukin (IL)-1ß, dental pulp fibroblasts produce various inflammatory mediators, including IL-6, IL-8, CC chemokine ligand 20 (CCL20), and CXC chemokine ligand 10 (CXCL10), leading to the progression of pulpitis. IL-17/IL-17A (IL-17A) is a pro-inflammatory cytokine secreted by T helper (Th) 17 cells following their recruitment to inflamed sites; however, the roles of IL-17A during pulpitis remain unclear. The purpose of this study was to investigate the effect of IL-17A on IL-6, IL-8, CCL20 and CXCL10 production by human dental pulp fibroblasts (HDPFs) in vitro. IL-17A at a concentration of 100 ng/ml induced the production of 10 times more IL-8 and 4 times more CXCL10, but not IL-6 and CCL20, compared to controls. Co-stimulation of HDPFs with IL-17A and IL-1ß synergistically enhanced the production of IL-6, CCL20, IL-8 and CXCL10. IL-1ß increased expression of IL-17 receptor/IL-17RA (IL-17R) on HDPFs. Moreover, the cell signal pathways of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) were more potently activated by simultaneous stimulation with IL-17A and IL-1ß. These findings suggest that IL-17A participates in the progression of dental pulp inflammation through the enhanced production of inflammatory mediators in HDPFs.


Subject(s)
Chemokine CXCL10 , Dental Pulp , Fibroblasts , Interleukin-17 , Interleukin-1beta , Interleukin-6 , Interleukin-8 , Humans , Dental Pulp/cytology , Dental Pulp/metabolism , Dental Pulp/drug effects , Interleukin-17/pharmacology , Interleukin-17/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Interleukin-1beta/metabolism , Chemokine CXCL10/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Inflammation Mediators/metabolism , Chemokine CCL20/metabolism , Pulpitis/metabolism , Cells, Cultured , NF-kappa B/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Receptors, Interleukin-17/metabolism
5.
Int Endod J ; 57(6): 630-654, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38470103

ABSTRACT

BACKGROUND: Although several studies indicate the harmful effects of bleaching on pulp tissue, the demand for this procedure using high concentrations of hydrogen peroxide (HP) is high. OBJECTIVES: To investigate the influence of bleaching on the pulp tissue. METHODS: Electronic searches were conducted (PubMed/MEDLINE, Scopus, Cochrane Library and grey literature) until February 2021. Only in vivo studies that evaluated the effects of HP and/or carbamide peroxide (CP) bleaching gels on the inflammatory response in the pulp tissue compared with a non-bleached group were included. Risk of bias was performed according to a modified Methodological Index for Non-Randomized Studies scale for human studies and the Systematic Review Centre for Laboratory Animal Experimentation's RoB tool for animal studies. Meta-analysis was unfeasible. RESULTS: Of the 1311 studies, 30 were eligible. Of these, 18 studies evaluated the inflammatory response in animal models. All these studies reported a moderate-to-strong inflammatory response in the superficial regions of pulp, characterized by cell disorganization and necrotic areas, particularly during the initial periods following exposure to 35%-38% HP, for 30-40 min. In the evaluation of human teeth across 11 studies, seven investigated inflammatory responses, with five observing significant inflammation in the pulp of bleached teeth. In terms of tertiary dentine deposition, 11 out of 12 studies noted its occurrence after bleaching with 35%-38% HP in long-term assessments. Additionally, three studies reported significant levels of osteocalcin/osteopontin at 2 or 10 days post-treatment. Other studies indicated an increase in pro-inflammatory cytokines ranging from immediately up to 10 days after bleaching. Studies using humans' teeth had a low risk of bias, whereas animal studies had a high risk of bias. DISCUSSION: Despite the heterogeneity in bleaching protocols among studies, High-concentrations of HP shows the potential to induce significant pulp damage. CONCLUSIONS: High-concentrations of bleaching gel increases inflammatory response and necrosis in the pulp tissue at short periods after bleaching, mainly in rat molars and in human incisors, in addition to greater hard tissue deposition over time. However, further well-described histological studies with long-term follow-up are encouraged due to the methodological limitations of these studies. REGISTRATION: PROSPERO (CRD42021230937).


Subject(s)
Carbamide Peroxide , Dental Pulp , Hydrogen Peroxide , Tooth Bleaching Agents , Tooth Bleaching , Tooth Bleaching/methods , Tooth Bleaching/adverse effects , Dental Pulp/drug effects , Dental Pulp/pathology , Humans , Animals , Carbamide Peroxide/pharmacology
6.
Int Endod J ; 57(9): 1247-1263, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38780351

ABSTRACT

AIM: Calcium hydroxide (CH) has been considered as a direct pulp capping materials (DPC) for the last decades despite having some limitations. Phosphorylate pullulan (PPL) incorporated with CH (CHPPL) is a novel biomaterial that was introduced as a promising DPC material. Thus, the aim of the study was to evaluate the inflammatory response and mineralized tissue formation (MTF) ability of PPL-based CH formulations on rat molars after DPC. METHODOLOGY: This study consisted of six groups: CH with 1% PPL (CHPPL-1); 3% PPL (CHPPL-3); 5% PPL (CHPPL-5); Dycal and NEX MTA Cement (N-MTA) as the positive control, and no capping materials (NC). One hundred twenty maxillary first molar cavities were prepared on Wistar rats. After capping, all the cavities were restored with 4-META/MMA-TBB resin and pulpal responses were evaluated at days 1, 7, and 28. Kruskal-Wallis followed by Mann-Whitney U-test was performed with a significance level of 0.05. Immunohistochemical expression of IL-6, Nestin, and DMP-1 was observed. RESULTS: At day 1, CHPPL-1, N-MTA, and Dycal exhibited no to mild inflammation, whilst CHPPL-3, CHPPL-5, and NC showed mild to moderate inflammation, and the results were significantly different (p < .05). At day 7, mild to moderate inflammation was observed in CHPPL-1, N-MTA, and Dycal, whereas CHPPL-3, CHPPL-5, and NC exhibited moderate to severe inflammation. Significant differences were observed between CHPPL-1 and N-MTA with NC (p < .05), CHPPL-1 and CHPPL-3 with CHPPL-5 and Dycal (p < .05), and CHPPL-3 with N-MTA (p < .05). A thin layer of mineralized tissue formation (MTF) was observed in all groups. At day 28, CHPPL-1, Dycal, and N-MTA showed no to mild inflammation, whilst CHPPL-3, CHPPL-5, and NC exhibited mild to severe inflammation, and statistically significant difference was detected (p < .05). CHPPL-1, Dycal, and N-MTA exhibited continuous MTF, whilst CHPPL-3, CHPPL-5, and NC had thicker and interrupted MTF. Significant differences were observed between CHPPL-1, CHPPL-3, and N-MTA with NC group (p < .05). Variable expressions of IL-6, Nestin, and DMP-1 indicated differences in the materials' impact on odontoblast-like cell formation and tissue mineralization. CONCLUSIONS: These findings suggest that CHPPL-1 has the potential to minimize pulpal inflammation and promote MTF and had similar efficacy as MTA cement.


Subject(s)
Calcium Hydroxide , Dental Pulp Capping , Glucans , Pulp Capping and Pulpectomy Agents , Rats, Wistar , Animals , Glucans/pharmacology , Calcium Hydroxide/pharmacology , Rats , Pulp Capping and Pulpectomy Agents/pharmacology , Dental Pulp Capping/methods , Calcium Compounds/pharmacology , Aluminum Compounds , Drug Combinations , Male , Silicates/pharmacology , Dental Pulp/drug effects , Dental Pulp/metabolism , Phosphorylation , Oxides , Molar , Minerals
7.
Int Endod J ; 57(6): 727-744, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38436622

ABSTRACT

AIMS: This study aimed to investigate the anti-inflammatory and odontoblastic effects of cerium-containing mesoporous bioactive glass nanoparticles (Ce-MBGNs) on dental pulp cells as novel pulp-capping agents. METHODOLOGY: Ce-MBGNs were synthesized using a post-impregnation strategy based on the antioxidant properties of Ce ions and proposed the first use of Ce-MBGNs for pulp-capping application. The biocompatibility of Ce-MBGNs was analysed using the CCK-8 assay and apoptosis detection. Additionally, the reactive oxygen species (ROS) scavenging ability of Ce-MBGNs was measured using the 2,7-Dichlorofuorescin Diacetate (DCFH-DA) probe. The anti-inflammatory effect of Ce-MBGNs on THP-1 cells was further investigated using flow cytometry and quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, the effect of Ce-MBGNs on the odontoblastic differentiation of the dental pulp cells (DPCs) was assessed by combined scratch assays, RT-qPCR, western blotting, immunocytochemistry, Alizarin Red S staining and tissue-nonspecific alkaline phosphatase staining. Analytically, the secretions of tumour necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were detected with enzyme-linked immunosorbent assay (ELISA). RESULTS: Ce-MBGNs were confirmed to effectively scavenge ROS in THP-1-derived macrophages and DPCs. Flow cytometry and RT-qPCR assays revealed that Ce-MBGNs significantly inhibited the M1 polarization of macrophages (Mφ). Furthermore, the protein levels of TNF-α and IL-1ß were downregulated in THP-1-derived macrophages after stimulation with Ce-MBGNs. With a step-forward virtue of promoting the odontoblastic differentiation of DPCs, we further confirmed that Ce-MBGNs could regulate the formation of a conductive immune microenvironment with respect to tissue repair in DPCs, which was mediated by macrophages. CONCLUSIONS: Ce-MBGNs protected cells from self-produced oxidative damage and exhibited excellent immunomodulatory and odontoblastic differentiation effects on DPCs. As a pulp-capping agent, this novel biomaterial can exert anti-inflammatory effects and promote restorative dentine regeneration in clinical treatment. We believe that this study will stimulate further correlative research on the development of advanced pulp-capping agents.


Subject(s)
Anti-Inflammatory Agents , Cerium , Dental Pulp , Nanoparticles , Dental Pulp/cytology , Dental Pulp/drug effects , Cerium/pharmacology , Humans , Anti-Inflammatory Agents/pharmacology , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ceramics/pharmacology , Cell Differentiation/drug effects , Glass , Odontoblasts/drug effects , Regeneration/drug effects , THP-1 Cells , Pulp Capping and Pulpectomy Agents/pharmacology , Interleukin-1beta/metabolism , Apoptosis/drug effects , Porosity , Cells, Cultured
8.
Int Endod J ; 57(6): 759-768, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38436525

ABSTRACT

AIM: Among numerous constituents of Panax ginseng, a constituent named Ginsenoside Rb1 (G-Rb1) has been studied to diminish inflammation associated with diseases. This study investigated the anti-inflammatory properties of G-Rb1 on human dental pulp cells (hDPCs) exposed to lipopolysaccharide (LPS) and aimed to determine the underlying molecular mechanisms. METHODOLOGY: The KEGG pathway analysis was performed after RNA sequencing in G-Rb1- and LPS-treated hDPCs. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis were used for the assessment of cell adhesion molecules and inflammatory cytokines. Statistical analysis was performed with one-way ANOVA and the Student-Newman-Keuls test. RESULTS: G-Rb1 did not exhibit any cytotoxicity within the range of concentrations tested. However, it affected the levels of TNF-α, IL-6 and IL-8, as these showed reduced levels with exposure to LPS. Additionally, less mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were shown. With the presence of G-Rb1, decreased levels of PI3K/Akt, phosphorylated IκBα and p65 were also observed. Furthermore, phosphorylated ERK and JNK by LPS were diminished within 15, 30 and 60 min of G-Rb1 exposure; however, the expression of non-phosphorylated ERK and JNK remained unchanged. CONCLUSIONS: G-Rb1 suppressed the LPS-induced increase of cell adhesion molecules and inflammatory cytokines, while also inhibiting PI3K/Akt, phosphorylation of NF-κB transcription factors, ERK and JNK of MAPK signalling in hDPCs.


Subject(s)
Dental Pulp , Ginsenosides , Lipopolysaccharides , NF-kappa B , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Ginsenosides/pharmacology , Humans , Dental Pulp/drug effects , Dental Pulp/cytology , Dental Pulp/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , NF-kappa B/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Inflammation/metabolism , Cells, Cultured , MAP Kinase Signaling System/drug effects , Cytokines/metabolism , Blotting, Western
9.
Int Endod J ; 57(11): 1655-1668, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39080721

ABSTRACT

AIM: The purpose of this study was to investigate the role of calcium-sensing receptor (CaSR) in the angiogenic differentiation of lipopolysaccharide (LPS)-treated human dental pulp cells (hDPCs). METHODOLOGY: The LPS-induced hDPCs were cultured in the medium with different combinations of CaSR agonist R568 and antagonist Calhex231. The cell proliferation, migration, and angiogenic capacity were measured by Cell Counting Kit-8 (CCK-8), scratch wound healing, and tube formation assays, respectively. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were conducted to determine the gene/protein expression of CaSR, inflammatory mediators, and angiogenic-associated markers. The activation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) was assessed by western blot analysis. RESULTS: The cell proliferation was elevated in response to R568 or Calhex231 exposure, but an enhanced cell migration was only found in cultures supplemented with Calhex231. Furthermore, R568 was found to potentiate the formation of vessel-like structure, up-regulated the protein expression of tumour necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), and stromal cell-derived factor (SDF)-1; comparable influences were also observed in R568-stimulated cells in the presence of PI3K inhibitor LY294002. In contrast, Calhex231 obviously inhibited the tube formation and VEGF protein level, whereas promoted the production of IL-6, TNF-α, and eNOS; however, in the presence of LY294002, Calhex231 showed a significant promotion on the protein expression of CaSR, VEGF, and SDF-1. In addition, R568 exhibited a promotive action on the Akt phosphorylation, which can be reversed by LY294002. CONCLUSIONS: Our results demonstrated that CaSR can regulate the angiogenic differentiation of LPS-treated hDPCs with an involvement of the PI3K/Akt signalling pathway.


Subject(s)
Cell Differentiation , Cell Proliferation , Dental Pulp , Lipopolysaccharides , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptors, Calcium-Sensing , Signal Transduction , Humans , Dental Pulp/cytology , Dental Pulp/drug effects , Receptors, Calcium-Sensing/metabolism , Lipopolysaccharides/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Cells, Cultured , Neovascularization, Physiologic/drug effects , Cell Movement/drug effects , Enzyme-Linked Immunosorbent Assay , In Vitro Techniques
10.
Clin Oral Investig ; 28(9): 476, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120764

ABSTRACT

OBJECTIVES: To synthesize casein enzymatic hydrolysate (CEH)-laden gelatin methacryloyl (GelMA) fibrous scaffolds and evaluate the cytocompatibility and anti-inflammatory effects on dental pulp stem cells (DPSCs). MATERIALS AND METHODS: GelMA fibrous scaffolds with 10%, 20%, and 30% CEH (w/w) and without CEH (control) were obtained via electrospinning. Chemo-morphological, degradation, and mechanical analyses were conducted to evaluate the morphology and composition of the fibers, mass loss, and mechanical properties, respectively. Adhesion/spreading and viability of DPSCs seeded on the scaffolds were also assessed. The anti-inflammatory potential on DPSCs was tested after the chronic challenge of cells with lipopolysaccharides (LPS), followed by treatment with extracts obtained after immersing the scaffolds in α-MEM. The synthesis of the pro-inflammatory cytokines IL-6, IL-1α, and TNF-α was measured by ELISA. Data were analyzed by ANOVA/post-hoc tests (α = 5%). RESULTS: CEH-laden electrospun fibers had a larger diameter than pure GelMA (p ≤ 0.036). GelMA scaffolds laden with 20% and 30% CEH had a greater mass loss. Tensile strength was reduced for the 10% CEH fibers (p = 0.0052), whereas no difference was observed for the 20% and 30% fibers (p ≥ 0.6736) compared to the control. Young's modulus decreased with CEH (p < 0.0001). Elongation at break increased for the 20% and 30% CEH scaffolds (p ≤ 0.0038). Over time, DPSCs viability increased across all groups, indicating cytocompatibility, with CEH-laden scaffolds exhibiting greater cell viability after seven days (p ≤ 0.0166). Also, 10% CEH-GelMA scaffolds decreased the IL-6, IL-1α, and TNF-α synthesis (p ≤ 0.035). CONCLUSION: CEH-laden GelMA scaffolds facilitated both adhesion and proliferation of DPSCs, and 10% CEH provided anti-inflammatory potential after chronic LPS challenge. CLINICAL RELEVANCE: CEH incorporated in GelMA fibrous scaffolds demonstrated the potential to be used as a cytocompatible and anti-inflammatory biomaterial for vital pulp therapy.


Subject(s)
Anti-Inflammatory Agents , Caseins , Cell Survival , Dental Pulp , Gelatin , Tissue Scaffolds , Gelatin/chemistry , Dental Pulp/cytology , Dental Pulp/drug effects , Tissue Scaffolds/chemistry , Humans , Anti-Inflammatory Agents/pharmacology , Cell Survival/drug effects , Methacrylates/chemistry , Materials Testing , Enzyme-Linked Immunosorbent Assay , Tensile Strength , Cells, Cultured , Stem Cells/drug effects , Cell Adhesion/drug effects , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Cytokines/metabolism , Surface Properties
11.
Int J Mol Sci ; 25(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063181

ABSTRACT

This study aimed to compare the biological properties of newly synthesized cements based on calcium phosphate with a commercially used cement, mineral trioxide aggregate (MTA). Strontium (Sr)-, Copper (Cu)-, and Zinc (Zn)-doped hydroxyapatite (miHAp) powder was obtained through hydrothermal synthesis and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectrometry (EDX). Calcium phosphate cement (CPC) was produced by mixing miHAp powder with a 20 wt.% citric acid solution, followed by the assessment of its compressive strength, setting time, and in vitro bioactivity. Acetylsalicylic acid (ASA) was added to the CPC, resulting in CPCA. Biological tests were conducted on CPC, CPCA, and MTA. The biocompatibility of the cement extracts was evaluated in vitro using human dental pulp stem cells (hDPSCs) and in vivo using a zebrafish model. Antibiofilm and antimicrobial effect (quantified by CFUs/mL) were assessed against Streptococcus mutans and Lactobacillus rhamnosus. None of the tested materials showed toxicity, while CPCA even increased hDPSCs proliferation. CPCA showed a better safety profile than MTA and CPC, and no toxic or immunomodulatory effects on the zebrafish model. CPCA exhibited similar antibiofilm effects against S. mutans and L. rhamnosus to MTA.


Subject(s)
Aspirin , Calcium Phosphates , Copper , Strontium , Zinc , Strontium/chemistry , Strontium/pharmacology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Humans , Animals , Aspirin/pharmacology , Aspirin/chemistry , Copper/chemistry , Zinc/chemistry , Zinc/pharmacology , Dental Cements/chemistry , Dental Cements/pharmacology , Biofilms/drug effects , Materials Testing , Zebrafish , Dental Pulp/cytology , Dental Pulp/drug effects , Streptococcus mutans/drug effects , Stem Cells/drug effects , X-Ray Diffraction , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Proliferation/drug effects
12.
BMC Oral Health ; 24(1): 1046, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243036

ABSTRACT

OBJECTIVES: This study aimed to compare the tissue dissolving capacities of sodium and calcium hypochlorite [NaOCl and Ca(OCl)2] solutions applied without activation or with two irrigant activation methods. MATERIALS AND METHODS: One hundred and eight dentin cavities were prepared. Preweighed tissue pieces were placed in these dentin cavities, and samples were divided into nine groups of twelve. In groups 1, 2, and 3, NaOCl was used with non-activation (NA), passive ultrasonic (PUA), and laser activation (LA). With the same techniques, Ca(OCl)2 was used in groups 4, 5, and 6, and distilled water was used in groups 7, 8, and 9. The weight loss of tissue samples was calculated and analyzed using Two-way ANOVA and Duncan tests. RESULTS: Distilled water groups showed no tissue dissolution in any conditions. NaOCI and Ca(OCI)2 showed statistically similar dissolving effectiveness when used with the same technique. Activated groups dissolved significantly greater tissue than non-activated ones, the highest in LA. CONCLUSIONS: Ca(OCI)2 can be an alternative to NaOCl; for both, the first choice of activation may be the LA.


Subject(s)
Calcium Compounds , Root Canal Irrigants , Sodium Hypochlorite , Ultrasonics , Sodium Hypochlorite/pharmacology , Calcium Compounds/pharmacology , Humans , Root Canal Irrigants/pharmacology , In Vitro Techniques , Lasers , Dental Pulp/drug effects
13.
BMC Oral Health ; 24(1): 1207, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39390415

ABSTRACT

BACKGROUND: An ideal aesthetic restorative material should be attached to the tooth tissues by adhesion, have a smooth surface as possible, should not cause toxic reactions in the pulp and discoloration and microleakage. This study aims at comparatively assess the cytotoxicity of current adhesive systems on human dental pulp cells. MATERIALS AND METHODS: The adequate density of human pulp cells was observed from the ready cell line. The passaging was performed and the 3rd passage cells were selected. Adhesive systems and MTA were used on the cultures. Trypan blue staining was conducted on the cells at the 1st, 2nd, 3rd days and a count of live and dead cells using a light microscope. The dead cells whose membrane integrity was impaired by staining with trypan blue and the viability rate was determined using live and dead cell numbers. Data analysis was performed using IBM SPSS Statistics 22. RESULTS: A significant difference in vialibity rates between adhesive systems was observed on the first day. No significant statistical differences were observed on the 2nd and 3rd days (p < 0.05). CONCLUSION: Futurabond M showed similar biocompatibility with MTA on human pulp cells and it can be applied in cavities with 1-1.5 mm hard tissue between pulp and dentine.


Subject(s)
Aluminum Compounds , Calcium Compounds , Cell Survival , Dental Pulp , Dentin-Bonding Agents , Drug Combinations , Oxides , Silicates , Humans , Dental Pulp/drug effects , Dental Pulp/cytology , Dentin-Bonding Agents/toxicity , Calcium Compounds/toxicity , Calcium Compounds/pharmacology , Cell Survival/drug effects , Silicates/toxicity , Silicates/pharmacology , Aluminum Compounds/toxicity , Oxides/toxicity , Resin Cements/toxicity , Materials Testing , Biocompatible Materials/toxicity , Cell Line , Coloring Agents , Cell Culture Techniques , Bisphenol A-Glycidyl Methacrylate/toxicity , Trypan Blue , Cells, Cultured
14.
BMC Oral Health ; 24(1): 1087, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39277754

ABSTRACT

BACKGROUND: Different materials have been used as wound dressings after vital pulp therapies. Some of them have limitations such as delayed setting, difficult administration, slight degree of cytotoxicity, crown discoloration and high cost. Therefore, to overcome these disadvantages, composite scaffolds have been used in regenerative dentistry. This study aims to construct and characterize the physicochemical behavior of a novel injectable alginate hydrogel loaded with different bioactive glass nanoparticles in various concentrations as a regenerative pulpotomy filling material. METHODS: Alginate hydrogels were prepared by dissolving alginate powder in alcoholic distilled water containing mesoporous bioactive glass nanoparticles (MBG NPs) or boron-doped MBG NPs (BMBG NPs) at 10 and 20 wt% concentrations. The mixture was stirred and incubated overnight in a water bath at 50 0 C to ensure complete solubility. A sterile dual-syringe system was used to mix the alginate solution with 20 wt% calcium chloride solution, forming the hydrogel upon extrusion. Then, constructed hydrogel specimens from all groups were characterized by FTIR, SEM, water uptake percentage (WA%), bioactivity and ion release, and cytotoxicity. Statistical analysis was done using One-Way ANOVA test for comparisons between groups, followed by multiple pairwise comparisons using Bonferroni adjusted significance level (p < 0.05). RESULTS: Alginate/BMBG loaded groups exhibited remarkable increase in porosity and pore size diameter [IIB1 (168), IIB2 (183) (µm)]. Similarly, WA% increased (~ 800%) which was statistically significant (p < 0.05). Alginate/BMBG loaded groups exhibited the strongest bioactive capability displaying prominent clusters of hydroxyapatite precipitates on hydrogel surfaces. Ca/P ratio of precipitates in IIA2 and IIB1 (1.6) were like Ca/P ratio for stoichiometric pure hydroxyapatite (1.67). MTT assay data revealed that the cell viability % of human gingival fibroblast cells have declined with increasing the concentration of both powders and hydrogel extracts in all groups after 24 and 48 h but still higher than the accepted cell viability % of (˃70%). CONCLUSIONS: The outstanding laboratory performance of the injectable alginate/BMBGNPs (20 wt%) composite hydrogel suggested it as promising candidate for pulpotomy filling material potentially enhancing dentin regeneration in clinical applications.


Subject(s)
Alginates , Biocompatible Materials , Boron , Dentin , Hydrogels , Nanoparticles , Alginates/chemistry , Humans , Boron/chemistry , Biocompatible Materials/chemistry , Dentin/drug effects , Porosity , Cell Survival/drug effects , Regeneration/drug effects , Materials Testing , Spectroscopy, Fourier Transform Infrared , Dental Pulp/cytology , Dental Pulp/drug effects , Microscopy, Electron, Scanning , Regenerative Endodontics/methods , Glass/chemistry , Fibroblasts/drug effects , Ceramics/chemistry , Water/chemistry
15.
Medicina (Kaunas) ; 60(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792973

ABSTRACT

Background and Objectives: Stem cell-based regeneration strategies have shown therapeutic efficacy in various fields of regenerative medicine. These include bone healing after bone augmentation, often complicated by pain, which is managed by using nonsteroidal anti-inflammatory drugs (NSAIDs). However, information is limited about how NSAIDs affect the therapeutic potential of stem cells. Materials and Methods: We investigated the effects of ibuprofen and diclofenac on the characteristics, morphology, and immunophenotype of human mesenchymal stromal cells isolated from the dental pulp (DPSCs) and cultured in vitro, as well as their effects on the expression of angiogenic growth factors (VEGFA and HGF) and selected genes in apoptosis signalling pathways (BAX, BAK, CASP3, CASP9, and BCL2). Results: Ibuprofen and diclofenac significantly reduced the viability of DPSCs, while the expression of mesenchymal stem cell surface markers was unaffected. Both ibuprofen and diclofenac treatment significantly upregulated the expression of HGF, while the expression of VEGFA remained unchanged. Ibuprofen significantly altered the expression of several apoptosis-related genes, including the upregulation of CASP9 and BCL2, with decreased CASP3 expression. BAK, CASP3, CASP9, and BCL2 expressions were significantly increased in the diclofenac-treated DPSCs, while no difference was demonstrated in BAX expression. Conclusions: Our results suggest that concomitant use of the NSAIDs ibuprofen or diclofenac with stem cell therapy may negatively impact cell viability and alter the expression of apoptosis-related genes, affecting the efficacy of stem cell therapy.


Subject(s)
Apoptosis , Cell Survival , Dental Pulp , Diclofenac , Ibuprofen , Humans , Dental Pulp/drug effects , Dental Pulp/cytology , Diclofenac/pharmacology , Apoptosis/drug effects , Ibuprofen/pharmacology , Cell Survival/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Stem Cells/drug effects , Mesenchymal Stem Cells/drug effects , Cells, Cultured
16.
J Contemp Dent Pract ; 25(3): 267-275, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690701

ABSTRACT

AIM: To study the effect of glycyrrhizin (GA) on the viability and proliferation of dental pulp stem cells (DPSCs) compared with intracanal medicaments. MATERIALS AND METHODS: Third molars of an adult donor were used to obtain the DPSCs. Flow cytometry was utilized to conduct phenotypic analysis for DPSCs. The methyl-thiazol tetrazolium (MTT) test was used to detect the cell viability. Cell proliferation assay was conducted at distinct time intervals: 3, 5, and 7 days. RESULTS: The flow cytometry analysis verified the positive expression of mesenchymal cell surface antigen molecules (CD73, CD90, and CD105) and the absence of hematological markers (CD14, CD34, and CD45) in the DPSCs. The cells that treated with concentrations more than 0.5 mg/mL of Ca(OH2) and triple antibiotic paste (TAP) gave significant decrease in viability in comparison to the untreated cells (p < 0.05). Also, the cells treated with concentrations 50 and 25 µM of GA showed no significant difference compared with the untreated cells (p > 0.05), while concentrations 12.5 and 6.25 µM expressed a significant increase in viability compared with the untreated cells (p < 0.05). At 7 days, cells treated with the three different concentrations of GA (12.5, 25, and 50 µM) demonstrated a significant increase in cell density compared with Ca(OH)2 and TAP-treated cells (p < 0.05). CONCLUSION: Based upon the potential of GA on DPSCs proliferation compared with Ca(OH)2 and TAP, It is conceivable to acknowledge that GA could be used as an intracanal medicaments for revascularization process of necrotic immature teeth. CLINICAL SIGNIFICANCE: This study emphasizes the significance of assessing alternative root canal medicaments and their impact on the proliferation and viability of DPSCs. The results regarding GA, specifically its impact on the viability and growth of DPSCs, provide essential understanding for its potential application as an intracanal medicine. This study adds to the continuous endeavors in identifying safer and more efficient intracanal therapies, which are essential for improving patient outcomes in endodontic operations. How to cite this article: Alrashidi MA, Badawi MF, Elbeltagy MG, et al. The Effect of Glycyrrhizin on the Viability and Proliferation of Dental Pulp Stem Cells Compared to Intracanal Medicaments. J Contemp Dent Pract 2024;25(3):267-275.


Subject(s)
Cell Proliferation , Cell Survival , Dental Pulp , Glycyrrhizic Acid , Root Canal Irrigants , Stem Cells , Humans , Dental Pulp/cytology , Dental Pulp/drug effects , Glycyrrhizic Acid/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Root Canal Irrigants/pharmacology , Stem Cells/drug effects , Flow Cytometry , Calcium Hydroxide/pharmacology , Cells, Cultured , Adult
17.
Niger J Clin Pract ; 27(9): 1065-1072, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39348326

ABSTRACT

BACKGROUND: Although Tideglusib cytotoxicity studies and its effects on human dental pulp-derived stem cells (DPSCs) have been examined in previous studies, there is no study investigating the expression of type 1 collagen and type 3 collagen by Tideglusib. AIM: The purpose of this study is to examine the effect of Wnt signaling activation using Tideglusib execution on human DPSC to determine its potential efficacy in collagen expression. METHODS: Stem cell isolation was performed from five human third molar wisdom tooth pulps. DPSCs identified in only one sample were treated with 50 nM Tideglusib for 24 h and 1 week. Axin-2, type 1 and type 3 collagen expressions were evaluated by Western blot analysis. DPSCs without treatment served as a negative control. The Mann-Whitney U test was used for statistical analysis. RESULTS: The levels of type 1 collagen and Axin-2 in the test group were significantly higher than those in the control group at 24 h (P = 0.000, P = 0.001, respectively). Compared to the control group, a slight increase in type 3 collagen expression was observed in the test group at 24 h (P value = 0.063). Application of 50 nM Tideglusib for 1 week revealed marked decreases in type 1 and type 3 collagen expressions (P = 0.029, P = 0.038, respectively). In contrast, there was a significant increase in the level of Axin-2 (P = 0.000) compared to the control group. CONCLUSION: The fact that Wnt signaling pathway activation obtained by Tideglusib application on DPSCs confirmed by the finding in the increase of Axin-2 at short and long-term evaluation periods which is resulted in the increase in the type 1 collagen expression at 24 h and decrease at 1 week together with the decrease in type 3 collagen expression at 1 week warrants further studies to evaluate the effect of Tideglusib on extracellular matrix expression.


Subject(s)
Collagen Type III , Collagen Type I , Dental Pulp , Stem Cells , Humans , Dental Pulp/cytology , Dental Pulp/drug effects , Dental Pulp/metabolism , Collagen Type I/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Collagen Type III/metabolism , Axin Protein/metabolism , Wnt Signaling Pathway/drug effects , Cells, Cultured
18.
Int Endod J ; 56(9): 1129-1146, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37358385

ABSTRACT

AIM: Pulp vitality is essential for tooth integrity. Following pulp exposure, choosing a suitable pulp-capping material is crucial to maintain pulp vitality. However, the reparative dentine bridge created by calcium hydroxide (Ca(OH)2 ) is generally porous and incomplete. The aim of the current study is to assess the in vitro and in vivo bioactivities of nano eggshell-based slurry (NES), using NES as a direct pulp-capping material, compared with Ca(OH)2 in rabbit animal model. METHODOLOGY: Nano eggshell powder (NE) was characterized for particle morphology, chemical composition and ion release. In vitro bioactivity was tested by immersion in simulated body fluid (SBF) for 7 days. For histopathological evaluation, 36 adult New Zealand rabbits (72 pulp exposures) were divided into nine groups (n = 8) according to the pulp-capping material (NES, Ca(OH)2 and no capping as negative control group) and the animals were sacrificed after 7, 14 or 28 days. The pulps of the two lower central incisors were exposed and then directly capped by Ca(OH)2 or NES or left untreated. The cavities were then sealed with glass ionomer cement. Teeth were collected for histopathological evaluation using an optical microscope. Pulp haemorrhage, inflammation, fibrosis and calcific bridge formation were assessed. Results were statistically analysed using anova and Tukey's tests. RESULTS: Nano eggshell particles were spherical with a 20 nm diameter and were composed mainly of calcite. Statistical analysis showed that there was a significant increase in the release of all investigated ions between days 1 and 28, except for copper. NES group showed a significantly higher release of all elements as compared to Ca(OH)2 . Environmental scanning electron microscope micrographs of NES incubated for 7 days in SBF showed the formation of HAp with a Ca/P ratio (1.686). For histopathological evaluation, the difference between groups was statistically significant. At day 28, 75% of the pulps of the Ca(OH)2 group showed mild calcific bridge in comparison with 100% moderate calcific bridge in the NES group. The NES group showed significantly less inflammation at days 7 and 28, and higher fibrosis at day 7 compared with Ca(OH)2 . CONCLUSIONS: Nano eggshell-based slurry represents a promising novel direct pulp-capping material with favourable pulp tissue response.


Subject(s)
Calcium Hydroxide , Dental Pulp Capping , Dental Pulp , Egg Shell , Animals , Rabbits , Calcium Hydroxide/pharmacology , Dental Pulp/drug effects , Dental Pulp Capping/methods , Dentin, Secondary , Inflammation , Models, Animal
19.
Exp Cell Res ; 400(2): 112466, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33508275

ABSTRACT

OBJECTIVES: As an ideal cell source for tissue engineering and bone defect repair, dental pulp stem cells (DPSCs) have good osteogenic differentiation potential. Chrysin, a flavonoid extracted from oroxylum seeds, has been proven to promote bone formation of bone marrow stem cells. However, the effect of chrysin on osteogenic differentiation of DPSCs remains unclear. This study aimed to investigate the role of Chrysin in promoting osteogenic differentiation of DPSCs and in DPSC-based bone formation. MATERIAL AND METHODS: We investigated the effects of chrysin on DPSCs from patients by CCK-8 assay, Alizarin Red S staining, qPCR and Western blotting. The effects of chrysin on DPSC-based bone formation in a heterotopic osteogenesis model in nude mice and a rat calvarial defect model were also performed. Finally, we investigated the mechanism of chrysin-treated DPSCs by proteomics. RESULTS: Chrysin upregulated the expression of osteogenic proteins and induced osteogenic differentiation of DPSCs. Moreover, chrysin induced abundant ß-TCP-induced formation of mineralized bone tissue and promoted DPSC-based bone formation in a heterotopic osteogenesis model in nude mice and a rat calvarial defect model. Proteomics showed that upregulation of the Smad3 was closely related to osteogenic differentiation. Inhibiting of Smad3 activation by a Smad3 inhibitor could reverse the chrysin-mediated increases in the expression levels of osteogenic genes and osteogenic induction of DPSCs. CONCLUSIONS: Our study implies the intriguing potential of chrysin-treated DPSCs in bone regeneration and bone defect repair.


Subject(s)
Cell Differentiation , Dental Pulp/cytology , Flavonoids/pharmacology , Osteogenesis , Stem Cells/cytology , Tissue Engineering , Animals , Cell Proliferation , Cells, Cultured , Dental Pulp/drug effects , Dental Pulp/metabolism , Mice , Mice, Nude , Rats , Rats, Sprague-Dawley , Stem Cells/drug effects , Stem Cells/metabolism
20.
Am J Physiol Cell Physiol ; 320(2): C175-C181, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33175571

ABSTRACT

The persistent prevalence of cigarette smoking continues to contribute to preventable disease and death in the United States. Although much is known about the deleterious systemic effects of cigarette smoke and nicotine, some clinically relevant areas, such as the impact of cigarette smoke and nicotine on stem cells and the subsequent implications in regenerative medicine, still remain unclear. This review focuses on recent studies on the effect of cigarette smoke and one of its deleterious components, nicotine, on mesenchymal stem cells, with an emphasis on dental stem cells.


Subject(s)
Dental Pulp/cytology , Dental Pulp/drug effects , Mesenchymal Stem Cells/drug effects , Nicotiana/adverse effects , Smoke/adverse effects , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Dental Pulp/physiology , Humans , Mesenchymal Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL