Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
J Virol ; 98(3): e0151523, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38323812

ABSTRACT

Adeno-associated virus (AAV) requires co-infection with helper virus for efficient replication. We previously reported that Human Bocavirus 1 (HBoV1) genes, including NP1, NS2, and BocaSR, were critical for AAV2 replication. Here, we first demonstrate the essential roles of the NP1 protein in AAV2 DNA replication and protein expression. We show that NP1 binds to single-strand DNA (ssDNA) at least 30 nucleotides (nt) in length in a sequence-independent manner. Furthermore, NP1 colocalized with the BrdU-labeled AAV2 DNA replication center, and the loss of the ssDNA-binding ability of NP1 by site-directed mutation completely abolished AAV2 DNA replication. We used affinity-tagged NP1 protein to identify host cellular proteins associated with NP1 in cells cotransfected with the HBoV1 helper genes and AAV2 duplex genome. Of the identified proteins, we demonstrate that NP1 directly binds to the DBD-F domain of the RPA70 subunit with a high affinity through the residues 101-121. By reconstituting the heterotrimer protein RPA in vitro using gel filtration, we demonstrate that NP1 physically associates with RPA to form a heterologous complex characterized by typical fast-on/fast-off kinetics. Following a dominant-negative strategy, we found that NP1-RPA complex mainly plays a role in expressing AAV2 capsid protein by enhancing the transcriptional activity of the p40 promoter. Our study revealed a novel mechanism by which HBoV1 NP1 protein supports AAV2 DNA replication and capsid protein expression through its ssDNA-binding ability and direct interaction with RPA, respectively.IMPORTANCERecombinant adeno-associated virus (rAAV) vectors have been extensively used in clinical gene therapy strategies. However, a limitation of these gene therapy strategies is the efficient production of the required vectors, as AAV alone is replication-deficient in the host cells. HBoV1 provides the simplest AAV2 helper genes consisting of NP1, NS2, and BocaSR. An important question regarding the helper function of HBoV1 is whether it provides any direct function that supports AAV2 DNA replication and protein expression. Also of interest is how HBoV1 interplays with potential host factors to constitute a permissive environment for AAV2 replication. Our studies revealed that the multifunctional protein NP1 plays important roles in AAV2 DNA replication via its sequence-independent ssDNA-binding ability and in regulating AAV2 capsid protein expression by physically interacting with host protein RPA. Our findings present theoretical guidance for the future application of the HBoV1 helper genes in the rAAV vector production.


Subject(s)
Capsid Proteins , Capsid , DNA, Single-Stranded , DNA, Viral , DNA-Binding Proteins , Dependovirus , Human bocavirus , Viral Proteins , Humans , Capsid/metabolism , Capsid Proteins/biosynthesis , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Dependovirus/genetics , Dependovirus/growth & development , Dependovirus/metabolism , DNA, Single-Stranded/biosynthesis , DNA, Single-Stranded/metabolism , DNA, Viral/biosynthesis , DNA, Viral/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Viral , Human bocavirus/genetics , Human bocavirus/metabolism , Kinetics , Mutagenesis, Site-Directed , Mutation , Promoter Regions, Genetic , Protein Binding , Protein Domains , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
2.
J Virol ; 95(13): e0048621, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33853961

ABSTRACT

Wild-type adeno-associated virus (AAV) can only replicate in the presence of helper factors, which can be provided by coinfecting helper viruses such as adenoviruses and herpesviruses. The AAV genome consists of a linear, single-stranded DNA (ssDNA), which is converted into different molecular structures within the host cell. Using high-throughput sequencing, we found that herpes simplex virus 1 (HSV-1) coinfection leads to a shift in the type of AAV genome end recombination. In particular, open-end inverted terminal repeat (ITR) recombination was enhanced, whereas open-closed ITR recombination was reduced in the presence of HSV-1. We demonstrate that the HSV-1 protein ICP8 plays an essential role in HSV-1-mediated interference with AAV genome end recombination, indicating that the previously described ICP8-driven mechanism of HSV-1 genome recombination may be underlying the observed changes. We also provide evidence that additional factors, such as products of true late genes, are involved. Although HSV-1 coinfection significantly changed the type of AAV genome end recombination, no significant change in the amount of circular AAV genomes was identified. IMPORTANCE Adeno-associated virus (AAV)-mediated gene therapy represents one of the most promising approaches for the treatment of genetic diseases. Currently, various GMP-compatible production methods can be applied to manufacture clinical-grade vector, including methods that employ helper factors derived from herpes simplex virus 1 (HSV-1). Yet, to date, we do not fully understand how HSV-1 interacts with AAV. We observed that HSV-1 modulates AAV genome ends similarly to the genome recombination events observed during HSV-1 replication and postulate that further improvements of the HSV-1 production platform may enhance packaging of the recombinant AAV particles.


Subject(s)
Dependovirus/growth & development , Dependovirus/genetics , Genome, Viral/genetics , Helper Viruses/genetics , Herpesvirus 1, Human/genetics , Recombination, Genetic/genetics , Animals , Cell Line , Chlorocebus aethiops , Coinfection/pathology , HEK293 Cells , HeLa Cells , Herpes Simplex/pathology , High-Throughput Nucleotide Sequencing , Humans , Parvoviridae Infections/pathology , Terminal Repeat Sequences/genetics , Vero Cells , Viral Interference/genetics , Virus Replication/genetics
3.
Biotechnol Bioeng ; 117(10): 3199-3211, 2020 10.
Article in English | MEDLINE | ID: mdl-32573761

ABSTRACT

In recent years, there has been a strong interest in the development and production of gene therapy products, especially those utilizing adeno-associated virus (AAV) particles. This is evident with the growing number of clinical successes and agency approvals for AAV therapeutics. Due to this increased investment in this technology, a need exists for scalable commercial production methods to ensure adequate product supply as research in AAV shifts from bench-scale development to clinical production. The purpose of this review is to summarize current scalable purification techniques that can be employed during the commercial manufacturing of AAV as well as highlight certain development considerations, such as adventitious agent removal and process development using the principals of quality by design.


Subject(s)
Dependovirus/genetics , Genetic Vectors/isolation & purification , Virus Cultivation/methods , Dependovirus/growth & development , Genetic Therapy , Humans
4.
Biotechnol Bioeng ; 116(11): 2803-2814, 2019 11.
Article in English | MEDLINE | ID: mdl-31317525

ABSTRACT

The process analytical technology (PAT) initiative shifted the bioprocess development mindset towards real-time monitoring and control tools to measure relevant process variables online, and acting accordingly when undesirable deviations occur. Online monitoring is especially important in lytic production systems in which released proteases and changes in cell physiology are likely to affect product quality attributes, as is the case of the insect cell-baculovirus expression vector system (IC-BEVS), a well-established system for production of viral vectors and vaccines. Here, we applied fluorescence spectroscopy as a real-time monitoring tool for recombinant adeno-associated virus (rAAV) production in the IC-BEVS. Fluorescence spectroscopy is simple, yet sensitive and informative. To overcome the strong fluorescence background of the culture medium and improve predictive ability, we combined artificial neural network models with a genetic algorithm-based approach to optimize spectra preprocessing. We obtained predictive models for rAAV titer, cell viability and cell concentration with normalized root mean squared errors of 7%, 4%, and 7%, respectively, for leave-one-batch-out cross-validation. Our approach shows fluorescence spectroscopy allows real-time determination of the best time of harvest to maintain rAAV infectivity, an important quality attribute, and detection of deviations from the golden batch profile. This methodology can be applied to other biopharmaceuticals produced in the IC-BEVS, supporting the use of fluorescence spectroscopy as a versatile PAT tool.


Subject(s)
Bioreactors , Dependovirus/growth & development , Models, Biological , Animals , Dependovirus/genetics , Sf9 Cells , Spectrometry, Fluorescence , Spodoptera
5.
Biochem Biophys Res Commun ; 497(1): 19-24, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29407172

ABSTRACT

AAV9 vector provides efficient gene transfer in all segments of the renal nephron, with minimum expression in non-renal cells, when administered retrogradely via the ureter. It is important to restrict the transgene expression to the desired cell type within the kidney, so that the physiological endpoints represent the function of the transgene expressed in that specific cell type within kidney. We hypothesized that segment-specific gene expression within the kidney can be accomplished using the highly efficient AAV9 vectors carrying the promoters of genes that are expressed exclusively in the desired segment of the nephron in combination with administration by retrograde infusion into the kidney via the ureter. We constructed AAV vectors carrying eGFP under the control of: kidney-specific cadherin (KSPC) gene promoter for expression in the entire nephron; Na+/glucose co-transporter (SGLT2) gene promoter for expression in the S1 and S2 segments of the proximal tubule; sodium, potassium, 2 chloride co-transporter (NKCC2) gene promoter for expression in the thick ascending limb of Henle's loop (TALH); E-cadherin (ECAD) gene promoter for expression in the collecting duct (CD); and cytomegalovirus (CMV) early promoter that provides expression in most of the mammalian cells, as control. We tested the specificity of the promoter constructs in vitro for cell type-specific expression in mouse kidney cells in primary culture, followed by retrograde infusion of the AAV vectors via the ureter in the mouse. Our data show that AAV9 vector, in combination with the segment-specific promoters administered by retrograde infusion via the ureter, provides renal nephron segment-specific gene expression.


Subject(s)
Dependovirus/growth & development , Gene Expression Regulation/genetics , Gene Transfer Techniques , Genes, Viral/genetics , Nephrons/metabolism , Nephrons/virology , Animals , Cells, Cultured , Genetic Therapy/methods , Genetic Vectors , Mice , Mice, Inbred C57BL
6.
J Virol ; 91(15)2017 08 01.
Article in English | MEDLINE | ID: mdl-28515305

ABSTRACT

Adeno-associated virus 2 (AAV2) depends on the simultaneous presence of a helper virus such as herpes simplex virus 1 (HSV-1) for productive replication. At the same time, AAV2 efficiently blocks the replication of HSV-1, which would eventually limit its own replication by diminishing the helper virus reservoir. This discrepancy begs the question of how AAV2 and HSV-1 can coexist in a cell population. Here we show that in coinfected cultures, AAV2 DNA replication takes place almost exclusively in S/G2-phase cells, while HSV-1 DNA replication is restricted to G1 phase. Live microscopy revealed that not only wild-type AAV2 (wtAAV2) replication but also reporter gene expression from both single-stranded and double-stranded (self-complementary) recombinant AAV2 vectors preferentially occurs in S/G2-phase cells, suggesting that the preference for S/G2 phase is independent of the nature of the viral genome. Interestingly, however, a substantial proportion of S/G2-phase cells transduced by the double-stranded but not the single-stranded recombinant AAV2 vectors progressed through mitosis in the absence of the helper virus. We conclude that cell cycle-dependent AAV2 rep expression facilitates cell cycle-dependent AAV2 DNA replication and inhibits HSV-1 DNA replication. This may limit competition for cellular and viral helper factors and, hence, creates a biological niche for either virus to replicate.IMPORTANCE Adeno-associated virus 2 (AAV2) differs from most other viruses, as it requires not only a host cell for replication but also a helper virus such as an adenovirus or a herpesvirus. This situation inevitably leads to competition for cellular resources. AAV2 has been shown to efficiently inhibit the replication of helper viruses. Here we present a new facet of the interaction between AAV2 and one of its helper viruses, herpes simplex virus 1 (HSV-1). We observed that AAV2 rep gene expression is cell cycle dependent and gives rise to distinct time-controlled windows for HSV-1 replication. High Rep protein levels in S/G2 phase support AAV2 replication and inhibit HSV-1 replication. Conversely, low Rep protein levels in G1 phase permit HSV-1 replication but are insufficient for AAV2 replication. This allows both viruses to productively replicate in distinct sets of dividing cells.


Subject(s)
Cell Cycle , DNA-Binding Proteins/metabolism , Dependovirus/growth & development , Helper Viruses/growth & development , Herpesvirus 1, Human/growth & development , Viral Interference , Viral Proteins/metabolism , Virus Replication , Cell Line , Coinfection , Gene Expression , Humans , Microscopy , Virus Cultivation
7.
J Virol ; 90(17): 7894-901, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27334582

ABSTRACT

UNLABELLED: Following infection of epithelial tissues, herpes simplex virus 1 (HSV-1) virions travel via axonal transport to sensory ganglia and establish a lifelong latent infection within neurons. Recent studies have revealed that, following intraganglionic or intrathecal injection, recombinant adeno-associated virus (rAAV) vectors can also infect sensory neurons and are capable of stable, long-term transgene expression. We sought to determine if application of rAAV to peripheral nerve termini at the epithelial surface would allow rAAV to traffic to sensory ganglia in a manner similar to that seen with HSV. We hypothesized that footpad or ocular inoculation with rAAV8 would result in transduction of dorsal root ganglia (DRG) or trigeminal ganglia (TG), respectively. To test this, we inoculated the footpads of mice with various amounts of rAAV as well as rAAV capsid mutants. We demonstrated that this method of inoculation can achieve a transduction rate of >90% of the sensory neurons in the DRG that innervate the footpad. Similarly, we showed that corneal inoculation with rAAV vectors in the rabbit efficiently transduced >70% of the TG neurons in the optic tract. Finally, we demonstrated that coinfection of mouse footpads or rabbit eyes with rAAV vectors and HSV-1 resulted in colocalization in nearly all of the HSV-1-positive neurons. These results suggest that rAAV is a useful tool for the study of HSV-1 infection and may provide a means to deliver therapeutic cargos for the treatment of HSV infections or of dysfunctions of sensory ganglia. IMPORTANCE: Adeno-associated virus (AAV) has been shown to transduce dorsal root ganglion sensory neurons following direct intraganglionic sciatic nerve injection and intraperitoneal and intravenous injection as well as intrathecal injection. We sought to determine if rAAV vectors would be delivered to the same sensory neurons that herpes simplex virus (HSV-1) infects when applied peripherally at an epithelial surface that had been treated to expose the underlying sensory nerve termini. For this study, we chose two well-established HSV-1 infection models: mouse footpad infection and rabbit ocular infection. The results presented here provide the first description of AAV vectors transducing neurons following delivery at the skin/epithelium/eye. The ability of AAV to cotransduce HSV-1-infected neurons in both the mouse and the rabbit provides an opportunity to experimentally explore and disrupt host and viral proteins that are integral to the establishment of HSV-1 latency, to the maintenance of latency, and to reactivation from latency in vivo.


Subject(s)
Dependovirus/growth & development , Dependovirus/genetics , Genetic Vectors , Herpesvirus 1, Human/growth & development , Sensory Receptor Cells/virology , Transduction, Genetic , Animals , Coinfection/virology , Eye/virology , Foot/virology , Ganglia, Spinal/virology , Herpes Simplex/virology , Mice , Parvoviridae Infections/virology , Rabbits , Trigeminal Ganglion/virology
8.
Mol Ther ; 24(2): 287-297, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26437810

ABSTRACT

Adeno-associated virus (AAV) has shown great promise as a gene therapy vector in multiple aspects of preclinical and clinical applications. Many developments including new serotypes as well as self-complementary vectors are now entering the clinic. With these ongoing vector developments, continued effort has been focused on scalable manufacturing processes that can efficiently generate high-titer, highly pure, and potent quantities of rAAV vectors. Utilizing the relatively simple and efficient transfection system of HEK293 cells as a starting point, we have successfully adapted an adherent HEK293 cell line from a qualified clinical master cell bank to grow in animal component-free suspension conditions in shaker flasks and WAVE bioreactors that allows for rapid and scalable rAAV production. Using the triple transfection method, the suspension HEK293 cell line generates greater than 1 × 10(5) vector genome containing particles (vg)/cell or greater than 1 × 10(14) vg/l of cell culture when harvested 48 hours post-transfection. To achieve these yields, a number of variables were optimized such as selection of a compatible serum-free suspension media that supports both growth and transfection, selection of a transfection reagent, transfection conditions and cell density. A universal purification strategy, based on ion exchange chromatography methods, was also developed that results in high-purity vector preps of AAV serotypes 1-6, 8, 9 and various chimeric capsids tested. This user-friendly process can be completed within 1 week, results in high full to empty particle ratios (>90% full particles), provides postpurification yields (>1 × 10(13) vg/l) and purity suitable for clinical applications and is universal with respect to all serotypes and chimeric particles. To date, this scalable manufacturing technology has been utilized to manufacture GMP phase 1 clinical AAV vectors for retinal neovascularization (AAV2), Hemophilia B (scAAV8), giant axonal neuropathy (scAAV9), and retinitis pigmentosa (AAV2), which have been administered into patients. In addition, we report a minimum of a fivefold increase in overall vector production by implementing a perfusion method that entails harvesting rAAV from the culture media at numerous time-points post-transfection.


Subject(s)
Batch Cell Culture Techniques/methods , Dependovirus/growth & development , Genetic Vectors/isolation & purification , Vascular Endothelial Growth Factor Receptor-1/genetics , Bioreactors , Cell Adhesion , Culture Media, Serum-Free , Dependovirus/genetics , Dependovirus/isolation & purification , HEK293 Cells , Humans , Vascular Endothelial Growth Factor Receptor-1/metabolism
9.
J Gen Virol ; 96(9): 2780-2787, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26297494

ABSTRACT

We showed that WT adeno-associated virus serotype 2 (AAV2) genome devoid of a conventional polyadenylation [poly(A)] signal underwent complete genome replication, encapsidation and progeny virion production in the presence of adenovirus. The infectivity of the progeny virion was also retained. Using recombinant AAV2 vectors devoid of a human growth hormone poly(A) signal, we also demonstrated that a subset of mRNA transcripts contained the inverted terminal repeat (ITR) sequence at the 3' end, which we designated ITR in RNA (ITRR). Furthermore, AAV replication (Rep) proteins were able to interact with the ITRR. Taken together, our studies suggest a new function of the AAV2 ITR as an RNA element to mediate transgene expression from poly(A)-deleted mRNA.


Subject(s)
Dependovirus/genetics , Polyadenylation , Virion/genetics , Virus Replication , DNA Replication , Dependovirus/growth & development , Dependovirus/physiology , Genome, Viral , Humans , Parvoviridae Infections/virology , RNA, Viral/genetics , RNA, Viral/metabolism , Terminal Repeat Sequences , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/growth & development , Virion/physiology
10.
J Gen Virol ; 95(Pt 7): 1539-1543, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24728713

ABSTRACT

Osteosarcoma cells U2OS are partially susceptible to adeno-associated virus (AAV)-2 infection, allowing efficient synthesis of Rep proteins and, in a low percentage of cells, capsid production. It is not clear if this partial susceptibility to infection is due to the bone-cell-like nature of these cells or is a result of their transformed properties. Here, we grew osteosarcoma cells in a biomimetic three-dimensional bone-like matrix composed of calcium phosphate and chitosan, and tested whether this would increase or reduce their permissiveness to virus. The osteosarcoma cells grew in the matrix and began to express the alkaline phosphatase bone cell differentiation marker. This was accompanied by a block to their infection by AAV, as indicated by Rep and capsid production. Infection of cells growing in three-dimensional tissue-like matrices could be, in a wider context, a practical way to mimic in vivo conditions.


Subject(s)
Dependovirus/growth & development , Osteocytes/virology , Biomimetics , Cell Line, Tumor , Humans , Tissue Culture Techniques
11.
J Virol ; 84(8): 3808-24, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20106923

ABSTRACT

Adeno-associated virus (AAV) has previously been shown to inhibit the replication of its helper virus herpes simplex virus type 1 (HSV-1), and the inhibitory activity has been attributed to the expression of the AAV Rep proteins. In the present study, we assessed the Rep activities required for inhibition of HSV-1 replication using a panel of wild-type and mutant Rep proteins lacking defined domains and activities. We found that the inhibition of HSV-1 replication required Rep DNA-binding and ATPase/helicase activities but not endonuclease activity. The Rep activities required for inhibition of HSV-1 replication precisely coincided with the activities that were responsible for induction of cellular DNA damage and apoptosis, suggesting that these three processes are closely linked. Notably, the presence of Rep induced the hyperphosphorylation of a DNA damage marker, replication protein A (RPA), which has been reported not to be normally hyperphosphorylated during HSV-1 infection and to be sequestered away from HSV-1 replication compartments during infection. Finally, we demonstrate that the execution of apoptosis is not required for inhibition of HSV-1 replication and that the hyperphosphorylation of RPA per se is not inhibitory for HSV-1 replication, suggesting that these two processes are not directly responsible for the inhibition of HSV-1 replication by Rep.


Subject(s)
Adenosine Triphosphatases/metabolism , DNA Helicases/metabolism , Dependovirus/physiology , Herpesvirus 1, Human/physiology , Trans-Activators/metabolism , Viral Proteins/metabolism , Virus Replication , Animals , Apoptosis , Chlorocebus aethiops , DNA Damage , DNA, Viral/metabolism , Dependovirus/growth & development , Herpesvirus 1, Human/growth & development , Phosphorylation , Sequence Deletion , Vero Cells
12.
Analyst ; 136(6): 1148-52, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21270980

ABSTRACT

Tip-enhanced Raman spectroscopy (TERS) is a highly sensitive spectroscopic technique which combines the advantages of optical spectroscopy with the requirements needed for the characterization of biological nano-structures. In this study, TERS was used to investigate the applicability of this spectroscopic technique for the detection of different virus strains like avipoxvirus and adeno-associated virus. TERS spectra obtained from different particles of the same virus strain show variations in relative peak intensities and positions of most spectral features observed. These spectral variations were higher for the larger avipoxvirus particles (∅≈350 nm) than for the smaller adeno-associated virus particles (∅≈26 nm).


Subject(s)
Spectrum Analysis, Raman/methods , Viruses/isolation & purification , Avipoxvirus/growth & development , Avipoxvirus/isolation & purification , Avipoxvirus/ultrastructure , Dependovirus/growth & development , Dependovirus/isolation & purification , Dependovirus/ultrastructure , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Viruses/classification , Viruses/growth & development , Viruses/ultrastructure
13.
Nat Med ; 5(9): 1052-6, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10470084

ABSTRACT

The human parvovirus adeno-associated virus type 2 (AAV2) has many features that make it attractive as a vector for gene therapy. However, the broad host range of AAV2 might represent a limitation for some applications in vivo, because recombinant AAV vector (rAAV)-mediated gene transfer would not be specific for the tissue of interest. This host range is determined by the binding of the AAV2 capsid to specific cellular receptors and/or co-receptors. The tropism of AAV2 might be changed by genetically introducing a ligand peptide into the viral capsid, thereby redirecting the binding of AAV2 to other cellular receptors. We generated six AAV2 capsid mutants by inserting a 14-amino-acid targeting peptide, L14, into six different putative loops of the AAV2 capsid protein identified by comparison with the known three-dimensional structure of canine parvovirus. All mutants were efficiently packaged. Three mutants expressed L14 on the capsid surface, and one efficiently infected wild-type AAV2-resistant cell lines that expressed the integrin receptor recognized by L14. The results demonstrate that the AAV2 capsid tolerates the insertion of a nonviral ligand sequence. This might open new perspectives for the design of targeted AAV2 vectors for human somatic gene therapy.


Subject(s)
Capsid/metabolism , Dependovirus/metabolism , Mutagenesis, Insertional , Amino Acid Sequence , Binding, Competitive , Capsid/chemistry , Capsid/genetics , Dependovirus/chemistry , Dependovirus/genetics , Dependovirus/growth & development , Heparin/metabolism , Heparin/pharmacology , Humans , Integrins/metabolism , Laminin/chemistry , Laminin/genetics , Laminin/metabolism , Ligands , Models, Molecular , Molecular Sequence Data , Mutation , Oligopeptides/genetics , Oligopeptides/metabolism , Oligopeptides/pharmacology , Receptors, Virus/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transduction, Genetic/drug effects , Transduction, Genetic/genetics , Tumor Cells, Cultured , Virus Assembly
14.
Viruses ; 13(6)2021 06 21.
Article in English | MEDLINE | ID: mdl-34205760

ABSTRACT

Historically, adeno-associated virus (AAV)-defective interfering particles (DI) were known as abnormal virions arising from natural replication and encapsidation errors. Through single virion genome analysis, we revealed that a major category of DI particles contains a double-stranded DNA genome in a "snapback" configuration. The 5'- snapback genomes (SBGs) include the P5 promoters and partial rep gene sequences. The 3'-SBGs contains the capsid region. The molecular configuration of 5'-SBGs theoretically may allow double-stranded RNA transcription in their dimer configuration. Our studies demonstrated that 5-SBG regulated AAV rep expression and improved AAV packaging. In contrast, 3'-SBGs at its dimer configuration increased levels of cap protein. The generation and accumulation of 5'-SBGs and 3'-SBGs appears to be coordinated to balance the viral gene expression level. Therefore, the functions of 5'-SBGs and 3'-SBGs may help maximize the yield of AAV progenies. We postulate that AAV virus population behaved as a colony and utilizes its subgenomic particles to overcome the size limit of a viral genome and encodes additional essential functions.


Subject(s)
Defective Interfering Viruses/growth & development , Defective Interfering Viruses/genetics , Dependovirus/growth & development , Dependovirus/genetics , Genome, Viral , Life Cycle Stages/genetics , Capsid Proteins/genetics , HEK293 Cells , Humans , Viral Proteins/genetics , Virion/metabolism , Virus Replication
15.
Methods Mol Biol ; 2225: 179-197, 2021.
Article in English | MEDLINE | ID: mdl-33108663

ABSTRACT

Virotherapy, enabled by recent advances in the transdisciplinary field of biotechnology, has emerged as a powerful tool for use in anticancer treatment, gene therapy, immunotherapy, etc. Examining the effects of viruses and virus-derived immune-modulating therapeutics is of great fundamental and clinical interest. Here we describe a sample preparation protocol for metabolite extraction from virus-infected tissue, in addition to liquid chromatography-mass spectrometry conditions essential for subsequent analysis. This metabolomics approach delivers highly sensitive and specific metabolite information on various biospecimens. Such an approach may be adopted to monitor biological changes in over 30 relevant metabolic pathways in response to viral infection and also viral therapeutics.


Subject(s)
Dependovirus/growth & development , Metabolome/genetics , Metabolomics/methods , Neoplasms/metabolism , Oncolytic Virotherapy/methods , Animals , Chromatography, Liquid/instrumentation , Chromatography, Liquid/methods , Dependovirus/genetics , Dependovirus/metabolism , Humans , Metabolic Networks and Pathways/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/methods
16.
J Virol ; 83(8): 3919-29, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19211760

ABSTRACT

Current adeno-associated virus (AAV) gene therapy vectors package a transgene flanked by the terminal repeats (TRs) of AAV type 2 (AAV2). Although these vectors are replication deficient, wild-type (wt) AAV2 prevalent in the human population could lead to replication and packaging of a type 2 TR (TR2)-flanked transgene in trans during superinfection by a helper virus, leading to "mobilization" of the vector genome from treated cells. More importantly, it appears likely that the majority of currently characterized AAV serotypes as well as the majority of new novel isolates are capable of rescuing and replicating AAV2 vector templates. To investigate this possibility, we flanked a green fluorescent protein transgene with type 2 and, the most divergent AAV serotype, type 5 TRs (TR2 or TR5). Consistent with AAV clades, AAV5 specifically replicated TR5 vectors, while AAV2 and AAV6 replicated TR2-flanked vectors. To exploit this specificity, we created a TR5 vector production system for Cap1 to Cap5. Next, we showed that persisting recombinant AAV genomes flanked by TR2s or TR5s were mobilized in vitro after addition of the cognate AAV Rep (as well as Rep6 for TR2) and adenoviral helper. Finally, we showed that a cell line containing a stably integrated wt AAV2 genome resulted in mobilization of a TR2-flanked vector but not a TR5-flanked vector upon adenoviral superinfection. Based on these data and the relative prevalence of wt AAV serotypes in the population, we propose that TR5 vectors have a significantly lower risk of mobilization and should be considered for clinical use.


Subject(s)
DNA, Viral/genetics , Dependovirus/growth & development , Dependovirus/genetics , Genetic Vectors/adverse effects , Recombination, Genetic , Terminal Repeat Sequences , Animals , Base Sequence , Cell Line , Chlorocebus aethiops , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Helper Viruses/genetics , Helper Viruses/physiology , Humans , Sequence Alignment
17.
Mol Ther ; 17(12): 2088-95, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19672246

ABSTRACT

The natural tropism of most viral vectors, including adeno-associated viral (AAV) vectors, leads to predominant transduction of neurons and epithelia within the central nervous system (CNS) and retina. Despite the clinical relevance of glia for homeostasis in neural tissue, and as causal contributors in genetic disorders such as Alzheimer's and amyotrophic lateral sclerosis, efforts to develop more efficient gene delivery vectors for glia have met with limited success. Recently, viral vector engineering involving high-throughput random diversification and selection has enabled the rapid creation of AAV vectors with valuable new gene delivery properties. We have engineered novel AAV variants capable of efficient glia transduction by employing directed evolution with a panel of four distinct AAV libraries, including a new semi-random peptide replacement strategy. These variants transduced both human and rat astrocytes in vitro up to 15-fold higher than their parent serotypes, and injection into the rat striatum yielded astrocyte transduction levels up to 16% of the total transduced cell population, despite the human astrocyte selection platform. Furthermore, one variant exhibited a substantial shift in tropism toward Müller glia within the retina, further highlighting the general utility of these variants for efficient glia transduction in multiple species within the CNS and retina.


Subject(s)
Dependovirus/genetics , Drug Delivery Systems , Gene Transfer Techniques , Genetic Vectors , Green Fluorescent Proteins/genetics , Animals , Astrocytes/metabolism , Cells, Cultured , Dependovirus/growth & development , Directed Molecular Evolution , Glioblastoma/genetics , Glioblastoma/metabolism , Green Fluorescent Proteins/metabolism , Humans , Neuroblastoma/genetics , Neuroblastoma/metabolism , Rats , Rats, Sprague-Dawley , Serotyping , Transduction, Genetic
18.
Sci Rep ; 10(1): 21532, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33299011

ABSTRACT

Adeno Associated Virus (AAV)-mediated gene expression in the brain is widely applied in the preclinical setting to investigate the therapeutic potential of specific molecular targets, characterize various cellular functions, and model central nervous system (CNS) diseases. In therapeutic applications in the clinical setting, gene therapy offers several advantages over traditional pharmacological based therapies, including the ability to directly manipulate disease mechanisms, selectively target disease-afflicted regions, and achieve long-term therapeutic protein expression in the absence of repeated administration of pharmacological agents. Next to the gold-standard iodixanol-based AAV vector production, we recently published a protocol for AAV production based on chloroform-precipitation, which allows for fast in-house production of small quantities of AAV vector without the need for specialized equipment. To validate our recent protocol, we present here a direct side-by-side comparison between vectors produced with either method in a series of in vitro and in vivo assays with a focus on transgene expression, cell loss, and neuroinflammatory responses in the brain. We do not find differences in transduction efficiency nor in any other parameter in our in vivo and in vitro panel of assessment. These results suggest that our novel protocol enables most standardly equipped laboratories to produce small batches of high quality and high titer AAV vectors for their experimental needs.


Subject(s)
Dependovirus/growth & development , Dependovirus/isolation & purification , Genetic Therapy/methods , Cell Culture Techniques/methods , Chloroform/chemistry , Dependovirus/genetics , Gene Expression , Gene Transfer Techniques , Genetic Vectors , Transgenes , Triiodobenzoic Acids/chemistry
19.
Viruses ; 12(6)2020 06 19.
Article in English | MEDLINE | ID: mdl-32575422

ABSTRACT

The adeno-associated virus (AAV) is a small, nonpathogenic parvovirus, which depends on helper factors to replicate. Those helper factors can be provided by coinfecting helper viruses such as adenoviruses, herpesviruses, or papillomaviruses. We review the basic biology of AAV and its most-studied helper viruses, adenovirus type 5 (AdV5) and herpes simplex virus type 1 (HSV-1). We further outline the direct and indirect interactions of AAV with those and additional helper viruses.


Subject(s)
Adenoviridae/metabolism , Dependovirus/growth & development , Helper Viruses/metabolism , Herpesvirus 1, Human/metabolism , Virus Replication/genetics , Coinfection/virology , Dependovirus/genetics , Humans , Parvoviridae Infections/virology , Viral Proteins/genetics
20.
Microbiologyopen ; 9(12): e1136, 2020 12.
Article in English | MEDLINE | ID: mdl-33166081

ABSTRACT

Recent studies on recombinant adeno-associated viral (rAAV) vector production demonstrated the generation of infectious viral particles in Saccharomyces cerevisiae. Proof-of-concept results showed low vector yields that correlated with low AAV DNA encapsidation rates. In an attempt to understand the host cell response to rAAV production, we profiled proteomic changes throughout the fermentation process by mass spectrometry. By comparing an rAAV-producing yeast strain with a respective non-producer control, we identified a subset of yeast host proteins with significantly different expression patterns during the rAAV induction period. Gene ontology enrichment and network interaction analyses identified changes in expression patterns associated mainly with protein folding, as well as amino acid metabolism, gluconeogenesis, and stress response. Specific fold change patterns of heat shock proteins and other stress protein markers suggested the occurrence of a cytosolic unfolded protein response during rAAV protein expression. Also, a correlative increase in proteins involved in response to oxidative stress suggested cellular activities to ameliorate the effects of reactive oxygen species or other oxidants. We tested the functional relevance of the identified host proteins by overexpressing selected protein leads using low- and high-copy number plasmids. Increased vector yields up to threefold were observed in clones where proteins SSA1, SSE1, SSE2, CCP1, GTT1, and RVB2 were overexpressed. Recombinant expression of SSA1 and YDJ insect homologues (HSP40 and HSC70, respectively) in Sf9 cells led to a volumetric vector yield increase of 50% relative to control, which validated the importance of chaperone proteins in rAAV-producing systems. Overall, these results highlight the utility of proteomic-based tools for the understanding and optimization of rAAV-producing recombinant strains.


Subject(s)
Dependovirus/growth & development , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/virology , Viral Proteins/biosynthesis , Animals , Cell Line , Dependovirus/genetics , Dependovirus/metabolism , Gene Expression Profiling , Heat-Shock Proteins/metabolism , Mass Spectrometry , Oxidative Stress/genetics , Plasmids/genetics , Proteome/metabolism , Reactive Oxygen Species/metabolism , Sf9 Cells , Spodoptera , Unfolded Protein Response/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL