Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162.962
Filter
Add more filters

Publication year range
1.
Cell ; 186(3): 560-576.e17, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36693374

ABSTRACT

Downward social mobility is a well-known mental risk factor for depression, but its neural mechanism remains elusive. Here, by forcing mice to lose against their subordinates in a non-violent social contest, we lower their social ranks stably and induce depressive-like behaviors. These rank-decline-associated depressive-like behaviors can be reversed by regaining social status. In vivo fiber photometry and single-unit electrophysiological recording show that forced loss, but not natural loss, generates negative reward prediction error (RPE). Through the lateral hypothalamus, the RPE strongly activates the brain's anti-reward center, the lateral habenula (LHb). LHb activation inhibits the medial prefrontal cortex (mPFC) that controls social competitiveness and reinforces retreats in contests. These results reveal the core neural mechanisms mutually promoting social status loss and depressive behaviors. The intertwined neuronal signaling controlling mPFC and LHb activities provides a mechanistic foundation for the crosstalk between social mobility and psychological disorder, unveiling a promising target for intervention.


Subject(s)
Habenula , Social Status , Mice , Animals , Reward , Social Behavior , Habenula/physiology , Depression
2.
Cell ; 185(1): 1-3, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34995512

ABSTRACT

Psychiatric disease is one of the greatest health challenges of our time. The pipeline for conceptually novel therapeutics remains low, in part because uncovering the biological mechanisms of psychiatric disease has been difficult. We asked experts researching different aspects of psychiatric disease: what do you see as the major urgent questions that need to be addressed? Where are the next frontiers, and what are the current hurdles to understanding the biological basis of psychiatric disease?


Subject(s)
Antidepressive Agents/therapeutic use , Data Science/methods , Depression/drug therapy , Depression/metabolism , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Genomics/methods , Precision Medicine/methods , Translational Research, Biomedical/methods , Animals , Depression/genetics , Depressive Disorder/genetics , Humans , Neurons/metabolism , Prefrontal Cortex/metabolism , Treatment Outcome
3.
Immunity ; 57(4): 837-839, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599175

ABSTRACT

Activation of the peripheral immune system contributes to stress-related neuropsychiatric symptoms. Recently in Nature, Cathomas et al. demonstrate that stress-induced social avoidance is mediated by monocyte-derived MMP8 that remodels the extracellular space of the nucleus accumbens.


Subject(s)
Depression , Monocytes , Stress, Psychological , Nucleus Accumbens
4.
Cell ; 173(1): 166-180.e14, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29502969

ABSTRACT

Brain-wide fluctuations in local field potential oscillations reflect emergent network-level signals that mediate behavior. Cracking the code whereby these oscillations coordinate in time and space (spatiotemporal dynamics) to represent complex behaviors would provide fundamental insights into how the brain signals emotional pathology. Using machine learning, we discover a spatiotemporal dynamic network that predicts the emergence of major depressive disorder (MDD)-related behavioral dysfunction in mice subjected to chronic social defeat stress. Activity patterns in this network originate in prefrontal cortex and ventral striatum, relay through amygdala and ventral tegmental area, and converge in ventral hippocampus. This network is increased by acute threat, and it is also enhanced in three independent models of MDD vulnerability. Finally, we demonstrate that this vulnerability network is biologically distinct from the networks that encode dysfunction after stress. Thus, these findings reveal a convergent mechanism through which MDD vulnerability is mediated in the brain.


Subject(s)
Brain/physiology , Depression/pathology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Depression/physiopathology , Disease Models, Animal , Electric Stimulation , Electrodes, Implanted , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Ketamine/pharmacology , Machine Learning , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Physiological Phenomena/drug effects , Prefrontal Cortex/physiology , Stress, Psychological
5.
Immunity ; 56(3): 469-471, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36921572

ABSTRACT

Investigators have long suspected a link between inflammation and depression, but the underlying mechanisms are not well understood. Fang et al. report that lipopolysaccharide-binding protein regulates monoamine biosynthesis and might be a missing link and potential therapeutic target for inflammation-associated depressive behaviors.


Subject(s)
Carrier Proteins , Depression , Humans , Acute-Phase Proteins , Inflammation
6.
Immunity ; 56(3): 620-634.e11, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36854305

ABSTRACT

Monoamine insufficiency is suggested to be associated with depressive features such as sadness, anhedonia, insomnia, and cognitive dysfunction, but the mechanisms that cause it are unclear. We found that the acute-phase protein lipopolysaccharide-binding protein (LBP) inhibits monoamine biosynthesis by acting as an endogenous inhibitor of dopamine-ß-hydroxylase (DBH) and aromatic-L-amino-acid-decarboxylase (DDC). LBP expression was increased in individuals with depression and by diverse stress challenges in mice. LBP antibodies and LBP knockdown inhibited monoamine insufficiency and depression-like features in mice, which worsened with LBP overexpression or administration. Monoamine insufficiency and depression-like symptoms were not induced by stressful stimuli in LBP-deficient mice, further highlighting a role for LBP in stress-induced depression, and a peptide we designed that blocks LBP-DBH and LBP-DDC interactions showed anti-depression effects in mice. This study reveals an important role for LBP in regulating monoamine biosynthesis and suggests that targeting LBP may have potential as a treatment for some individuals with depression.


Subject(s)
Carrier Proteins , Depression , Mice , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Acute-Phase Proteins/genetics , Acute-Phase Proteins/metabolism , Membrane Glycoproteins/metabolism , Amines
7.
Cell ; 170(2): 284-297.e18, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28689640

ABSTRACT

Major depressive disorder (MDD) patients display a common but often variable set of symptoms making successful, sustained treatment difficult to achieve. Separate depressive symptoms may be encoded by differential changes in distinct circuits in the brain, yet how discrete circuits underlie behavioral subsets of depression and how they adapt in response to stress has not been addressed. We identify two discrete circuits of parvalbumin-positive (PV) neurons in the ventral pallidum (VP) projecting to either the lateral habenula or ventral tegmental area contributing to depression. We find that these populations undergo different electrophysiological adaptations in response to social defeat stress, which are normalized by antidepressant treatment. Furthermore, manipulation of each population mediates either social withdrawal or behavioral despair, but not both. We propose that distinct components of the VP PV circuit can subserve related, yet separate depressive-like phenotypes in mice, which could ultimately provide a platform for symptom-specific treatments of depression.


Subject(s)
Basal Forebrain/physiopathology , Depression/pathology , Neurons/pathology , Animals , Avoidance Learning , Basal Forebrain/pathology , Depression/physiopathology , Depressive Disorder, Major/pathology , Depressive Disorder, Major/physiopathology , Female , In Vitro Techniques , Male , Mesencephalon/metabolism , Mesencephalon/pathology , Mice , Mice, Inbred C57BL , Neurons/cytology , Parvalbumins/metabolism
8.
Annu Rev Neurosci ; 46: 341-358, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37018916

ABSTRACT

The field of stereotactic neurosurgery developed more than 70 years ago to address a therapy gap for patients with severe psychiatric disorders. In the decades since, it has matured tremendously, benefiting from advances in clinical and basic sciences. Deep brain stimulation (DBS) for severe, treatment-resistant psychiatric disorders is currently poised to transition from a stage of empiricism to one increasingly rooted in scientific discovery. Current drivers of this transition are advances in neuroimaging, but rapidly emerging ones are neurophysiological-as we understand more about the neural basis of these disorders, we will more successfully be able to use interventions such as invasive stimulation to restore dysfunctional circuits to health. Paralleling this transition is a steady increase in the consistency and quality of outcome data. Here, we focus on obsessive-compulsive disorder and depression, two topics that have received the most attention in terms of trial volume and scientific effort.


Subject(s)
Deep Brain Stimulation , Obsessive-Compulsive Disorder , Humans , Deep Brain Stimulation/methods , Depression , Neurosurgical Procedures/methods , Obsessive-Compulsive Disorder/surgery , Neuroimaging
9.
Annu Rev Neurosci ; 45: 581-601, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35508195

ABSTRACT

Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.


Subject(s)
Antidepressive Agents , Depression , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Neuronal Plasticity/physiology , Neurons , Synapses/physiology , Synaptic Transmission/physiology
10.
Immunity ; 54(2): 225-234.e6, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33476547

ABSTRACT

Microglia are activated in many neurological diseases and have been suggested to play an important role in the development of affective disorders including major depression. To investigate how microglial signaling regulates mood, we used bidirectional chemogenetic manipulations of microglial activity in mice. Activation of microglia in the dorsal striatum induced local cytokine expression and a negative affective state characterized by anhedonia and aversion, whereas inactivation of microglia blocked aversion induced by systemic inflammation. Interleukin-6 signaling and cyclooxygenase-1 mediated prostaglandin synthesis in the microglia were critical for the inflammation-induced aversion. Correspondingly, microglial activation led to a prostaglandin-dependent reduction of the excitability of striatal neurons. These findings demonstrate a mechanism by which microglial activation causes negative affect through prostaglandin-dependent modulation of striatal neurons and indicate that interference with this mechanism could milden the depressive symptoms in somatic and psychiatric diseases involving microglial activation.


Subject(s)
Anhedonia/physiology , Corpus Striatum/immunology , Depression/immunology , Microglia/immunology , Neurons/physiology , Animals , Animals, Genetically Modified , Behavior, Animal , Cells, Cultured , Disease Models, Animal , Humans , Inflammation , Interleukin-6/metabolism , Macrophage Activation , Mice , Neurogenic Inflammation , Prostaglandins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL