Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Appl Environ Microbiol ; 90(6): e0057024, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38809046

ABSTRACT

The complex interactions between bacterioplankton and phytoplankton have prompted numerous studies that investigate phytoplankton microbiomes with the aim of characterizing beneficial or opportunistic taxa and elucidating core bacterial members. Oftentimes, this knowledge is garnered through 16S rRNA gene profiling of microbiomes from phytoplankton isolated across spatial and temporal scales, yet these studies do not offer insight into microbiome assembly and structuring. In this study, we aimed to identify taxa central to structuring and establishing the microbiome of the ubiquitous diatom Asterionellopsis glacialis. We introduced a diverse environmental bacterial community to A. glacialis in nutrient-rich or nutrient-poor media in a continuous dilution culture setup and profiled the bacterial community over 7 days. 16S rRNA amplicon sequencing showed that cyanobacteria (Coleofasciculaceae) and Rhodobacteraceae dominate the microbiome early on and maintain a persistent association throughout the experiment. Differential abundance, co-abundance networks, and differential association analyses revealed that specific members of the family Rhodobacteraceae, particularly Sulfitobacter amplicon sequence variants, become integral members in microbiome assembly. In the presence of the diatom, Sulfitobacter species and other Rhodobacteraceae developed positive associations with taxa that are typically in high abundance in marine ecosystems (Pelagibacter and Synechococcus), leading to restructuring of the microbiome compared to diatom-free controls. These positive associations developed predominantly under oligotrophic conditions, highlighting the importance of investigating phytoplankton microbiomes in as close to natural conditions as possible to avoid biases that develop under routine laboratory conditions. These findings offer further insight into phytoplankton-bacteria interactions and illustrate the importance of Rhodobacteraceae, not merely as phytoplankton symbionts but as key taxa involved in microbiome assembly. IMPORTANCE: Most, if not all, microeukaryotic organisms harbor an associated microbial community, termed the microbiome. The microscale interactions that occur between these partners have global-scale consequences, influencing marine primary productivity, carbon cycling, and harmful algal blooms to name but a few. Over the last decade, there has been a growing interest in the study of phytoplankton microbiomes, particularly within the context of bloom dynamics. However, long-standing questions remain regarding the process of phytoplankton microbiome assembly. The significance of our research is to tease apart the mechanism of microbiome assembly with a particular focus on identifying bacterial taxa, which may not merely be symbionts but architects of the phytoplankton microbiome. Our results strengthen the understanding of the ecological mechanisms that underpin phytoplankton-bacteria interactions in order to accurately predict marine ecosystem responses to environmental perturbations.


Subject(s)
Diatoms , Microbiota , RNA, Ribosomal, 16S , Rhodobacteraceae , Diatoms/microbiology , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/genetics , Rhodobacteraceae/classification , Rhodobacteraceae/physiology , Rhodobacteraceae/isolation & purification , Phytoplankton/microbiology
2.
J Plant Res ; 137(5): 847-861, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38935314

ABSTRACT

Most studies of terrestrial bryophytes as natural substrates for photosynthetic microorganisms have been performed in the polar regions, where bryophytes are an important part of the ecosystem. As they remain green throughout the year, bryophytes may also be an ideal substrate for epiphytic organisms in temperate regions. The present study investigated the colonization potential and diversity of microalgae on selected plant species in riparian forest and spruce monoculture in a temperate region. It examines whether the presence of algae is related to substrate humidity, the micromorphology of gametophyte or the seasonal availability of substrate. The taxonomic diversity of algae was studied. Cyanobacteria and green algae were cultured on BG-11 agar medium, while diatoms were identified in permanent diatomaceous slides. The alpha- and beta-diversity indices were calculated, and the communities were compared using Bray-Curtis distances and multidimensional correspondence analyses. Our findings indicate that the largest number of alga species were diatoms; however, their presence was only observed in riparian forest and was associated with high humidity. Both aerophilic and freshwater taxa were noted, the latter carried by water from nearby aquatic ecosystem. Green algae were present in both phytocoenoses and humidity appears to have no substantial effect on the degree of colonization; their diversity was low and the group consisted of terrestrial taxa. In two bryophytes growing at the highest humidity, cyanobacteria were only identified in culture. The key factor influencing the degree of microalgae colonization was the humidity of the substrate, which was related to the distance from water.


Subject(s)
Bryophyta , Chlorophyta , Cyanobacteria , Diatoms , Diatoms/physiology , Diatoms/microbiology , Bryophyta/microbiology , Bryophyta/physiology , Cyanobacteria/physiology , Chlorophyta/physiology , Ecosystem , Biodiversity , Forests
3.
Environ Microbiol ; 24(12): 5951-5965, 2022 12.
Article in English | MEDLINE | ID: mdl-36057937

ABSTRACT

The interactions of parasitic fungi with their phytoplankton hosts in the marine environment are mostly unknown. In this study, we evaluated the diversity of Chytridiomycota in phytoplankton communities dominated by dinoflagellates at several coastal locations in the NW Mediterranean Sea and demonstrated the most prominent interactions of these parasites with their hosts. The protist community in seawater differed from that in sediment, with the latter characterized by a greater heterogeneity of putative hosts, such as dinoflagellates and diatoms, as well as a chytrid community more diverse in its composition and with a higher relative abundance. Chytrids accounted for 77 amplicon sequence variants, of which 70 were found exclusively among different blooming host species. The relative abundance of chytrids was highest in samples dominated by the dinoflagellate genera Ostreopsis and Alexandrium, clearly indicating the presence of specific chytrid communities. The establishment of parasitoid-host co-cultures of chytrids and dinoflagellates allowed the morphological identification and molecular characterization of three species of Chytridiomycota, including Dinomyces arenysensis, as one of the most abundant environmental sequences, and the discovery of two other species not yet described.


Subject(s)
Chytridiomycota , Diatoms , Dinoflagellida , Parasites , Animals , Dinoflagellida/genetics , Dinoflagellida/microbiology , Chytridiomycota/genetics , Phytoplankton/microbiology , Diatoms/microbiology , Mediterranean Sea
4.
Int J Legal Med ; 135(3): 817-827, 2021 May.
Article in English | MEDLINE | ID: mdl-33392655

ABSTRACT

Seasonal or monthly databases of the diatom populations in specific bodies of water are needed to infer the drowning site of a drowned body. However, existing diatom testing methods are laborious, time-consuming, and costly and usually require specific expertise. In this study, we developed an artificial intelligence (AI)-based system as a substitute for manual morphological examination capable of identifying and classifying diatoms at the species level. Within two days, the system collected information on diatom profiles in the Huangpu and Suzhou Rivers of Shanghai, China. In an animal experiment, the similarities of diatom profiles between lung tissues and water samples were evaluated through a modified Jensen-Shannon (JS) divergence measure for drowning site inference, reaching a prediction accuracy of 92.31%. Considering its high efficiency and simplicity, our proposed method is believed to be more applicable than existing methods for seasonal or monthly water monitoring of diatom populations from sections of interconnected rivers, which would help police narrow the investigation scope to confirm the identity of an immersed body.


Subject(s)
Databases, Factual , Diatoms/classification , Drowning/diagnosis , Forensic Pathology/methods , Neural Networks, Computer , Animals , Artificial Intelligence , China , Diatoms/microbiology , Drowning/microbiology , Lung/microbiology , Models, Animal , Rats , Rats, Sprague-Dawley , Rivers/microbiology , Seasons , Sensitivity and Specificity
5.
Nature ; 522(7554): 98-101, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26017307

ABSTRACT

Interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape ecosystem diversity. In marine ecosystems, these interactions are difficult to study partly because the major photosynthetic organisms are microscopic, unicellular phytoplankton. Coastal phytoplankton communities are dominated by diatoms, which generate approximately 40% of marine primary production and form the base of many marine food webs. Diatoms co-occur with specific bacterial taxa, but the mechanisms of potential interactions are mostly unknown. Here we tease apart a bacterial consortium associated with a globally distributed diatom and find that a Sulfitobacter species promotes diatom cell division via secretion of the hormone indole-3-acetic acid, synthesized by the bacterium using both diatom-secreted and endogenous tryptophan. Indole-3-acetic acid and tryptophan serve as signalling molecules that are part of a complex exchange of nutrients, including diatom-excreted organosulfur molecules and bacterial-excreted ammonia. The potential prevalence of this mode of signalling in the oceans is corroborated by metabolite and metatranscriptome analyses that show widespread indole-3-acetic acid production by Sulfitobacter-related bacteria, particularly in coastal environments. Our study expands on the emerging recognition that marine microbial communities are part of tightly connected networks by providing evidence that these interactions are mediated through production and exchange of infochemicals.


Subject(s)
Diatoms/metabolism , Diatoms/microbiology , Ecosystem , Indoleacetic Acids/metabolism , Phytoplankton/metabolism , Phytoplankton/microbiology , Rhodobacteraceae/metabolism , Diatoms/cytology , Diatoms/genetics , Metabolomics , Molecular Sequence Data , Oceans and Seas , Photosynthesis , Phytoplankton/cytology , Phytoplankton/genetics , Rhodobacteraceae/genetics , Seawater/chemistry , Transcriptome , Tryptophan/metabolism
6.
Int J Mol Sci ; 22(24)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34947994

ABSTRACT

Diatoms are a successful group of microalgae at the base of the marine food web. For hundreds of millions of years, they have shared common habitats with bacteria, which favored the onset of interactions at different levels, potentially driving the synthesis of biologically active molecules. To unveil their presence, we sequenced the genomes of bacteria associated with the centric diatom Thalassiosira rotula from the Gulf of Naples. Annotation of the metagenome and its analysis allowed the reconstruction of three bacterial genomes that belong to currently undescribed species. Their investigation showed the existence of novel gene clusters coding for new polyketide molecules, antibiotics, antibiotic-resistance genes and an ectoine production pathway. Real-time PCR was used to investigate the association of these bacteria with three different diatom clones and revealed their preference for T. rotula FE80 and Skeletonema marinoi FE7, but not S. marinoi FE60 from the North Adriatic Sea. Additionally, we demonstrate that although all three bacteria could be detected in the culture supernatant (free-living), their number is up to 45 times higher in the cell associated fraction, suggesting a close association between these bacteria and their host. We demonstrate that axenic cultures of T. rotula are unable to grow in medium with low salinity (<28 ppt NaCl) whereas xenic cultures can tolerate up to 40 ppt NaCl with concomitant ectoine production, likely by the associated bacteria.


Subject(s)
Bacteria/classification , Diatoms/microbiology , Whole Genome Sequencing/methods , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Mediterranean Sea , Multigene Family , Phylogeny , Phytoplankton , Salinity
7.
Environ Microbiol ; 22(11): 4761-4778, 2020 11.
Article in English | MEDLINE | ID: mdl-32896070

ABSTRACT

Interactions between phytoplankton and bacteria play major roles in global biogeochemical cycles and oceanic nutrient fluxes. These interactions occur in the microenvironment surrounding phytoplankton cells, known as the phycosphere. Bacteria in the phycosphere use either chemotaxis or attachment to benefit from algal excretions. Both processes are regulated by quorum sensing (QS), a cell-cell signalling mechanism that uses small infochemicals to coordinate bacterial gene expression. However, the role of QS in regulating bacterial attachment in the phycosphere is not clear. Here, we isolated a Sulfitobacter pseudonitzschiae F5 and a Phaeobacter sp. F10 belonging to the marine Roseobacter group and an Alteromonas macleodii F12 belonging to Alteromonadaceae, from the microbial community of the ubiquitous diatom Asterionellopsis glacialis. We show that only the Roseobacter group isolates (diatom symbionts) can attach to diatom transparent exopolymeric particles. Despite all three bacteria possessing genes involved in motility, chemotaxis, and attachment, only S. pseudonitzschiae F5 and Phaeobacter sp. F10 possessed complete QS systems and could synthesize QS signals. Using UHPLC-MS/MS, we identified three QS molecules produced by both bacteria of which only 3-oxo-C16:1 -HSL strongly inhibited bacterial motility and stimulated attachment in the phycosphere. These findings suggest that QS signals enable colonization of the phycosphere by algal symbionts.


Subject(s)
Bacterial Adhesion , Diatoms/microbiology , Locomotion , Phytoplankton/microbiology , Quorum Sensing/physiology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacterial Adhesion/genetics , Genes, Bacterial , Locomotion/genetics , Microbiota , Oceans and Seas , Quorum Sensing/genetics
8.
Environ Microbiol ; 22(9): 3968-3984, 2020 09.
Article in English | MEDLINE | ID: mdl-32755055

ABSTRACT

The Southern Ocean remains one of the least explored marine environments. The investigation of temporal microbial dynamics has thus far been hampered by the limited access to this remote ocean. We present here high-resolution seasonal observations of the prokaryotic community composition during phytoplankton blooms induced by natural iron fertilization. A total of 18 seawater samples were collected by a moored remote autonomous sampler over 4 months at 5-11 day intervals in offshore surface waters (central Kerguelen Plateau). Illumina sequencing of the 16S rRNA gene revealed that among the most abundant amplicon sequence variants, SAR92 and Aurantivirga were the first bloom responders, Pseudomonadaceae, Nitrincolaceae and Polaribacter had successive peaks during the spring bloom decline, and Amylibacter increased in relative abundance later in the season. SAR11 and SUP05 were abundant prior to and after the blooms. Using network analysis, we identified two groups of diatoms representative of the spring and summer bloom that had opposite correlation patterns with prokaryotic taxa. Our study provides the first seasonal picture of microbial community dynamics in the open Southern Ocean and thereby offers biological insights to the cycling of carbon and iron, and to an important puzzling issue that is the modest nitrate decrease associated to iron fertilization.


Subject(s)
Diatoms/microbiology , Microbiota/physiology , Oceans and Seas , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Carbon/analysis , Diatoms/classification , Diatoms/growth & development , Eutrophication , Iron/analysis , RNA, Ribosomal, 16S/genetics , Seasons , Seawater/chemistry
9.
Environ Microbiol ; 22(6): 2027-2052, 2020 06.
Article in English | MEDLINE | ID: mdl-32281201

ABSTRACT

In the open ocean, some phytoplankton establish symbiosis with cyanobacteria. Some partnerships involve diatoms as hosts and heterocystous cyanobacteria as symbionts. Heterocysts are specialized cells for nitrogen fixation, and a function of the symbiotic cyanobacteria is to provide the host with nitrogen. However, both partners are photosynthetic and capable of carbon fixation, and the possible metabolites exchanged and mechanisms of transfer are poorly understood. The symbiont cellular location varies from internal to partial to fully external, and this is reflected in the symbiont genome size and content. In order to identify the membrane transporters potentially involved in metabolite exchange, we compare the draft genomes of three differently located symbionts with known transporters mainly from model free-living heterocystous cyanobacteria. The types and numbers of transporters are directly related to the symbiont cellular location: restricted in the endosymbionts and wider in the external symbiont. Three proposed models of metabolite exchange are suggested which take into account the type of transporters in the symbionts and the influence of their cellular location on the available nutrient pools. These models provide a basis for several hypotheses that given the importance of these symbioses in global N and C budgets, warrant future testing.


Subject(s)
Biological Transport/physiology , Cyanobacteria/metabolism , Diatoms/microbiology , Phytoplankton/metabolism , Carrier Proteins/metabolism , Cyanobacteria/genetics , Cyanobacteria/physiology , Diatoms/genetics , Genome Size , Nitrogen/metabolism , Nitrogen Fixation , Phytoplankton/physiology , Symbiosis/physiology
10.
Plant Physiol ; 180(4): 1898-1911, 2019 08.
Article in English | MEDLINE | ID: mdl-31152126

ABSTRACT

Diatoms secrete a significant amount of polysaccharides, which can serve as a critical organic carbon source for bacteria. The 2010 Deepwater Horizon oil spill exposed the Gulf of Mexico to substantial amounts of oil that also impacted the phytoplankton community. Increased production of exopolymeric substances was observed after this oil spill. Polysaccharides make up a major fraction of exopolymeric substances; however, their physiological role during an oil spill remains poorly understood. Here, we analyzed the role of polysaccharides in the growth and physiology of the oil-sensitive diatom Thalassiosira pseudonana and how they shape the surrounding bacterial community and its activity in the presence of oil. We found that inhibition of chrysolaminarin synthesis had a negative effect on the growth of T pseudonana and intracellular monosaccharide accumulation, which in turn suppressed photosynthesis by feedback inhibition. In addition, by acting as a carbon reserve, chrysolaminarin helped in the recovery of T pseudonana in the presence of oil. Inhibition of chrysolaminarin synthesis also influenced the bacterial community in the free-living fraction but not in the phycosphere. Exposure to oil alone led to increased abundance of oil-degrading bacterial genera and the activity of exoenzyme lipase. Our data show that chrysolaminarin synthesis plays an important role in the growth and survival of T pseudonana in the presence of oil, and its inhibition can influence the composition and activity of the surrounding bacterial community.


Subject(s)
Diatoms/metabolism , Diatoms/microbiology , Hydrocarbons/metabolism , Polysaccharides/metabolism , Photosynthesis/physiology , Polymers/metabolism
11.
J Eukaryot Microbiol ; 67(1): 18-27, 2020 01.
Article in English | MEDLINE | ID: mdl-31283069

ABSTRACT

The diatom genera Licmophora and Fragilaria are frequent epiphytes on marine macroalgae and can be infected by intracellular parasitoids traditionally assigned to the oomycete genus Ectrogella. Much debate and uncertainty remains about the taxonomy of these oomycetes, not least due to their morphological and developmental plasticity. Here, we used single-cell techniques to obtain partial sequences of the parasitoids 18S and cox2 genes. The former falls into two recently identified clades of Pseudo-nitzschia parasites temporarily named OOM_1_2 and OOM_2, closely related to the genera of brown and red algal pathogens Anisolpidium and Olpidiopsis. A third group of sequences falls at the base of the red algal parasites assigned to Olpidiopsis. In one instance, two oomycete parasitoids seemed to co-exist in a single diatom cell; this co-occurrence of distinct parasitoid taxa not only within a population of diatom epiphytes, but also within the same host cell, possibly explains the ongoing confusion in the taxonomy of these parasitoids. We demonstrate the polyphyly of Licmophora parasitoids previously assigned to Ectrogella (sensu Sparrow, 1960) and show that parasites of red algae assigned to the genus Olpidiopsis are most likely not monophyletic. We conclude that combining single-cell microscopy and molecular methods is necessary for their full characterisation.


Subject(s)
Diatoms/microbiology , Oomycetes/classification , Oomycetes/physiology , Phylogeny
12.
Int J Mol Sci ; 21(6)2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32188145

ABSTRACT

Microbial biofilms can be key mediators for settlement of macrofoulers. The present study examines the coupled effects of microbial biofilms and local environmental conditions on the composition, structure and functioning of macrofouling assemblages. Settlement of invertebrates over a gradient of human-impacted sites was investigated on local biofilms and on biofilms developed in marine protected areas (MPAs). Special attention was given to the presence of non-indigenous species (NIS), a global problem that can cause important impacts on local assemblages. In general, the formation of macrofouling assemblages was influenced by the identity of the biofilm. However, these relationships varied across levels of anthropogenic pressure, possibly influenced by environmental conditions and the propagule pressure locally available. While the NIS Watersipora subatra seemed to be inhibited by the biofilm developed in the MPA, Diplosoma cf. listerianum seemed to be attracted by biofilm developed in the MPA only under mid anthropogenic pressure. The obtained information is critical for marine environmental management, urgently needed for the establishment of prevention and control mechanisms to minimize the settlement of NIS and mitigate their threats.


Subject(s)
Bacteria/metabolism , Biofilms , Biofouling , Invertebrates/physiology , Aizoaceae/microbiology , Animals , Biofilms/growth & development , Bryozoa/microbiology , Diatoms/microbiology , Diatoms/physiology , Marine Biology , Pressure , Seawater/microbiology , Spain
13.
Environ Microbiol ; 21(3): 949-958, 2019 03.
Article in English | MEDLINE | ID: mdl-30507060

ABSTRACT

Chytrids are ubiquitous fungal parasites in aquatic ecosystems, infecting representatives of all major phytoplankton groups. They repack carbon from inedible phytoplankton hosts into easily ingested chytrid propagules (zoospores), rendering this carbon accessible to zooplankton. Grazing on zoospores may circumvent bottlenecks in carbon transfer imposed by the dominance of inedible or poorly nutritious phytoplankton (mycoloop). We explored qualitative aspects of the mycoloop by analysing lipid profiles (fatty acids, sterols) of two chytrids infecting two major bloom-forming phytoplankton taxa of contrasting nutritional value: the diatom Asterionella formosa and the filamentous cyanobacterium Planktothrix agardhii. The polyunsaturated fatty acid composition of chytrids largely reflected that of their hosts, highlighting their role as conveyors of otherwise inaccessible essential lipids to higher trophic levels. We also showed that chytrids are capable of synthesizing sterols, thus providing a source of these essential nutrients for grazers even when sterols are absent in their phytoplankton hosts. Our findings reveal novel qualitative facets of the mycoloop, showing that parasitic chytrids, in addition to making carbon and essential lipids available from inedible sources, also upgrade their host's biochemical composition by producing sterols de novo, thereby enhancing carbon and energy fluxes in aquatic food webs.


Subject(s)
Cyanobacteria/metabolism , Diatoms/microbiology , Fatty Acids/analysis , Phytoplankton/microbiology , Sterols/analysis , Animals , Ecosystem , Food Chain
14.
Environ Monit Assess ; 191(7): 420, 2019 Jun 08.
Article in English | MEDLINE | ID: mdl-31177343

ABSTRACT

In a study carried out during 2014, bacteria associated with zooplankton in the Zuari estuary were three to four orders of magnitude higher in abundance than in seawater. The live zooplankton carried much more bacterial load compared with the carcasses, and the fecal pellets harbored the highest density of bacteria, i.e., 8 × 1013 CFU cm-3. The diversity of bacteria was higher in live zooplankton and also in seawater. But the activity of the zooplankton-associated bacteria was much higher compared with the free-living ones. Most of the associated bacteria belonged to the genus Enterobacter, Pseudomonas, Aeromonas, and Bacillus. In growth experiments, Aeromonas and Bacillus were found to have lower salinity optima than Enterobacter (20 psu) and Vibrio and Pseudomonas (normal seawater salinity). Better growth of bacteria was observed in the medium containing the diatom Chaetoceros sp. than Navicula sp. Bacterial isolates were also able to survive in oligotrophic conditions and produce optimum biomass in 2 days at salinity 5 psu, but in freshwater, the bacteria took a week's time to attain the optima. At salinities 0-35, the bacteria survived even for 3 months without nutrient addition, indicating resilience in these bacteria and mechanisms to persist in the estuaries even in adverse conditions.


Subject(s)
Bacteria/isolation & purification , Environmental Monitoring/methods , Estuaries , Seawater/microbiology , Zooplankton/microbiology , Animals , Biomass , Diatoms/microbiology , Feces/microbiology , Fresh Water/microbiology , India , Salinity , Seasons
15.
Environ Microbiol ; 20(10): 3601-3615, 2018 10.
Article in English | MEDLINE | ID: mdl-30063098

ABSTRACT

Most of our knowledge on the mechanisms underlying diatom-bacterial interactions has been acquired through studies involving isolation of culturable partners. Here, we established a laboratory model of intermediate complexity between complex natural communities and laboratory pure culture models. We investigated the whole community formed by the freshwater diatom Asterionella formosa and its associated bacteria in a laboratory context, including both culturable and unculturable bacteria. Combining cellular and molecular approaches, we showed that in laboratory cultures, A. formosa microbiome was dynamic and comprised of numerous bacterial species (mainly Proteobacteria and Bacteroidetes). Using metagenomics, we explored several metabolic potentials present within the bacterial community. Our analyses suggested that bacteria were heterotrophic although a third of them (Alpha- and Beta-proteobacteria) could also be phototrophic. About 60% of the bacteria, phylogenetically diverse, could metabolize glycolate. The capacity to synthesize molecules such as B vitamins appeared unevenly distributed among bacteria. Altogether, our results brought insights into the bacterial diversity found in diatom-bacterial communities and hinted at metabolic interdependencies within the community that could result in diatom-bacterial and bacterial-bacterial interactions. The present work allowed us to explore the functional architecture of the bacterial community associated with A. formosa in culture and is complementary to field studies.


Subject(s)
Bacteria/isolation & purification , Diatoms/microbiology , Microbiota , Bacteroidetes/isolation & purification , Fresh Water , Heterotrophic Processes , Phylogeny , Proteobacteria/isolation & purification , Taiwan
16.
Environ Microbiol ; 20(12): 4385-4400, 2018 12.
Article in English | MEDLINE | ID: mdl-30022580

ABSTRACT

The surface and surroundings of microalgal cells (phycosphere) are critical interaction zones but have been difficult to functionally interrogate due to methodological limitations. We examined effects of phycosphere-associated bacteria for two biofuel-relevant microalgal species (Phaeodactylum tricornutum and Nannochloropsis salina) using stable isotope tracing and high spatial resolution mass spectrometry imaging (NanoSIMS) to quantify elemental exchanges at the single-cell level. Each algal species responded differently to bacterial attachment. In P. tricornutum, a high percentage of cells had attached bacteria (92%-98%, up to eight bacteria per alga) and fixed 64% more carbon with attached bacteria compared to axenic cells. In contrast, N. salina cells were less commonly associated with bacteria (42%-63%), harboured fewer bacteria per alga, and fixed 10% more carbon without attached bacteria compared to axenic cells. An uncultivated bacterium related to Haliscomenobacter sp. was identified as an effective mutualist; it increased carbon fixation when attached to P. tricornutum and incorporated 71% more algal-fixed carbon relative to other bacteria. Our results illustrate how phylogenetic identity and physical location of bacteria and algae facilitate diverse metabolic responses. Phycosphere-mediated, mutualistic chemical exchanges between autotrophs and heterotrophs may be a fruitful means to increase microalgal productivity for applied engineering efforts.


Subject(s)
Bacteria/metabolism , Microalgae/metabolism , Microalgae/microbiology , Symbiosis , Biofuels , Carbon/metabolism , Diatoms/metabolism , Diatoms/microbiology , Heterotrophic Processes , Phylogeny
17.
Appl Environ Microbiol ; 84(23)2018 12 01.
Article in English | MEDLINE | ID: mdl-30266725

ABSTRACT

Parasitic Chytridiomycota (chytrids) are ecologically significant in various aquatic ecosystems, notably through their roles in controlling bloom-forming phytoplankton populations and in facilitating the transfer of nutrients from inedible algae to higher trophic levels. The diversity and study of these obligate parasites, while critical to understand the interactions between pathogens and their hosts in the environment, have been hindered by challenges inherent to their isolation and stable long-term maintenance under laboratory conditions. Here, we isolated an obligate chytrid parasite (CCAP 4086/1) on the freshwater bloom-forming diatom Asterionella formosa and characterized its infectious cycle under controlled conditions. Phylogenetic analyses based on 18S, 5.8S, and 28S ribosomal DNAs (rDNAs) revealed that this strain belongs to the recently described clade SW-I within the Lobulomycetales. All morphological features observed agree with the description of the known Asterionella parasite Zygorhizidium affluens Canter. We thus provide a phylogenetic placement for this chytrid and present a robust and simple assay that assesses both the infection success and the viability of the host. We also validate a cryopreservation method for stable and cost-effective long-term storage and demonstrate its recovery after thawing. All the above-mentioned tools establish a new gold standard for the isolation and long-term preservation of parasitic aquatic chytrids, thus opening new perspectives to investigate the diversity of these organisms and their physiology in a controlled laboratory environment.IMPORTANCE Despite their ecological relevance, parasitic aquatic chytrids are understudied, especially due to the challenges associated with their isolation and maintenance in culture. Here we isolated and established a culture of a chytrid parasite infecting the bloom-forming freshwater diatom Asterionella formosa The chytrid morphology suggests that it corresponds to the Asterionella parasite known as Zygorhizidium affluens The phylogenetic reconstruction in the present study supports the hypothesis that our Z. affluens isolate belongs to the order Lobulomycetales and clusters within the novel clade SW-I. We also validate a cryopreservation method for stable and cost-effective long-term storage of parasitic chytrids of phytoplankton. The establishment of a monoclonal pathosystem in culture and its successful cryopreservation opens the way to further investigate this ecologically relevant parasitic interaction.


Subject(s)
Chytridiomycota/classification , Chytridiomycota/isolation & purification , Cryopreservation/methods , Diatoms/microbiology , Chytridiomycota/genetics , Chytridiomycota/pathogenicity , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Phylogeny , RNA, Ribosomal, 28S/genetics , Taiwan , Virulence
18.
Mar Drugs ; 16(12)2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30518148

ABSTRACT

Algicidal bacteria can lyse microalgal blooms and trigger shifts within plankton communities. Resistant algal species can escape lysis, and have the opportunity to dominate the phytoplankton after a bacterial infection. Despite their important function in ecosystem regulation, little is known about mechanisms of resistance. Here, we show that the diatom Chaetoceros didymus releases eicosanoid oxylipins into the medium, and that the lytic algicidal bacterium, Kordia algicida, induces the production of several wound-activated oxylipins in this resistant diatom. Neither releases nor an induction occurs in the susceptible diatom Skeletonema costatum that is lysed by the bacterium within a few days. Among the upregulated oxylipins, hydroxylated eicosapentaenoic acids (HEPEs) dominate. However, also, resolvins, known lipid mediators in mammals, increase upon exposure of the algae to the algicidal bacteria. The prevailing hydroxylated fatty acid, 15-HEPE, significantly inhibits growth of K. algicida at a concentration of approximately 1 µM. The oxylipin production may represent an independent line of defense of the resistant alga, acting in addition to the previously reported upregulation of proteases.


Subject(s)
Diatoms/metabolism , Eutrophication , Flavobacteriaceae/pathogenicity , Microalgae/microbiology , Oxylipins/metabolism , Diatoms/microbiology , Ecosystem , Flavobacteriaceae/metabolism , Microalgae/metabolism , Water Microbiology
19.
Mol Biol Evol ; 33(9): 2376-90, 2016 09.
Article in English | MEDLINE | ID: mdl-27297471

ABSTRACT

While we know much about the evolutionary patterns of endosymbiotic organelle origins, we know less about how the actual process unfolded within each system. This is partly due to the massive changes endosymbiosis appears to trigger, and partly because most organelles evolved in the distant past. The dinotoms are dinoflagellates with diatom endosymbionts, and they represent a relatively recent but nevertheless obligate endosymbiotic association. We have carried out deep sequencing of both the host and endosymbiont transcriptomes from two dinotoms, Durinskia baltica and Glenodinium foliaceum, to examine how the nucleocytosolic compartments have functionally integrated. This analysis showed little or no functional reduction in either the endosymbiont or host, and no evidence for genetic integration. Rather, host and endosymbiont seem to be bound to each other via metabolites, such as photosynthate exported from the endosymbiont to the host as indicated by the presence of plastidic phosphate translocators in the host transcriptome. The host is able to synthesize starch, using plant-specific starch synthases, as a way to store imported photosynthate.


Subject(s)
Dinoflagellida/physiology , Biological Evolution , Diatoms/genetics , Diatoms/microbiology , Dinoflagellida/genetics , Dinoflagellida/metabolism , High-Throughput Nucleotide Sequencing , Phylogeny , Plastids/genetics , Structure-Activity Relationship , Symbiosis/physiology
20.
Environ Microbiol ; 19(2): 475-484, 2017 02.
Article in English | MEDLINE | ID: mdl-27207498

ABSTRACT

Fungi are important parasites of primary producers and nutrient cyclers in aquatic ecosystems. In the Pacific-Arctic domain, fungal parasitism is linked to light intensities and algal stress that can elevate disease incidence on algae and reduce diatom concentrations. Fungi are vastly understudied in the marine realm and knowledge of their function is constrained by the current understanding of fungal distribution and drivers on global scales. To investigate the spatial distribution of fungi in the western Arctic and sub-Arctic, we used high throughput methods to sequence 18S rRNA, cloned and sequenced 28S rRNA and microscopically counted chytrid-infected diatoms. We identified a broad distribution of fungal taxa predominated by Chytridiomycota and Dikarya. Phylogenetic analysis of our Chytridiomycota clones placed Arctic marine fungi sister to the order Lobulomycetales. This clade of fungi predominated in fungal communities under ice with low snowpack. Microscopic examination of fixed seawater and sea ice samples revealed chytrids parasitizing diatoms collected across the Arctic that notably infected 25% of a single diatom species in the Bering Sea. The Pezizomycotina comprised > 95% of eukaryotic sequence reads in Greenland, providing preliminary evidence for osmotrophs being a substitute for algae as the base of food webs.


Subject(s)
Diatoms/microbiology , Fungi/isolation & purification , Seawater/microbiology , Arctic Regions , Chytridiomycota/genetics , Chytridiomycota/isolation & purification , Food Chain , Fungi/classification , Fungi/genetics , Greenland , High-Throughput Nucleotide Sequencing , Ice Cover , Phylogeny , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL