Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 300
Filter
1.
Cell ; 178(3): 672-685.e12, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31257028

ABSTRACT

Homeostatic control of core body temperature is essential for survival. Temperature is sensed by specific neurons, in turn eliciting both behavioral (i.e., locomotion) and physiologic (i.e., thermogenesis, vasodilatation) responses. Here, we report that a population of GABAergic (Vgat-expressing) neurons in the dorsolateral portion of the dorsal raphe nucleus (DRN), hereafter DRNVgat neurons, are activated by ambient heat and bidirectionally regulate energy expenditure through changes in both thermogenesis and locomotion. We find that DRNVgat neurons innervate brown fat via a descending projection to the raphe pallidus (RPa). These neurons also densely innervate ascending targets implicated in the central regulation of energy expenditure, including the hypothalamus and extended amygdala. Optogenetic stimulation of different projection targets reveals that DRNVgat neurons are capable of regulating thermogenesis through both a "direct" descending pathway through the RPa and multiple "indirect" ascending pathways. This work establishes a key regulatory role for DRNVgat neurons in controlling energy expenditure.


Subject(s)
Energy Metabolism , GABAergic Neurons/metabolism , Adipose Tissue, Brown/metabolism , Animals , Brain Mapping , Clozapine/analogs & derivatives , Clozapine/pharmacology , Dorsal Raphe Nucleus/metabolism , Gene Expression/drug effects , Genetic Vectors/genetics , Genetic Vectors/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics , Temperature , Thermogenesis
2.
Cell ; 175(2): 472-487.e20, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30146164

ABSTRACT

The dorsal raphe (DR) constitutes a major serotonergic input to the forebrain and modulates diverse functions and brain states, including mood, anxiety, and sensory and motor functions. Most functional studies to date have treated DR serotonin neurons as a single population. Using viral-genetic methods, we found that subcortical- and cortical-projecting serotonin neurons have distinct cell-body distributions within the DR and differentially co-express a vesicular glutamate transporter. Further, amygdala- and frontal-cortex-projecting DR serotonin neurons have largely complementary whole-brain collateralization patterns, receive biased inputs from presynaptic partners, and exhibit opposite responses to aversive stimuli. Gain- and loss-of-function experiments suggest that amygdala-projecting DR serotonin neurons promote anxiety-like behavior, whereas frontal-cortex-projecting neurons promote active coping in the face of challenge. These results provide compelling evidence that the DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioral functions.


Subject(s)
Dorsal Raphe Nucleus/anatomy & histology , Dorsal Raphe Nucleus/physiology , Serotonin/physiology , Adaptation, Psychological/physiology , Amygdala/physiology , Animals , Anxiety/physiopathology , Brain/physiology , Dorsal Raphe Nucleus/metabolism , Female , Frontal Lobe/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Serotonin/metabolism
3.
Cell ; 170(3): 429-442.e11, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28753423

ABSTRACT

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.


Subject(s)
Appetite Regulation , Dorsal Raphe Nucleus/metabolism , Neurons/metabolism , Animals , Body Weight , Brain/physiology , Dorsal Raphe Nucleus/cytology , Electrophysiology , Fasting , Hunger , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Optogenetics
4.
Bioessays ; 46(4): e2300213, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38314963

ABSTRACT

Aggressive behavior is instinctively driven behavior that helps animals to survive and reproduce and is closely related to multiple behavioral and physiological processes. The dorsal raphe nucleus (DRN) is an evolutionarily conserved midbrain structure that regulates aggressive behavior by integrating diverse brain inputs. The DRN consists predominantly of serotonergic (5-HT:5-hydroxytryptamine) neurons and decreased 5-HT activity was classically thought to increase aggression. However, recent studies challenge this 5-HT deficiency model, revealing a more complex role for the DRN 5-HT system in aggression. Furthermore, emerging evidence has shown that non-5-HT populations in the DRN and specific neural circuits contribute to the escalation of aggressive behavior. This review argues that the DRN serves as a multifaceted modulator of aggression, acting not only via 5-HT but also via other neurotransmitters and neural pathways, as well as different subsets of 5-HT neurons. In addition, we discuss the contribution of DRN neurons in the behavioral and physiological aspects implicated in aggressive behavior, such as arousal, reward, and impulsivity, to further our understanding of DRN-mediated aggression modulation.


Subject(s)
Aggression , Dorsal Raphe Nucleus , Animals , Dorsal Raphe Nucleus/metabolism , Aggression/physiology , Serotonin/metabolism , Neurons/metabolism
5.
Proc Natl Acad Sci U S A ; 120(32): e2301730120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37523544

ABSTRACT

The brain employs distinct circuitries to encode positive and negative valence stimuli, and dysfunctions of these neuronal circuits have a key role in the etiopathogenesis of many psychiatric disorders. The Dorsal Raphè Nucleus (DRN) is involved in various behaviors and drives the emotional response to rewarding and aversive experiences. Whether specific subpopulations of neurons within the DRN encode these behaviors with different valence is still unknown. Notably, microRNA expression in the mammalian brain is characterized by tissue and neuronal specificity, suggesting that it might play a role in cell and circuit functionality. However, this specificity has not been fully exploited. Here, we demonstrate that microRNA-34a (miR-34a) is selectively expressed in a subpopulation of GABAergic neurons of the ventrolateral DRN. Moreover, we report that acute exposure to both aversive (restraint stress) and rewarding (chocolate) stimuli reduces GABA release in the DRN, an effect prevented by the inactivation of DRN miR-34a or its genetic deletion in GABAergic neurons in aversive but not rewarding conditions. Finally, miR-34a inhibition selectively reduced passive coping with severe stressors. These data support a role of miR-34a in regulating GABAergic neurotransmitter activity and behavior in a context-dependent manner and suggest that microRNAs could represent a functional signature of specific neuronal subpopulations with valence-specific activity in the brain.


Subject(s)
Dorsal Raphe Nucleus , MicroRNAs , Humans , Animals , Dorsal Raphe Nucleus/metabolism , GABAergic Neurons/metabolism , MicroRNAs/metabolism , Mammals
6.
Eur J Neurosci ; 59(7): 1460-1479, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38155094

ABSTRACT

The orbitofrontal cortex (OFC) is a key node in the cortico-limbic-striatal circuitry that influences decision-making guided by the relative value of outcomes. Midbrain dopamine from either the ventral tegmental area (VTA) or the dorsal raphe nucleus (DRN) has the potential to modulate OFC neurons; however, it is unknown at what concentrations these terminals release dopamine. Male and female adult dopamine transporter (DAT)IRES-Cre-tdTomato mice were injected with AAV2/8-EF1a-DIO-eYFP into either the DRN or the VTA or the retrograde label cholera toxin B (CTB) 488 in the medial or lateral OFC. We quantified co-expression of CTB 488 or enhanced yellow fluorescent protein (eYFP) with tdTomato fluorescence in VTA or DRN and eYFP fibre density in the medial or lateral OFC. Both VTA and DRN dopamine neurons project to either the medial OFC or the lateral OFC, with greater expression of fibres in the medial OFC. Using fast-scan cyclic voltammetry, we detected optogenetically evoked dopamine from channelrhodopsin 2 (ChR2)-expressing VTA or DRN dopamine terminals in either the medial OFC or the lateral OFC. We assessed if optical stimulation of dopamine from the VTA or the DRN onto the medial OFC could alter layer V pyramidal neuronal firing; however, we did not observe a change in firing at stimulation parameters that evoked dopamine release from either projection even though bath application of dopamine with the monoamine transporter inhibitor, nomifensine, decreased firing. In summary, dopaminergic neurons from the VTA or the DRN project to the OFC and release submicromolar dopamine in the medial and lateral OFC.


Subject(s)
Dorsal Raphe Nucleus , Red Fluorescent Protein , Ventral Tegmental Area , Mice , Male , Female , Animals , Ventral Tegmental Area/metabolism , Dorsal Raphe Nucleus/metabolism , Dopamine/metabolism , Prefrontal Cortex/physiology , Dopaminergic Neurons/metabolism
7.
PLoS Biol ; 19(3): e3000709, 2021 03.
Article in English | MEDLINE | ID: mdl-33690628

ABSTRACT

Daily rhythms are disrupted in patients with mood disorders. The lateral habenula (LHb) and dorsal raphe nucleus (DRN) contribute to circadian timekeeping and regulate mood. Thus, pathophysiology in these nuclei may be responsible for aberrations in daily rhythms during mood disorders. Using the 15-day chronic social defeat stress (CSDS) paradigm and in vitro slice electrophysiology, we measured the effects of stress on diurnal rhythms in firing of LHb cells projecting to the DRN (cellsLHb→DRN) and unlabeled DRN cells. We also performed optogenetic experiments to investigate if increased firing in cellsLHb→DRN during exposure to a weak 7-day social defeat stress (SDS) paradigm induces stress-susceptibility. Last, we investigated whether exposure to CSDS affected the ability of mice to photoentrain to a new light-dark (LD) cycle. The cellsLHb→DRN and unlabeled DRN cells of stress-susceptible mice express greater blunted diurnal firing compared to stress-näive (control) and stress-resilient mice. Daytime optogenetic activation of cellsLHb→DRN during SDS induces stress-susceptibility which shows the direct correlation between increased activity in this circuit and putative mood disorders. Finally, we found that stress-susceptible mice are slower, while stress-resilient mice are faster, at photoentraining to a new LD cycle. Our findings suggest that exposure to strong stressors induces blunted daily rhythms in firing in cellsLHb→DRN, DRN cells and decreases the initial rate of photoentrainment in susceptible-mice. In contrast, resilient-mice may undergo homeostatic adaptations that maintain daily rhythms in firing in cellsLHb→DRN and also show rapid photoentrainment to a new LD cycle.


Subject(s)
Circadian Rhythm/physiology , Habenula/physiology , Stress, Psychological/metabolism , Animals , Dorsal Raphe Nucleus/drug effects , Dorsal Raphe Nucleus/metabolism , Habenula/cytology , Habenula/metabolism , Male , Mice , Mice, Inbred C57BL , Neural Pathways/physiology , Neurons/physiology , Optogenetics/methods , Serotonin/pharmacology , Social Defeat , Stress, Psychological/physiopathology
8.
Nature ; 560(7720): 589-594, 2018 08.
Article in English | MEDLINE | ID: mdl-30089910

ABSTRACT

Dysfunction in prosocial interactions is a core symptom of autism spectrum disorder. However, the neural mechanisms that underlie sociability are poorly understood, limiting the rational development of therapies to treat social deficits. Here we show in mice that bidirectional modulation of the release of serotonin (5-HT) from dorsal raphe neurons in the nucleus accumbens bidirectionally modifies sociability. In a mouse model of a common genetic cause of autism spectrum disorder-a copy number variation on chromosome 16p11.2-genetic deletion of the syntenic region from 5-HT neurons induces deficits in social behaviour and decreases dorsal raphe 5-HT neuronal activity. These sociability deficits can be rescued by optogenetic activation of dorsal raphe 5-HT neurons, an effect requiring and mimicked by activation of 5-HT1b receptors in the nucleus accumbens. These results demonstrate an unexpected role for 5-HT action in the nucleus accumbens in social behaviours, and suggest that targeting this mechanism may prove therapeutically beneficial.


Subject(s)
Autism Spectrum Disorder/psychology , Autism Spectrum Disorder/therapy , Nucleus Accumbens/metabolism , Serotonin/metabolism , Social Behavior , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Chromosome Deletion , Chromosomes, Human, Pair 16/genetics , Chromosomes, Mammalian/genetics , Disease Models, Animal , Dorsal Raphe Nucleus/cytology , Dorsal Raphe Nucleus/metabolism , Humans , Male , Mice , Neural Pathways , Nucleus Accumbens/cytology , Optogenetics , Synteny/genetics
9.
Acta Pharmacol Sin ; 45(7): 1393-1405, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38528118

ABSTRACT

Anxiety disorders are the most common psychiatric condition, but the etiology of anxiety disorders remains largely unclear. Our previous studies have shown that neuroplastin 65 deficiency (NP65-/-) mice exhibit abnormal social and mental behaviors and decreased expression of tryptophan hydroxylase 2 (TPH2) protein. However, whether a causal relationship between TPH2 reduction and anxiety disorders exists needs to be determined. In present study, we found that replenishment of TPH2 in dorsal raphe nucleus (DRN) enhanced 5-HT level in the hippocampus and alleviated anxiety-like behaviors. In addition, injection of AAV-NP65 in DRN significantly increased TPH2 expression in DRN and hippocampus, and reduced anxiety-like behaviors. Acute administration of exogenous 5-HT or HTR3 agonist SR57227A in hippocampus mitigated anxiety-like behaviors in NP65-/- mice. Moreover, replenishment of TPH2 in DRN partly repaired the impairment of long-term potentiation (LTP) maintenance in hippocampus of NP65-/- mice. Finally, we found that loss of NP65 lowered transcription factors Lmx1b expression in postnatal stage and replenishment of NP65 in DRN reversed the decrease in Lmx1b expression of NP65-/- mice. Together, our findings reveal that NP65 deficiency induces anxiety phenotype by downregulating DRN-hippocampus serotonergic-HTR3 transmission. These studies provide a novel and insightful view about NP65 function, suggesting an attractive potential target for treatment of anxiety disorders.


Subject(s)
Anxiety , Dorsal Raphe Nucleus , Hippocampus , Mice, Knockout , Receptors, Serotonin, 5-HT3 , Serotonin , Tryptophan Hydroxylase , Animals , Dorsal Raphe Nucleus/metabolism , Hippocampus/metabolism , Anxiety/metabolism , Serotonin/metabolism , Mice , Male , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/deficiency , Receptors, Serotonin, 5-HT3/metabolism , Receptors, Serotonin, 5-HT3/genetics , Mice, Inbred C57BL , Phenotype , Long-Term Potentiation
10.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474132

ABSTRACT

The analysis of RNA-Sec data from murine bulk tissue samples taken from five brain regions associated with behavior and stress response was conducted. The focus was on the most contrasting brain region-specific genes (BRSG) sets in terms of their expression rates. These BRSGs are identified as genes with a distinct outlying (high) expression rate in a specific region compared to others used in the study. The analysis suggested that BRSG sets form non-randomly connected compact gene networks, which correspond to the major neuron-mediated functional processes or pathways in each brain region. The number of BRSGs and the connection rate were found to depend on the heterogeneity and coordinated firing rate of neuron types in each brain region. The most connected pathways, along with the highest BRSG number, were observed in the Striatum, referred to as Medium Spiny Neurons (MSNs), which make up 95% of neurons and exhibit synchronous firing upon dopamine influx. However, the Ventral Tegmental Area/Medial Raphe Nucleus (VTA/MRN) regions, although primarily composed of monoaminergic neurons, do not fire synchronously, leading to a smaller BRSG number. The Hippocampus (HPC) region, on the other hand, displays significant neuronal heterogeneity, with glutamatergic neurons being the most numerous and synchronized. Interestingly, the two monoaminergic regions involved in the study displayed a common BRSG subnetwork architecture, emphasizing their proximity in terms of axonal throughput specifics and high-energy metabolism rates. This finding suggests the concerted evolution of monoaminergic neurons, leading to unique adaptations at the genic repertoire scale. With BRSG sets, we were able to highlight the contrasting features of the three groups: control, depressive, and aggressive mice in the animal chronic stress model. Specifically, we observed a decrease in serotonergic turnover in both the depressed and aggressive groups, while dopaminergic emission was high in both groups. There was also a notable absence of dopaminoceptive receptors on the postsynaptic membranes in the striatum in the depressed group. Additionally, we confirmed that neurogenesis BRSGs are specific to HPC, with the aggressive group showing attenuated neurogenesis rates compared to the control/depressive groups. We also confirmed that immune-competent cells like microglia and astrocytes play a crucial role in depressed phenotypes, including mitophagy-related gene Prkcd. Based on this analysis, we propose the use of BRSG sets as a suitable framework for evaluating case-control group-wise assessments of specific brain region gene pathway responses.


Subject(s)
Dopamine , Neurons , Mice , Animals , Neurons/metabolism , Dopamine/metabolism , Ventral Tegmental Area/metabolism , Dorsal Raphe Nucleus/metabolism , Dopaminergic Neurons/metabolism
11.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891901

ABSTRACT

The diverse effects of serotonin on cognition may emerge from the modulation of large-scale brain networks that support distinct cognitive processes. Yet, the specific effect of serotoninergic modulation on the properties of these networks remains elusive. Here, we used a simultaneous PET-fMRI scanner combined with graph theory analyses to investigate the modulation of network properties by the Serotonin Transporter (SERT) availability measured in the dorsal raphe nucleus (DRN). We defined global efficiency as the average mean of efficiencies over all pairs of distinct nodes of specific brain networks, and determined whether SERT levels correlated with the global efficiency of each network. SERT availability in the DRN correlated negatively with the global efficiency of the executive control brain network, which is engaged in cognitive control and directed attention. No relationship was observed between SERT availability and the global efficiency of the default mode or the salience brain networks. These findings indicate a specific role of serotoninergic modulation in the executive control brain network via a change in its global efficiency.


Subject(s)
Brain , Executive Function , Magnetic Resonance Imaging , Serotonin Plasma Membrane Transport Proteins , Serotonin Plasma Membrane Transport Proteins/metabolism , Humans , Male , Executive Function/physiology , Brain/metabolism , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Nerve Net/metabolism , Nerve Net/physiology , Female , Positron-Emission Tomography/methods , Serotonin/metabolism , Young Adult , Dorsal Raphe Nucleus/metabolism , Brain Mapping
12.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892125

ABSTRACT

A total of 3102 neurons were recorded before and following acute and chronic methylphenidate (MPD) administration. Acute MPD exposure elicits mainly increases in neuronal and behavioral activity in dose-response characteristics. The response to chronic MPD exposure, as compared to acute 0.6, 2.5, or 10.0 mg/kg MPD administration, elicits electrophysiological and behavioral sensitization in some animals and electrophysiological and behavioral tolerance in others when the neuronal recording evaluations were performed based on the animals' behavioral responses, or amount of locomotor activity, to chronic MPD exposure. The majority of neurons recorded from those expressing behavioral sensitization responded to chronic MPD with further increases in firing rate as compared to the initial MPD responses. The majority of neurons recorded from animals expressing behavioral tolerance responded to chronic MPD with decreases in their firing rate as compared to the initial MPD exposures. Each of the six brain areas studied-the ventral tegmental area, locus coeruleus, dorsal raphe, nucleus accumbens, prefrontal cortex, and caudate nucleus (VTA, LC, DR, NAc, PFC, and CN)-responds significantly (p < 0.001) differently to MPD, suggesting that each one of the above brain areas exhibits different roles in the response to MPD. Moreover, this study demonstrates that it is essential to evaluate neuronal activity responses to psychostimulants based on the animals' behavioral responses to acute and chronic effects of the drug from several brain areas simultaneously to obtain accurate information on each area's role in response to the drug.


Subject(s)
Behavior, Animal , Caudate Nucleus , Methylphenidate , Neurons , Nucleus Accumbens , Prefrontal Cortex , Ventral Tegmental Area , Animals , Methylphenidate/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Rats , Neurons/drug effects , Neurons/physiology , Neurons/metabolism , Caudate Nucleus/drug effects , Caudate Nucleus/physiology , Caudate Nucleus/metabolism , Male , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/physiology , Nucleus Accumbens/drug effects , Nucleus Accumbens/physiology , Behavior, Animal/drug effects , Locus Coeruleus/drug effects , Locus Coeruleus/physiology , Rats, Sprague-Dawley , Dorsal Raphe Nucleus/drug effects , Dorsal Raphe Nucleus/physiology , Dorsal Raphe Nucleus/metabolism , Central Nervous System Stimulants/pharmacology
13.
Mol Psychiatry ; 27(5): 2563-2579, 2022 05.
Article in English | MEDLINE | ID: mdl-33931727

ABSTRACT

Heightened aggressive behavior is considered as one of the central symptoms of many neuropsychiatric disorders including autism, schizophrenia, and dementia. The consequences of aggression pose a heavy burden on patients and their families and clinicians. Unfortunately, we have limited treatment options for aggression and lack mechanistic insight into the causes of aggression needed to inform new efforts in drug discovery and development. Levels of proinflammatory cytokines in the periphery or cerebrospinal fluid were previously reported to correlate with aggressive traits in humans. However, it is still unknown whether cytokines affect brain circuits to modulate aggression. Here, we examined the functional role of interleukin 1ß (IL-1ß) in mediating individual differences in aggression using a resident-intruder mouse model. We found that nonaggressive mice exhibit higher levels of IL-1ß in the dorsal raphe nucleus (DRN), the major source of forebrain serotonin (5-HT), compared to aggressive mice. We then examined the effect of pharmacological antagonism and viral-mediated gene knockdown of the receptors for IL-1 within the DRN and found that both treatments consistently increased aggressive behavior of male mice. Aggressive mice also exhibited higher c-Fos expression in 5-HT neurons in the DRN compared to nonaggressive mice. In line with these findings, deletion of IL-1 receptor in the DRN enhanced c-Fos expression in 5-HT neurons during aggressive encounters, suggesting that modulation of 5-HT neuronal activity by IL-1ß signaling in the DRN controls expression of aggressive behavior.


Subject(s)
Aggression , Dorsal Raphe Nucleus , Interleukin-1beta , Serotonin , Aggression/physiology , Animals , Dorsal Raphe Nucleus/metabolism , Humans , Individuality , Interleukin-1beta/metabolism , Male , Mice , Serotonin/metabolism
14.
Mol Cell Neurosci ; 121: 103750, 2022 07.
Article in English | MEDLINE | ID: mdl-35697176

ABSTRACT

The central serotonin2B receptor (5-HT2BR) modulates 5-HT and dopamine (DA) neuronal function in the mammalian brain and has been suggested as a potential target for the treatment of neuropsychiatric disorders involving derangements of these monoamine systems, such as schizophrenia, cocaine abuse and dependence and major depressive disorder. Studies in rats and mice yielded contrasting results on the control of 5-HT/DA networks by 5-HT2BRs, thereby leading to opposite views on the therapeutic potential of 5-HT2BR agents for treating the above disorders. These discrepancies may result from anatomo-functional differences related to a different cellular location of 5-HT2BRs in rat and mouse brain. Using immunohistochemistry, we assessed this hypothesis by examining the expression of 5-HT2BRs in 5-HT and GABAergic neurons of rats and mice within different subregions of the dorsal raphe nucleus (DRN), currently considered as the main site of action of 5-HT2B agents. Likewise, using in vivo microdialysis, we examined their functional relevance in the control of DRN 5-HT outflow, a surrogate index of 5-HT neuronal activity. In the DRN of both species, 5-HT2BRs are expressed in 5-HT cells expressing tryptophan hydroxylase 2 (TPH2), in GABAergic cells expressing glutamic acid decarboxylase 67 (GAD67), and in cells expressing both markers (GAD67 & TPH2; i.e., GABA-expressing 5-HT neurons). The proportion of 5-HT2BR-positive cells expressing only TPH2 was significantly larger in mouse than in rat DRN, whereas the opposite holds true for the expression in cells expressing GAD67 & TPH2. No major species differences were found in the dorsal and ventral subregions. In contrast, the lateral subregion exhibited large differences, with a predominant expression of 5-HT2BRs in TPH2-positive cells in mice (67.2 vs 19.9 % in rats), associated with a lower expression in GAD67 & TPH2 cells (7.9 % in mice vs 41.5 % in rats). Intra-DRN (0.1 µM) administration of the preferential 5-HT2BR agonist BW 723C86 decreased and increased DRN 5-HT outflow in rats and mice respectively, both effects being prevented by the intra-DRN perfusion of the selective 5-HT2BR antagonist RS 127445 (0.1 µM). Altogether, these results show the existence of anatomical differences in the cellular expression of 5-HT2BRs in the rat and mouse DRN, which translate into an opposite control of 5-HT outflow. Also, they highlight the relevance of the subset of GAD67-positive 5-HT neurons as a key factor responsible for the functional differences between rats and mice in terms of 5-HT neuronal activity modulation.


Subject(s)
Dorsal Raphe Nucleus , Receptor, Serotonin, 5-HT2B , Serotonergic Neurons , Animals , Dorsal Raphe Nucleus/metabolism , Mice , Rats , Receptor, Serotonin, 5-HT2B/metabolism , Serotonergic Neurons/metabolism , Serotonin/pharmacology
15.
Proc Natl Acad Sci U S A ; 117(6): 3239-3247, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31992641

ABSTRACT

The olfactory system receives extensive serotonergic inputs from the dorsal raphe, a nucleus involved in control of behavior, regulation of mood, and modulation of sensory processing. Although many studies have investigated how serotonin modulates the olfactory bulb, few have focused on the anterior piriform cortex (aPC), a region important for olfactory learning and encoding of odor identity and intensity. Specifically, the mechanism and functional significance of serotonergic modulation of the aPC remain largely unknown. Here we used pharmacologic, optogenetic, and fiber photometry techniques to examine the serotonergic modulation of neural activity in the aPC in vitro and in vivo. We found that serotonin (5-HT) reduces the excitability of pyramidal neurons directly via 5-HT2C receptors, phospholipase C, and calcium-activated potassium (BK) channels. Furthermore, endogenous serotonin attenuates odor-evoked calcium responses in aPC pyramidal neurons. These findings identify the mechanism underlying serotonergic modulation of the aPC and shed light on its potential role.


Subject(s)
Dorsal Raphe Nucleus/metabolism , Piriform Cortex , Pyramidal Cells/metabolism , Serotonergic Neurons/metabolism , Serotonin/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Transgenic , Odorants , Olfactory Bulb/physiology , Optogenetics , Piriform Cortex/cytology , Piriform Cortex/metabolism , Serotonin/genetics
16.
Int J Mol Sci ; 24(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37047627

ABSTRACT

In this research, we combined our ultralight micro-imaging device for calcium imaging with microdialysis to simultaneously visualize neural activity in the dorsal raphe nucleus (DRN) and measure serotonin release in the central nucleus of the amygdala (CeA) and the anterior cingulate cortex (ACC). Using this platform, we observed brain activity following nociception induced by formalin injection in the mouse's hind paw. Our device showed that DRN fluorescence intensity increased after formalin injection, and the increase was highly correlated with the elevation in serotonin release in both the CeA and ACC. The increase in calcium fluorescence intensity occurred during the acute and inflammatory phases, which suggests the biphasic response of nociceptive pain. Furthermore, we found that the increase in fluorescence intensity was positively correlated with mouse licking behavior. Lastly, we compared the laterality of pain stimulation and found that DRN fluorescence activity was higher for contralateral stimulation. Microdialysis showed that CeA serotonin concentration increased only after contralateral stimulation, while ACC serotonin release responded bilaterally. In conclusion, our study not only revealed the inter-regional serotonergic connection among the DRN, the CeA, and the ACC, but also demonstrated that our device is feasible for multi-site implantation in conjunction with a microdialysis system, allowing the simultaneous multi-modal observation of different regions in the brain.


Subject(s)
Nociceptive Pain , Serotonin , Mice , Animals , Serotonin/metabolism , Dorsal Raphe Nucleus/metabolism , Microdialysis , Calcium , Calcium Signaling
17.
Biochem Biophys Res Commun ; 602: 142-148, 2022 04 30.
Article in English | MEDLINE | ID: mdl-35272144

ABSTRACT

Dysregulation of the dorsal raphe nucleus (DRN) has been revealed to contribute to cognitive and arousal impairments associated with post-traumatic stress disorder (PTSD) in an animal model. In our research an acute exposure to single prolonged stress (SPS) was used to establish PTSD rat model and the effects related to cell-cycle signaling pathway in DRN were examined. Apoptosis in DRN was detected by TUNEL staining, showing that DRN apoptosis number was sharply increased after SPS. SPS triggered cell-cycle CDK4/CyclinD1-pRB-E2F1 signal pathway. Treatment with CDK4 inhibitor Abemaciclib successfully attenuated the DRN apoptosis and rescued decreased spatial learning and memory abilities in SPS rats, indicating that activation of CDK4/CyclinD1-pRB-E2F1 pathway was involved in DRN apoptosis, which may be one of the pathogenesis for PTSD.


Subject(s)
Dorsal Raphe Nucleus , Stress Disorders, Post-Traumatic , Animals , Apoptosis/physiology , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/pathology , E2F1 Transcription Factor/metabolism , Neurons/metabolism , Rats , Rats, Wistar , Signal Transduction , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/metabolism
18.
Cell Mol Neurobiol ; 42(3): 677-694, 2022 Apr.
Article in English | MEDLINE | ID: mdl-32926257

ABSTRACT

Morphine promotes neuroinflammation after NOD-like receptor protein 3 (NLRP3) oligomerization in glial cells, but the capacity of other opioids to induce neuroinflammation and its relationship to the development of analgesic tolerance is unknown. We studied the effects of morphine and fentanyl on NLRP3 inflammasome activation in glial and neuronal cells in the dorsal raphe nucleus (DRN), a region involved in pain regulation. Male Wistar rats received i.p. injections of morphine (10 mg/kg) or fentanyl (0.1 mg/kg) 3 × daily for 7 days and were tested for nociception. Two hours after the last (19th) administration, we analyzed NLRP3 oligomerization, caspase-1 activation and gasdermin D-N (GSDMD-N) expression in microglia (CD11b positive cells), astrocytes (GFAP-positive cells) and neurons (NeuN-positive cells). Tolerance developed to both opioids, but only fentanyl produced hyperalgesia. Morphine and fentanyl activated NLRP3 inflammasome in astrocytes and serotonergic (TPH-2-positive) neurons, but fentanyl effects were more pronounced. Both opioids increased GFAP and CD11b immunoreactivity, caspase-1 and GSDMD activation, indicating pyroptotic cell death. The opioid receptor antagonist (-)-naloxone, but not the TLR4 receptor antagonist (+)-naloxone, prevented microglia activation and NLRP3 oligomerization. Only (+)-naloxone prevented astrocytes' activation. The anti-inflammatory agent minocycline and the NLRP3 inhibitor MCC950 delayed tolerance to morphine and fentanyl antinociception and prevented fentanyl-induced hyperalgesia. MCC950 also prevented opioid-induced NLRP3 oligomerization. In conclusion, morphine and fentanyl differentially induce cell-specific activation of NLRP3 inflammasome and pyroptosis in the DRN through TLR4 receptors in astrocytes and through opioid receptors in neurons, indicating that neuroinflammation is involved in opioid-induced analgesia and fentanyl-induced hyperalgesia after repeated administrations.


Subject(s)
Fentanyl , Morphine , Analgesics, Opioid/pharmacology , Animals , Dorsal Raphe Nucleus/metabolism , Fentanyl/pharmacology , Male , Morphine/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Pyroptosis , Rats , Rats, Wistar , Receptors, Opioid/metabolism , Toll-Like Receptor 4/metabolism
19.
Mol Psychiatry ; 26(12): 7509-7521, 2021 12.
Article in English | MEDLINE | ID: mdl-34158618

ABSTRACT

Cerebellin-1 (Cbln1) and cerebellin-2 (Cbln2) are secreted glycoproteins that are expressed in distinct subsets of neurons throughout the brain. Cbln1 and Cbln2 simultaneously bind to presynaptic neurexins and postsynaptic GluD1 and GluD2, thereby forming trans-synaptic adhesion complexes. Genetic associations link cerebellins, neurexins and GluD's to neuropsychiatric disorders involving compulsive behaviors, such as Tourette syndrome, attention-deficit hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD). Extensive evidence implicates dysfunction of serotonergic signaling in these neuropsychiatric disorders. Here, we report that constitutive Cbln2 KO mice, but not Cbln1 KO mice, display robust compulsive behaviors, including stereotypic pattern running, marble burying, explosive jumping, and excessive nest building, and exhibit decreased brain serotonin levels. Strikingly, treatment of Cbln2 KO mice with the serotonin precursor 5-hydroxytryptophan or the serotonin reuptake-inhibitor fluoxetine alleviated compulsive behaviors. Conditional deletion of Cbln2 both from dorsal raphe neurons and from presynaptic neurons synapsing onto dorsal raphe neurons reproduced the compulsive behaviors of Cbln2 KO mice. Finally, injection of recombinant Cbln2 protein into the dorsal raphe of Cbln2 KO mice largely reversed their compulsive behaviors. Taken together, our results show that Cbln2 controls compulsive behaviors by regulating serotonergic circuits in the dorsal raphe.


Subject(s)
Dorsal Raphe Nucleus , Nerve Tissue Proteins , Animals , Compulsive Behavior , Dorsal Raphe Nucleus/metabolism , Mice , Nerve Tissue Proteins/metabolism , Protein Precursors , Synapses/metabolism
20.
Mol Psychiatry ; 26(7): 2886-2899, 2021 07.
Article in English | MEDLINE | ID: mdl-33046834

ABSTRACT

The signal transducer and activator of transcription 3 (STAT3) signalling pathway is activated through phosphorylation by Janus kinases in response to a diverse set of immunogenic and non-immunogenic triggers. Several distinct lines of evidence propose an intricate involvement of STAT3 in neural function relevant to behaviour in health and disease. However, in part due to the pleiotropic effects resulting from its DNA binding activity and the consequent regulation of expression of a variety of genes with context-dependent cellular consequences, the precise nature of STAT3 involvement in the neural mechanisms underlying psychopathology remains incompletely understood. Here, we focused on the midbrain serotonergic system, a central hub for the regulation of emotions, to examine the relevance of STAT3 signalling for emotional behaviour in mice by selectively knocking down raphe STAT3 expression using germline genetic (STAT3 KO) and viral-mediated approaches. Mice lacking serotonergic STAT3 presented with reduced negative behavioural reactivity and a blunted response to the sensitising effects of amphetamine, alongside alterations in midbrain neuronal firing activity of serotonergic neurons and transcriptional control of gene networks relevant for neuropsychiatric disorders. Viral knockdown of dorsal raphe (DR) STAT3 phenocopied the behavioural alterations of STAT3 KO mice, excluding a developmentally determined effect and suggesting that disruption of STAT3 signalling in the DR of adult mice is sufficient for the manifestation of behavioural traits relevant to psychopathology. Collectively, these results suggest DR STAT3 as a molecular gate for the control of behavioural reactivity, constituting a mechanistic link between the upstream activators of STAT3, serotonergic neurotransmission and psychopathology.


Subject(s)
Dorsal Raphe Nucleus , Gene Regulatory Networks , Mental Disorders , STAT3 Transcription Factor , Animals , Dorsal Raphe Nucleus/metabolism , Mice , Phosphorylation , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL