Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 383
Filter
1.
Cell ; 158(4): 764-777, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25126784

ABSTRACT

DEAD-box helicases play essential roles in RNA metabolism across species, but emerging data suggest that they have additional functions in immunity. Through RNAi screening, we identify an evolutionarily conserved and interferon-independent role for the DEAD-box helicase DDX17 in restricting Rift Valley fever virus (RVFV), a mosquito-transmitted virus in the bunyavirus family that causes severe morbidity and mortality in humans and livestock. Loss of Drosophila DDX17 (Rm62) in cells and flies enhanced RVFV infection. Similarly, depletion of DDX17 but not the related helicase DDX5 increased RVFV replication in human cells. Using crosslinking immunoprecipitation high-throughput sequencing (CLIP-seq), we show that DDX17 binds the stem loops of host pri-miRNA to facilitate their processing and also an essential stem loop in bunyaviral RNA to restrict infection. Thus, DDX17 has dual roles in the recognition of stem loops: in the nucleus for endogenous microRNA (miRNA) biogenesis and in the cytoplasm for surveillance against structured non-self-elements.


Subject(s)
DEAD-box RNA Helicases/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/immunology , MicroRNAs/metabolism , Rift Valley fever virus/physiology , Animals , Cell Line, Tumor , DEAD-box RNA Helicases/immunology , Drosophila Proteins/immunology , Drosophila melanogaster/metabolism , Drosophila melanogaster/virology , Humans , Immunity, Innate , Inverted Repeat Sequences , RNA, Viral/chemistry , Virus Replication
2.
Cell ; 155(2): 435-47, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24075010

ABSTRACT

Infections disturb metabolic homeostasis in many contexts, but the underlying connections are not completely understood. To address this, we use paired genetic and computational screens in Drosophila to identify transcriptional regulators of immunity and pathology and their associated target genes and physiologies. We show that Mef2 is required in the fat body for anabolic function and the immune response. Using genetic and biochemical approaches, we find that MEF2 is phosphorylated at a conserved site in healthy flies and promotes expression of lipogenic and glycogenic enzymes. Upon infection, this phosphorylation is lost, and the activity of MEF2 changes--MEF2 now associates with the TATA binding protein to bind a distinct TATA box sequence and promote antimicrobial peptide expression. The loss of phosphorylated MEF2 contributes to loss of anabolic enzyme expression in Gram-negative bacterial infection. MEF2 is thus a critical transcriptional switch in the adult fat body between metabolism and immunity.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/immunology , Drosophila melanogaster/metabolism , Myogenic Regulatory Factors/metabolism , Amino Acid Sequence , Animals , Candida albicans , Drosophila Proteins/immunology , Drosophila melanogaster/microbiology , Enterobacter cloacae , Fat Body/metabolism , Gene Expression Regulation , Glycogen/metabolism , Metabolism , Mycobacterium marinum , Myogenic Regulatory Factors/immunology , Phosphorylation , TATA-Box Binding Protein/metabolism
3.
Immunity ; 48(5): 897-910.e7, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29752064

ABSTRACT

Intestinal infection triggers potent immune responses to combat pathogens and concomitantly drives epithelial renewal to maintain barrier integrity. Current models propose that epithelial renewal is primarily driven by damage caused by reactive oxygen species (ROS). Here we found that in Drosophila, the Imd-NF-κB pathway controlled enterocyte (EC) shedding upon infection, via a mechanism independent of ROS-associated apoptosis. Mechanistically, the Imd pathway synergized with JNK signaling to induce epithelial cell shedding specifically in the context of bacterial infection, requiring also the reduced expression of the transcription factor GATAe. Furthermore, cell-specific NF-κB responses enabled simultaneous production of antimicrobial peptides (AMPs) and epithelial shedding in different EC populations. Thus, the Imd-NF-κB pathway is central to the intestinal antibacterial response by mediating both AMP production and the maintenance of barrier integrity. Considering the similarities between Drosophila Imd signaling and mammalian TNFR pathway, our findings suggest the existence of an evolutionarily conserved genetic program in immunity-induced epithelial shedding.


Subject(s)
Antimicrobial Cationic Peptides/immunology , Bacteria/immunology , Bacterial Infections/immunology , Drosophila Proteins/immunology , Epithelial Cells/immunology , NF-kappa B/immunology , Animals , Animals, Genetically Modified , Antimicrobial Cationic Peptides/metabolism , Bacteria/growth & development , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/immunology , Drosophila melanogaster/metabolism , Drosophila melanogaster/microbiology , Enterocytes/immunology , Enterocytes/metabolism , Enterocytes/microbiology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , GATA Transcription Factors/genetics , GATA Transcription Factors/immunology , GATA Transcription Factors/metabolism , Gene Expression Regulation/immunology , Intestinal Mucosa/cytology , NF-kappa B/metabolism , Signal Transduction/immunology
4.
PLoS Pathog ; 20(6): e1012308, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38857285

ABSTRACT

Invertebrates lack the immune machinery underlying vertebrate-like acquired immunity. However, in many insects past infection by the same pathogen can 'prime' the immune response, resulting in improved survival upon reinfection. Here, we investigated the mechanistic basis and epidemiological consequences of innate immune priming in the fruit fly Drosophila melanogaster when infected with the gram-negative bacterial pathogen Providencia rettgeri. We find that priming in response to P. rettgeri infection is a long-lasting and sexually dimorphic response. We further explore the epidemiological consequences of immune priming and find it has the potential to curtail pathogen transmission by reducing pathogen shedding and spread. The enhanced survival of individuals previously exposed to a non-lethal bacterial inoculum coincided with a transient decrease in bacterial loads, and we provide strong evidence that the effect of priming requires the IMD-responsive antimicrobial-peptide Diptericin-B in the fat body. Further, we show that while Diptericin B is the main effector of bacterial clearance, it is not sufficient for immune priming, which requires regulation of IMD by peptidoglycan recognition proteins. This work underscores the plasticity and complexity of invertebrate responses to infection, providing novel experimental evidence for the effects of innate immune priming on population-level epidemiological outcomes.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Immunity, Innate , Providencia , Animals , Drosophila melanogaster/microbiology , Drosophila melanogaster/immunology , Providencia/immunology , Drosophila Proteins/immunology , Female , Male , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/transmission , Antimicrobial Peptides
5.
Immunity ; 47(4): 635-647.e6, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29045898

ABSTRACT

In the Drosophila immune response, bacterial derived diaminopimelic acid-type peptidoglycan binds the receptors PGRP-LC and PGRP-LE, which through interaction with the adaptor protein Imd leads to activation of the NF-κB homolog Relish and robust antimicrobial peptide gene expression. PGRP-LC, PGRP-LE, and Imd each contain a motif with some resemblance to the RIP Homotypic Interaction Motif (RHIM), a domain found in mammalian RIPK proteins forming functional amyloids during necroptosis. Here we found that despite sequence divergence, these Drosophila cryptic RHIMs formed amyloid fibrils in vitro and in cells. Amyloid formation was required for signaling downstream of Imd, and in contrast to the mammalian RHIMs, was not associated with cell death. Furthermore, amyloid formation constituted a regulatable step and could be inhibited by Pirk, an endogenous feedback regulator of this pathway. Thus, diverse sequence motifs are capable of forming amyloidal signaling platforms, and the formation of these platforms may present a regulatory point in multiple biological processes.


Subject(s)
Amyloid/immunology , Carrier Proteins/immunology , Drosophila Proteins/immunology , NF-kappa B/immunology , Receptors, Cell Surface/immunology , Signal Transduction/immunology , Amino Acid Motifs/genetics , Amino Acid Motifs/immunology , Amino Acid Sequence , Amyloid/metabolism , Animals , Binding Sites/genetics , Binding Sites/immunology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Female , Gene Expression/immunology , Male , Microscopy, Confocal , Models, Immunological , Mutation , NF-kappa B/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
6.
Mol Cell ; 69(4): 539-550.e6, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29452635

ABSTRACT

Microbial or endogenous molecular patterns as well as pathogen functional features can activate innate immune systems. Whereas detection of infection by pattern recognition receptors has been investigated in details, sensing of virulence factors activities remains less characterized. In Drosophila, genetic evidences indicate that the serine protease Persephone belongs to a danger pathway activated by abnormal proteolytic activities to induce Toll signaling. However, neither the activation mechanism of this pathway nor its specificity has been determined. Here, we identify a unique region in the pro-domain of Persephone that functions as bait for exogenous proteases independently of their origin, type, or specificity. Cleavage in this bait region constitutes the first step of a sequential activation and licenses the subsequent maturation of Persephone to the endogenous cysteine cathepsin 26-29-p. Our results establish Persephone itself as an immune receptor able to sense a broad range of microbes through virulence factor activities rather than molecular patterns.


Subject(s)
Beauveria/enzymology , Drosophila Proteins/immunology , Drosophila melanogaster/immunology , Immunity, Innate/immunology , Receptors, Immunologic/metabolism , Serine Endopeptidases/immunology , Serine Proteases/immunology , Toll-Like Receptors/immunology , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/growth & development , Female , Male , Proteolysis , Serine Endopeptidases/metabolism , Serine Proteases/metabolism , Signal Transduction , Toll-Like Receptors/metabolism
7.
Immunity ; 45(5): 1013-1023, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27851910

ABSTRACT

Activation of the innate immune response in Metazoans is initiated through the recognition of microbes by host pattern-recognition receptors. In Drosophila, diaminopimelic acid (DAP)-containing peptidoglycan from Gram-negative bacteria is detected by the transmembrane receptor PGRP-LC and by the intracellular receptor PGRP-LE. Here, we show that PGRP-SD acted upstream of PGRP-LC as an extracellular receptor to enhance peptidoglycan-mediated activation of Imd signaling. Consistent with this, PGRP-SD mutants exhibited impaired activation of the Imd pathway and increased susceptibility to DAP-type bacteria. PGRP-SD enhanced the localization of peptidoglycans to the cell surface and hence promoted signaling. Moreover, PGRP-SD antagonized the action of PGRP-LB, an extracellular negative regulator, to fine-tune the intensity of the immune response. These data reveal that Drosophila PGRP-SD functions as an extracellular receptor similar to mammalian CD14 and demonstrate that, comparable to lipopolysaccharide sensing in mammals, Drosophila relies on both intra- and extracellular receptors for the detection of bacteria.


Subject(s)
Carrier Proteins/immunology , Drosophila Proteins/immunology , Drosophila melanogaster/immunology , Gram-Negative Bacterial Infections/immunology , Myogenic Regulatory Factors/immunology , Signal Transduction/immunology , Animals , Disease Models, Animal , Immunity, Innate/immunology , Peptidoglycan/immunology , Polymerase Chain Reaction , Receptors, Pattern Recognition/immunology
8.
Cell Mol Life Sci ; 81(1): 230, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780625

ABSTRACT

Insect host defense comprises two complementary dimensions, microbial killing-mediated resistance and microbial toxin neutralization-mediated resilience, both jointly providing protection against pathogen infections. Insect defensins are a class of effectors of innate immunity primarily responsible for resistance to Gram-positive bacteria. Here, we report a newly originated gene from an ancestral defensin via genetic deletion following gene duplication in Drosophila virilis, which confers an enhanced resilience to Gram-positive bacterial infection. This gene encodes an 18-mer arginine-rich peptide (termed DvirARP) with differences from its parent gene in its pattern of expression, structure and function. DvirARP specifically expresses in D. virilis female adults with a constitutive manner. It adopts a novel fold with a 310 helix and a two CXC motif-containing loop stabilized by two disulfide bridges. DvirARP exhibits no activity on the majority of microorganisms tested and only a weak activity against two Gram-positive bacteria. DvirARP knockout flies are viable and have no obvious defect in reproductivity but they are more susceptible to the DvirARP-resistant Staphylococcus aureus infection than the wild type files, which can be attributable to its ability in neutralization of the S. aureus secreted toxins. Phylogenetic distribution analysis reveals that DvirARP is restrictedly present in the Drosophila subgenus, but independent deletion variations also occur in defensins from the Sophophora subgenus, in support of the evolvability of this class of immune effectors. Our work illustrates for the first time how a duplicate resistance-mediated gene evolves an ability to increase the resilience of a subset of Drosophila species against bacterial infection.


Subject(s)
Defensins , Drosophila Proteins , Drosophila , Drosophila/classification , Drosophila/genetics , Drosophila/immunology , Drosophila/microbiology , Defensins/chemistry , Defensins/genetics , Defensins/immunology , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Animals , Gene Deletion , Gene Duplication , Female , Protein Folding , Amino Acid Motifs , Bacterial Toxins/metabolism , Staphylococcus aureus/physiology
9.
EMBO J ; 39(12): e104486, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32162708

ABSTRACT

Immune cells provide defense against non-self and have recently been shown to also play key roles in diverse processes such as development, metabolism, and tumor progression. The heterogeneity of Drosophila immune cells (hemocytes) remains an open question. Using bulk RNA sequencing, we find that the hemocytes display distinct features in the embryo, a closed and rapidly developing system, compared to the larva, which is exposed to environmental and metabolic challenges. Through single-cell RNA sequencing, we identify fourteen hemocyte clusters present in unchallenged larvae and associated with distinct processes, e.g., proliferation, phagocytosis, metabolic homeostasis, and humoral response. Finally, we characterize the changes occurring in the hemocyte clusters upon wasp infestation, which triggers the differentiation of a novel hemocyte type, the lamellocyte. This first molecular atlas of hemocytes provides insights and paves the way to study the biology of the Drosophila immune cells in physiological and pathological conditions.


Subject(s)
Drosophila Proteins/immunology , Hemocytes/immunology , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Larva/genetics , Larva/immunology
10.
Immunity ; 42(1): 133-44, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25601202

ABSTRACT

Long-term consumption of fatty foods is associated with obesity, macrophage activation and inflammation, metabolic imbalance, and a reduced lifespan. We took advantage of Drosophila genetics to investigate the role of macrophages and the pathway(s) that govern their response to dietary stress. Flies fed a lipid-rich diet presented with increased fat storage, systemic activation of JAK-STAT signaling, reduced insulin sensitivity, hyperglycemia, and a shorter lifespan. Drosophila macrophages produced the JAK-STAT-activating cytokine upd3, in a scavenger-receptor (crq) and JNK-dependent manner. Genetic depletion of macrophages or macrophage-specific silencing of upd3 decreased JAK-STAT activation and rescued insulin sensitivity and the lifespan of Drosophila, but did not decrease fat storage. NF-κB signaling made no contribution to the phenotype observed. These results identify an evolutionarily conserved "scavenger receptor-JNK-type 1 cytokine" cassette in macrophages, which controls glucose metabolism and reduces lifespan in Drosophila maintained on a lipid-rich diet via activation of the JAK-STAT pathway.


Subject(s)
Aging, Premature/immunology , Drosophila Proteins/metabolism , Drosophila/immunology , Macrophages/physiology , Obesity/prevention & control , Aging, Premature/etiology , Aging, Premature/genetics , Animals , Cells, Cultured , Diet, High-Fat/adverse effects , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Humans , Inflammation , Insulin Resistance/genetics , Janus Kinases/metabolism , MAP Kinase Kinase 4/metabolism , Macrophage Activation/genetics , Obesity/etiology , RNA, Small Interfering/genetics , Receptors, Scavenger/metabolism , STAT Transcription Factors/metabolism , Signal Transduction
11.
J Immunol ; 208(8): 1978-1988, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35379744

ABSTRACT

The Drosophila Toll signaling pathway mainly responds to Gram-positive (G+) bacteria or fungal infection, which is highly conserved with mammalian TLR signaling pathway. Although many positive and negative regulators involved in the immune response of the Toll pathway have been identified in Drosophila, the roles of long noncoding RNAs (lncRNAs) in Drosophila Toll immune responses are poorly understood to date. In this study, our results demonstrate that lncRNA-CR33942 is mainly expressed in the nucleus and upregulated after Micrococcus luteus infection. Especially, lncRNA-CR33942 not only modulates differential expressions of multiple antimicrobial peptide genes but also affects the Drosophila survival rate during response to G+ bacterial infection based on the transiently overexpressing and the knockdown lncRNA-CR33942 assays in vivo. Mechanically, lncRNA-CR33942 interacts with the NF-κB transcription factors Dorsal-related immunity factor/Dorsal to promote the transcriptions of antimicrobial peptides drosomycin and metchnikowin, thus enhancing Drosophila Toll immune responses. Taken together, this study identifies lncRNA-CR33942 as a positive regulator of Drosophila innate immune response to G+ bacterial infection to facilitate Toll signaling via interacting with Dorsal-related immunity factor/Dorsal. It would be helpful to reveal the roles of lncRNAs in Toll immune response in Drosophila and provide insights into animal innate immunity.


Subject(s)
Antimicrobial Peptides , Drosophila Proteins , Drosophila , RNA, Long Noncoding , Animals , Antimicrobial Peptides/genetics , Antimicrobial Peptides/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Drosophila/genetics , Drosophila/immunology , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , Transcription Factors/immunology , Transcription Factors/metabolism
12.
PLoS Genet ; 17(8): e1009718, 2021 08.
Article in English | MEDLINE | ID: mdl-34370736

ABSTRACT

Insects depend on the innate immune response for defense against a wide array of pathogens. Central to Drosophila immunity are antimicrobial peptides (AMPs), released into circulation when pathogens trigger either of the two widely studied signal pathways, Toll or IMD. The Toll pathway responds to infection by Gram-positive bacteria and fungi while the IMD pathway is activated by Gram-negative bacteria. During activation of the IMD pathway, the NF-κB-like transcription factor Relish is phosphorylated and then cleaved, which is crucial for IMD-dependent AMP gene induction. Here we show that loss-of-function mutants of the unconventional histone variant H2Av upregulate IMD-dependent AMP gene induction in germ-free Drosophila larvae and adults. After careful dissection of the IMD pathway, we found that Relish has an epistatic relationship with H2Av. In the H2Av mutant larvae, SUMOylation is down-regulated, suggesting a possible role of SUMOylation in the immune phenotype. Eventually we demonstrated that Relish is mostly SUMOylated on amino acid K823. Loss of the potential SUMOylation site leads to significant auto-activation of Relish in vivo. Further work indicated that H2Av regulates Relish SUMOylation after physically interacting with Su(var)2-10, the E3 component of the SUMOylation pathway. Biochemical analysis suggested that SUMOylation of Relish prevents its cleavage and activation. Our findings suggest a new mechanism by which H2Av can negatively regulate, and thus prevent spontaneous activation of IMD-dependent AMP production, through facilitating SUMOylation of the NF-κB like transcription factor Relish.


Subject(s)
Drosophila Proteins/metabolism , Histones/metabolism , Immunity, Innate/genetics , Transcription Factors/metabolism , Animals , Antimicrobial Cationic Peptides/genetics , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression/genetics , Gene Expression Regulation/genetics , Histones/physiology , NF-kappa B/genetics , Signal Transduction/genetics , Sumoylation/genetics , Toll-Like Receptors , Transcription Factors/genetics
13.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34341118

ABSTRACT

Male and female animals exhibit differences in infection outcomes. One possible source of sexually dimorphic immunity is the sex-specific costs of immune activity or pathology, but little is known about the independent effects of immune- versus microbe-induced pathology and whether these may differ for the sexes. Here, by measuring metabolic and physiological outputs in Drosophila melanogaster with wild-type and mutant immune responses, we test whether the sexes are differentially impacted by these various sources of pathology and identify a critical regulator of this difference. We find that the sexes exhibit differential immune activity but similar bacteria-derived metabolic pathology. We show that female-specific immune-inducible expression of PGRP-LB, a negative regulator of the immune deficiency (IMD) pathway, enables females to reduce immune activity in response to reductions in bacterial numbers. In the absence of PGRP-LB, females are more resistant to infection, confirming the functional importance of this regulation and suggesting that female-biased immune restriction comes at a cost.


Subject(s)
Carrier Proteins/immunology , Drosophila melanogaster/immunology , Drosophila melanogaster/microbiology , Animals , Carrier Proteins/genetics , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Drosophila melanogaster/genetics , Escherichia coli Infections/immunology , Escherichia coli Infections/veterinary , Female , Gene Expression Regulation , Immunity, Innate/physiology , Male , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Repressor Proteins/genetics , Repressor Proteins/immunology , Sex Factors , Signal Transduction/physiology , Triglycerides/metabolism
14.
Proc Natl Acad Sci U S A ; 117(13): 7317-7325, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32188787

ABSTRACT

Iron sequestration is a recognized innate immune mechanism against invading pathogens mediated by iron-binding proteins called transferrins. Despite many studies on antimicrobial activity of transferrins in vitro, their specific in vivo functions are poorly understood. Here we use Drosophila melanogaster as an in vivo model to investigate the role of transferrins in host defense. We find that systemic infections with a variety of pathogens trigger a hypoferremic response in flies, namely, iron withdrawal from the hemolymph and accumulation in the fat body. Notably, this hypoferremia to infection requires Drosophila nuclear factor κB (NF-κB) immune pathways, Toll and Imd, revealing that these pathways also mediate nutritional immunity in flies. Next, we show that the iron transporter Tsf1 is induced by infections downstream of the Toll and Imd pathways and is necessary for iron relocation from the hemolymph to the fat body. Consistent with elevated iron levels in the hemolymph, Tsf1 mutants exhibited increased susceptibility to Pseudomonas bacteria and Mucorales fungi, which could be rescued by chemical chelation of iron. Furthermore, using siderophore-deficient Pseudomonas aeruginosa, we discover that the siderophore pyoverdine is necessary for pathogenesis in wild-type flies, but it becomes dispensable in Tsf1 mutants due to excessive iron present in the hemolymph of these flies. As such, our study reveals that, similar to mammals, Drosophila uses iron limitation as an immune defense mechanism mediated by conserved iron-transporting proteins transferrins. Our in vivo work, together with accumulating in vitro studies, supports the immune role of insect transferrins against infections via an iron withholding strategy.


Subject(s)
Drosophila Proteins/metabolism , Iron/metabolism , Transferrin/metabolism , Animals , Drosophila Proteins/immunology , Drosophila melanogaster , Hemolymph/immunology , Hemolymph/metabolism , Immunity, Innate , Iron/immunology , NF-kappa B/metabolism , Pseudomonas aeruginosa/metabolism , Siderophores/metabolism , Transferrin/immunology
15.
PLoS Genet ; 16(6): e1008861, 2020 06.
Article in English | MEDLINE | ID: mdl-32525870

ABSTRACT

In metazoan germlines, the piRNA pathway acts as a genomic immune system, employing small RNA-mediated silencing to defend host DNA from the harmful effects of transposable elements (TEs). Expression of genomic TEs is proposed to initiate self regulation by increasing the production of repressive piRNAs, thereby "adapting" piRNA-mediated control to the most active TE families. Surprisingly, however, piRNA pathway proteins, which execute piRNA biogenesis and enforce silencing of targeted sequences, evolve rapidly and adaptively in animals. If TE silencing is ensured through piRNA biogenesis, what necessitates changes in piRNA pathway proteins? Here we used interspecific complementation to test for functional differences between Drosophila melanogaster and D. simulans alleles of three adaptively evolving piRNA pathway proteins: Armitage, Aubergine and Spindle-E. In contrast to piRNA-mediated transcriptional regulators examined in previous studies, these three proteins have cytoplasmic functions in piRNA maturation and post-transcriptional silencing. Across all three proteins we observed interspecific divergence in the regulation of only a handful of TE families, which were more robustly silenced by the heterospecific piRNA pathway protein. This unexpected result suggests that unlike transcriptional regulators, positive selection has not acted on cytoplasmic piRNA effector proteins to enhance their function in TE repression. Rather, TEs may evolve to "escape" silencing by host proteins. We further discovered that D. simulans alleles of aub and armi exhibit enhanced off-target effects on host transcripts in a D. melanogaster background, as well as modest reductions in the efficiency of piRNA biogenesis, suggesting that promiscuous binding of D. simulans Aub and Armi proteins to host transcripts reduces their participation in piRNA production. Avoidance of genomic auto-immunity may therefore be a critical target of selection. Our observations suggest that piRNA effector proteins are subject to an evolutionary trade-off between defending the host genome from the harmful effect of TEs while also minimizing collateral damage to host genes.


Subject(s)
Autoimmunity/genetics , DNA Transposable Elements/immunology , Drosophila simulans/genetics , Evolution, Molecular , Genome, Insect/immunology , RNA, Small Interfering/biosynthesis , Alleles , Animals , Animals, Genetically Modified , Cytoplasm/genetics , Cytoplasm/metabolism , DNA Transposable Elements/genetics , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Drosophila melanogaster/metabolism , Drosophila simulans/metabolism , Female , Gene Expression Regulation/immunology , Genome, Insect/genetics , Male , Mutation , RNA Interference/immunology
16.
PLoS Pathog ; 16(4): e1008458, 2020 04.
Article in English | MEDLINE | ID: mdl-32339205

ABSTRACT

The Immune Deficiency (IMD) pathway in Drosophila melanogaster is activated upon microbial challenge with Gram-negative bacteria to trigger the innate immune response. In order to decipher this nuclear factor κB (NF-κB) signaling pathway, we undertook an in vitro RNAi screen targeting E3 ubiquitin ligases specifically and identified the HECT-type E3 ubiquitin ligase Hyperplastic discs (Hyd) as a new actor in the IMD pathway. Hyd mediated Lys63 (K63)-linked polyubiquitination of the NF-κB cofactor Akirin was required for efficient binding of Akirin to the NF-κB transcription factor Relish. We showed that this Hyd-dependent interaction was required for the transcription of immunity-related genes that are activated by both Relish and Akirin but was dispensable for the transcription of genes that depend solely on Relish. Therefore Hyd is key in NF-κB transcriptional selectivity downstream of the IMD pathway. Drosophila depleted of Akirin or Hyd failed to express the full set of genes encoding immune-induced anti-microbial peptides and succumbed to immune challenges. We showed further that UBR5, the mammalian homolog of Hyd, was also required downstream of the NF-κB pathway for the activation of Interleukin 6 (IL6) transcription by LPS or IL-1ß in cultured human cells. Our findings link the action of an E3 ubiquitin ligase to the activation of immune effector genes, deepening our understanding of the involvement of ubiquitination in inflammation and identifying a potential target for the control of inflammatory diseases.


Subject(s)
Drosophila Proteins/immunology , Drosophila melanogaster/immunology , Nuclear Proteins/immunology , Transcription Factors/immunology , Ubiquitin-Protein Ligases/immunology , Animals , Drosophila , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/microbiology , Gram-Negative Bacteria/physiology , HeLa Cells , Humans , Immunity, Innate , Nuclear Proteins/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination
17.
J Immunol ; 204(8): 2143-2155, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32198143

ABSTRACT

Negative regulation of innate immunity is essential to avoid autoinflammation. In Drosophila melanogaster, NF-κB signaling-mediated immune responses are negatively regulated at multiple levels. Using a Drosophila RNA interference in vitro screen, we identified a set of genes inhibiting immune activation. Four of these genes encode members of the chromatin remodeling Osa-containing Brahma (BAP) complex. Silencing additional two genes of the BAP complex was shown to have the same phenotype, confirming its role in immune regulation in vitro. In vivo, the knockdown of osa and brahma was shown to enhance the expression of the Toll pathway-mediated antimicrobial peptides when the flies were challenged with Gram-positive bacteria Micrococcus luteus In this setting, osa knockdown had a particularly strong effect on immune effectors that are predominantly activated by the Imd pathway. Accordingly, Drosophila NF-κB Relish expression was increased by osa silencing. These transcriptional changes were associated with enhanced survival from M. luteus + E. faecalis infection. Besides regulating the expression of immune effector genes, osa RNA interference decreased the expression of a large group of genes involved in metabolism, particularly proteolysis. Of note, the expression of the recently characterized, immune-inducible gene Induced by Infection (IBIN) was diminished in osa knockdown flies. Although IBIN has been shown to modulate metabolism upon infection, the expression of selected Osa-regulated metabolism genes was not rescued by overexpressing IBIN. We conclude that the BAP complex regulates expression of genes involved in metabolism at least partially independent or downstream of IBIN Moreover, Osa affects the NF-κB-mediated immune response by regulating Drosophila NF-κB factor Relish expression.


Subject(s)
Cell Cycle Proteins/immunology , DNA-Binding Proteins/immunology , Drosophila Proteins/immunology , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Immunity, Innate/immunology , Trans-Activators/immunology , Transcription Factors/immunology , Animals , Cell Cycle Proteins/genetics , Cells, Cultured , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , NF-kappa B/immunology , Trans-Activators/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Mol Cell ; 49(2): 322-30, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23219532

ABSTRACT

Processing of external information by mammalian cells often involves seemingly redundant isoforms of signaling molecules and transcription factors. Understanding the functional relevance of coexpressed isoforms that respond to the same signal and control a shared set of genes is still limited. Here we show, using imaging of individual living mammalian cells, that the closely related transcription factors NFAT1 and NFAT4 possess distinct nuclear localization dynamics in response to cell stimulation. NFAT4 shows a fast response, with rapid stochastic bursts of nuclear localization. Burst frequency grows with signal level, while response amplitude is fixed. In contrast, NFAT1 has a slow, continuous response, and its amplitude increases with signal level. These diverse dynamical features observed for single cells are translated into different impulse response strategies at the cell population level. We suggest that dynamic response diversity of seemingly redundant genes can provide cells with enhanced capabilities of temporal information processing.


Subject(s)
Cell Nucleus/metabolism , NFATC Transcription Factors/metabolism , Animals , Calcium/physiology , Cell Line , Drosophila Proteins/immunology , Drosophila Proteins/metabolism , Drosophila Proteins/physiology , Immunoglobulin E/physiology , Mice , Microtubule-Associated Proteins/immunology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/physiology , Protein Isoforms/metabolism , Protein Transport , Rats , Single-Cell Analysis , Time-Lapse Imaging
19.
J Cell Sci ; 131(24)2018 12 18.
Article in English | MEDLINE | ID: mdl-30478194

ABSTRACT

Complex tissue communication networks function throughout an organism's lifespan to maintain tissue homeostasis. Using the genetic model Drosophila melanogaster, we have defined a network of immune responses that are activated following the induction of muscle stresses, including hypercontraction, detachment and oxidative stress. Of these stressors, loss of the genes that cause muscle detachment produced the strongest levels of JAK-STAT activation. In one of these mutants, fondue (fon), we also observe hemocyte recruitment and the accumulation of melanin at muscle attachment sites (MASs), indicating a broad involvement of innate immune responses upon muscle detachment. Loss of fon results in pathogen-independent Toll signaling in the fat body and increased expression of the Toll-dependent antimicrobial peptide Drosomycin. Interestingly, genetic interactions between fon and various Toll pathway components enhance muscle detachment. Finally, we show that JAK-STAT and Toll signaling are capable of reciprocal activation in larval tissues. We propose a model of tissue communication for the integration of immune responses at the local and systemic level in response to altered muscle physiology.


Subject(s)
Drosophila melanogaster/immunology , Hemocytes/immunology , Homeostasis/immunology , Immunity, Innate/immunology , Toll-Like Receptors/immunology , Animals , Blood Proteins/immunology , Blood Proteins/metabolism , Drosophila Proteins/immunology , Drosophila Proteins/metabolism , Epistasis, Genetic/immunology , Muscles/immunology , Muscles/metabolism
20.
Nat Immunol ; 9(10): 1165-70, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18724373

ABSTRACT

In drosophila, molecular determinants from fungi and Gram-positive bacteria are detected by circulating pattern-recognition receptors. Published findings suggest that such pattern-recognition receptors activate as-yet-unidentified serine-protease cascades that culminate in the cleavage of Spätzle, the endogenous Toll receptor ligand, and trigger the immune response. We demonstrate here that the protease Grass defines a common activation cascade for the detection of fungi and Gram-positive bacteria mediated by pattern-recognition receptors. The serine protease Persephone, shown before to be specific for fungal detection in a cascade activated by secreted fungal proteases, was also required for the sensing of proteases elicited by bacteria in the hemolymph. Hence, Persephone defines a parallel proteolytic cascade activated by 'danger signals' such as abnormal proteolytic activities.


Subject(s)
Drosophila Proteins/immunology , Drosophila/immunology , Receptors, Pattern Recognition/immunology , Signal Transduction/immunology , Toll-Like Receptors/immunology , Animals , Animals, Genetically Modified , Drosophila/microbiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Fungi/immunology , Gram-Positive Bacteria/immunology , Gram-Positive Bacterial Infections/immunology , In Situ Hybridization , Mycoses/immunology , Peptide Hydrolases/immunology , Peptide Hydrolases/metabolism , Receptors, Pattern Recognition/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL