Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Genome Res ; 33(4): 587-598, 2023 04.
Article in English | MEDLINE | ID: mdl-37037625

ABSTRACT

The rates of mutation, recombination, and transposition are core parameters in models of evolution. They impact genetic diversity, responses to ongoing selection, and levels of genetic load. However, even for key evolutionary model species such as Drosophila melanogaster and Drosophila simulans, few estimates of these parameters are available, and we have little idea of how rates vary between individuals, sexes, or populations. Knowledge of this variation is fundamental for parameterizing models of genome evolution. Here, we provide direct estimates of mutation, recombination, and transposition rates and their variation in a West African and a European population of D. melanogaster and a European population of D. simulans Across 89 flies, we observe 58 single-nucleotide mutations, 286 crossovers, and 89 transposable element (TE) insertions. Compared to the European D. melanogaster, we find the West African population has a lower mutation rate (1.67 × 10-9 site-1 gen-1 vs. 4.86 × 10-9 site-1 gen-1) and a lower transposition rate (8.99 × 10-5 copy-1 gen-1 vs. 23.36 × 10-5 copy-1 gen-1), but a higher recombination rate (3.44 cM/Mb vs. 2.06 cM/Mb). The European D. simulans population has a similar mutation rate to European D. melanogaster, but a significantly higher recombination rate and a lower, but not significantly different, transposition rate. Overall, we find paternal-derived mutations are more frequent than maternal ones in both species. Our study quantifies the variation in rates of mutation, recombination, and transposition among different populations and sexes, and our direct estimates of these parameters in D. melanogaster and D. simulans will benefit future studies in population and evolutionary genetics.


Subject(s)
Drosophila melanogaster , Drosophila simulans , Animals , Drosophila melanogaster/genetics , Drosophila simulans/genetics , Drosophila/genetics , Mutation , DNA Transposable Elements/genetics , Recombination, Genetic , Genetic Variation
2.
PLoS Biol ; 21(6): e3002136, 2023 06.
Article in English | MEDLINE | ID: mdl-37289846

ABSTRACT

Meiotic drive loci distort the normally equal segregation of alleles, which benefits their own transmission even in the face of severe fitness costs to their host organism. However, relatively little is known about the molecular identity of meiotic drivers, their strategies of action, and mechanisms that can suppress their activity. Here, we present data from the fruitfly Drosophila simulans that address these questions. We show that a family of de novo, protamine-derived X-linked selfish genes (the Dox gene family) is silenced by a pair of newly emerged hairpin RNA (hpRNA) small interfering RNA (siRNA)-class loci, Nmy and Tmy. In the w[XD1] genetic background, knockout of nmy derepresses Dox and MDox in testes and depletes male progeny, whereas knockout of tmy causes misexpression of PDox genes and renders males sterile. Importantly, genetic interactions between nmy and tmy mutant alleles reveal that Tmy also specifically maintains male progeny for normal sex ratio. We show the Dox loci are functionally polymorphic within D. simulans, such that both nmy-associated sex ratio bias and tmy-associated sterility can be rescued by wild-type X chromosomes bearing natural deletions in different Dox family genes. Finally, using tagged transgenes of Dox and PDox2, we provide the first experimental evidence Dox family genes encode proteins that are strongly derepressed in cognate hpRNA mutants. Altogether, these studies support a model in which protamine-derived drivers and hpRNA suppressors drive repeated cycles of sex chromosome conflict and resolution that shape genome evolution and the genetic control of male gametogenesis.


Subject(s)
Drosophila simulans , Sex Chromosomes , Animals , Male , Drosophila simulans/genetics , Sex Chromosomes/genetics , Drosophila/genetics , X Chromosome , RNA, Small Interfering/genetics , Sex Ratio , Meiosis/genetics
3.
PLoS Genet ; 19(8): e1010914, 2023 08.
Article in English | MEDLINE | ID: mdl-37643184

ABSTRACT

Suppression of transposable elements (TEs) is paramount to maintain genomic integrity and organismal fitness. In D. melanogaster, the flamenco locus is a master suppressor of TEs, preventing the mobilization of certain endogenous retrovirus-like TEs from somatic ovarian support cells to the germline. It is transcribed by Pol II as a long (100s of kb), single-stranded, primary transcript, and metabolized into ~24-32 nt Piwi-interacting RNAs (piRNAs) that target active TEs via antisense complementarity. flamenco is thought to operate as a trap, owing to its high content of recent horizontally transferred TEs that are enriched in antisense orientation. Using newly-generated long read genome data, which is critical for accurate assembly of repetitive sequences, we find that flamenco has undergone radical transformations in sequence content and even copy number across simulans clade Drosophilid species. Drosophila simulans flamenco has duplicated and diverged, and neither copy exhibits synteny with D. melanogaster beyond the core promoter. Moreover, flamenco organization is highly variable across D. simulans individuals. Next, we find that D. simulans and D. mauritiana flamenco display signatures of a dual-stranded cluster, with ping-pong signals in the testis and/or embryo. This is accompanied by increased copy numbers of germline TEs, consistent with these regions operating as functional dual-stranded clusters. Overall, the physical and functional diversity of flamenco orthologs is testament to the extremely dynamic consequences of TE arms races on genome organization, not only amongst highly related species, but even amongst individuals.


Subject(s)
Drosophila melanogaster , Drosophila , Male , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila simulans/genetics , Biological Evolution , DNA Transposable Elements/genetics , Piwi-Interacting RNA
4.
Nucleic Acids Res ; 51(17): 9203-9213, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37560917

ABSTRACT

It is widely accepted that the genomic distribution of transposable elements (TEs) mainly reflects the outcome of purifying selection and insertion bias (1). Nevertheless, the relative importance of these two evolutionary forces could not be tested thoroughly. Here, we introduce an experimental system, which allows separating purifying selection from TE insertion bias. We used experimental evolution to study the TE insertion patterns in Drosophila simulans founder populations harboring 1040 insertions of an active P-element. After 10 generations at a large population size, we detected strong selection against P-element insertions. The exception were P-element insertions in genomic regions for which a strong insertion bias has been proposed (2-4). Because recurrent P-element insertions cannot explain this pattern, we conclude that purifying selection, with variable strength along the chromosomes, is the major determinant of the genomic distribution of P-elements. Genomic regions with relaxed purifying selection against P-element insertions exhibit normal levels of purifying selection against base substitutions. This suggests that different types of purifying selection operate on base substitutions and P-element insertions. Our results highlight the power of experimental evolution to understand basic evolutionary processes, which are difficult to infer from patterns of natural variation alone.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Selection, Genetic , Animals , Chromosomes , DNA Transposable Elements/genetics , Genomics , Drosophila simulans/genetics
5.
Mol Biol Evol ; 40(7)2023 07 05.
Article in English | MEDLINE | ID: mdl-37401458

ABSTRACT

The recent evolutionary history of the Y chromosome in Drosophila simulans, a worldwide species of Afrotropical origin, is closely linked to that of X-linked meiotic drivers (Paris system). The spread of the Paris drivers in natural populations has elicited the selection of drive-resistant Y chromosomes. To infer the evolutionary history of the Y chromosome in relation to the Paris drive, we sequenced 21 iso-Y lines, each carrying a Y chromosome from a different location. Among them, 13 lines carry a Y chromosome that is able to counteract the effect of the drivers. Despite their very different geographical origins, all sensitive Y's are highly similar, suggesting that they share a recent common ancestor. The resistant Y chromosomes are more divergent and segregate in four distinct clusters. The phylogeny of the Y chromosome confirms that the resistant lineage predates the emergence of Paris drive. The ancestry of the resistant lineage is further supported by the examination of Y-linked sequences in the sister species of D. simulans, Drosophila sechellia and Drosophila mauritiana. We also characterized the variation in repeat content among Y chromosomes and identified multiple simple satellites associated with resistance. Altogether, the molecular polymorphism allows us to infer the demographic and evolutionary history of the Y chromosome and provides new insights on the genetic basis of resistance.


Subject(s)
Drosophila simulans , Sex Ratio , Animals , Drosophila simulans/genetics , Y Chromosome/genetics , Biological Evolution , Drosophila/genetics
6.
Mol Biol Evol ; 40(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-37116218

ABSTRACT

In Drosophila melanogaster and D. simulans head tissue, 60% of orthologous genes show evidence of sex-biased expression in at least one species. Of these, ∼39% (2,192) are conserved in direction. We hypothesize enrichment of open chromatin in the sex where we see expression bias and closed chromatin in the opposite sex. Male-biased orthologs are significantly enriched for H3K4me3 marks in males of both species (∼89% of male-biased orthologs vs. ∼76% of unbiased orthologs). Similarly, female-biased orthologs are significantly enriched for H3K4me3 marks in females of both species (∼90% of female-biased orthologs vs. ∼73% of unbiased orthologs). The sex-bias ratio in female-biased orthologs was similar in magnitude between the two species, regardless of the closed chromatin (H3K27me2me3) marks in males. However, in male-biased orthologs, the presence of H3K27me2me3 in both species significantly reduced the correlation between D. melanogaster sex-bias ratio and the D. simulans sex-bias ratio. Male-biased orthologs are enriched for evidence of positive selection in the D. melanogaster group. There are more male-biased genes than female-biased genes in both species. For orthologs with gains/losses of sex-bias between the two species, there is an excess of male-bias compared to female-bias, but there is no consistent pattern in the relationship between H3K4me3 or H3K27me2me3 chromatin marks and expression. These data suggest chromatin state is a component of the maintenance of sex-biased expression and divergence of sex-bias between species is reflected in the complexity of the chromatin status.


Subject(s)
Chromatin , Drosophila melanogaster , Animals , Female , Male , Drosophila melanogaster/genetics , Chromatin/genetics , Drosophila simulans/genetics , Evolution, Molecular , Drosophila/genetics
7.
Environ Microbiol ; 26(4): e16609, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558489

ABSTRACT

The susceptibility of insects to rising temperatures has largely been measured by their ability to survive thermal extremes. However, the capacity for maternally inherited endosymbionts to influence insect heat tolerance has been overlooked. Further, while some studies have addressed the impact of heat on traits like fertility, which can decline at temperatures below lethal thermal limits, none have considered the impact of endosymbionts. Here, we assess the impact of three Wolbachia strains (wRi, wAu and wNo) on the survival and fertility of Drosophila simulans exposed to heat stress during development or as adults. The effect of Wolbachia infection on heat tolerance was generally small and trait/strain specific. Only the wNo infection significantly reduced the survival of adult males after a heat shock. When exposed to fluctuating heat stress during development, the wRi and wAu strains reduced egg-to-adult survival but only the wNo infection reduced male fertility. Wolbachia densities of all three strains decreased under developmental heat stress, but reductions occurred at temperatures above those that reduced host fertility. These findings emphasize the necessity to account for endosymbionts and their effect on both survival and fertility when investigating insect responses to heat stress.


Subject(s)
Thermotolerance , Wolbachia , Animals , Male , Drosophila/physiology , Drosophila simulans/genetics , Wolbachia/genetics , Fertility
8.
Genome Res ; 31(3): 380-396, 2021 03.
Article in English | MEDLINE | ID: mdl-33563718

ABSTRACT

The rapid evolution of repetitive DNA sequences, including satellite DNA, tandem duplications, and transposable elements, underlies phenotypic evolution and contributes to hybrid incompatibilities between species. However, repetitive genomic regions are fragmented and misassembled in most contemporary genome assemblies. We generated highly contiguous de novo reference genomes for the Drosophila simulans species complex (D. simulans, D. mauritiana, and D. sechellia), which speciated ∼250,000 yr ago. Our assemblies are comparable in contiguity and accuracy to the current D. melanogaster genome, allowing us to directly compare repetitive sequences between these four species. We find that at least 15% of the D. simulans complex species genomes fail to align uniquely to D. melanogaster owing to structural divergence-twice the number of single-nucleotide substitutions. We also find rapid turnover of satellite DNA and extensive structural divergence in heterochromatic regions, whereas the euchromatic gene content is mostly conserved. Despite the overall preservation of gene synteny, euchromatin in each species has been shaped by clade- and species-specific inversions, transposable elements, expansions and contractions of satellite and tRNA tandem arrays, and gene duplications. We also find rapid divergence among Y-linked genes, including copy number variation and recent gene duplications from autosomes. Our assemblies provide a valuable resource for studying genome evolution and its consequences for phenotypic evolution in these genetic model species.


Subject(s)
Drosophila simulans/classification , Drosophila simulans/genetics , Evolution, Molecular , Genome, Insect/genetics , Animals , DNA Copy Number Variations/genetics , DNA Transposable Elements/genetics , DNA, Satellite/genetics , Drosophila melanogaster/genetics , Female , Male
9.
PLoS Genet ; 17(8): e1009744, 2021 08.
Article in English | MEDLINE | ID: mdl-34424906

ABSTRACT

Postzygotic isolation by genomic conflict is a major cause for the formation of species. Despite its importance, the molecular mechanisms that result in the lethality of interspecies hybrids are still largely unclear. The genus Drosophila, which contains over 1600 different species, is one of the best characterized model systems to study these questions. We showed in the past that the expression levels of the two hybrid incompatibility factors Hmr and Lhr diverged in the two closely related Drosophila species, D. melanogaster and D. simulans, resulting in an increased level of both proteins in interspecies hybrids. The overexpression of the two proteins also leads to mitotic defects, a misregulation in the expression of transposable elements and decreased fertility in pure species. In this work, we describe a distinct six subunit protein complex containing HMR and LHR and analyse the effect of Hmr mutations on complex integrity and function. Our experiments suggest that HMR needs to bring together components of centromeric and pericentromeric chromatin to fulfil its physiological function and to cause hybrid male lethality.


Subject(s)
Drosophila Proteins/genetics , Reproductive Isolation , Animals , Centromere/metabolism , DNA Transposable Elements/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila simulans/genetics , Drosophila simulans/metabolism , Genes, Lethal/genetics , Genetic Speciation , Hybridization, Genetic/genetics , Reproduction/genetics
10.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891872

ABSTRACT

Species of the genus Drosophila have served as favorite models in speciation studies; however, genetic factors of interspecific reproductive incompatibility are under-investigated. Here, we performed an analysis of hybrid female sterility by crossing Drosophila melanogaster females and Drosophila simulans males. Using transcriptomic data analysis and molecular, cellular, and genetic approaches, we analyzed differential gene expression, transposable element (TE) activity, piRNA biogenesis, and functional defects of oogenesis in hybrids. Premature germline stem cell loss was the most prominent defect of oogenesis in hybrid ovaries. Because of the differential expression of genes encoding piRNA pathway components, rhino and deadlock, the functional RDCmel complex in hybrid ovaries was not assembled. However, the activity of the RDCsim complex was maintained in hybrids independent of the genomic origin of piRNA clusters. Despite the identification of a cohort of overexpressed TEs in hybrid ovaries, we found no evidence that their activity can be considered the main cause of hybrid sterility. We revealed a complicated pattern of Vasa protein expression in the hybrid germline, including partial AT-chX piRNA targeting of the vasasim allele and a significant zygotic delay in vasamel expression. We arrived at the conclusion that the hybrid sterility phenotype was caused by intricate multi-locus differences between the species.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Drosophila simulans , RNA, Small Interfering , Animals , Female , Drosophila melanogaster/genetics , Male , Drosophila simulans/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , RNA, Small Interfering/genetics , DNA Transposable Elements/genetics , Ovary/metabolism , Hybridization, Genetic , Oogenesis/genetics , Infertility/genetics , Crosses, Genetic , DEAD-box RNA Helicases
11.
Mol Biol Evol ; 39(7)2022 07 02.
Article in English | MEDLINE | ID: mdl-35731857

ABSTRACT

The popular trap model assumes that the invasions of transposable elements (TEs) in mammals and invertebrates are stopped by piRNAs that emerge after insertion of the TE into a piRNA cluster. It remains, however, still unclear which factors influence the dynamics of TE invasions. The activity of the TE (i.e., transposition rate) is one frequently discussed key factor. Here we take advantage of the temperature-dependent activity of the P-element, a widely studied eukaryotic TE, to test how TE activity affects the dynamics of a TE invasion. We monitored P-element invasion dynamics in experimental Drosophila simulans populations at hot and cold culture conditions. Despite marked differences in transposition rates, the P-element reached very similar copy numbers at both temperatures. The reduction of the insertion rate upon approaching the copy number plateau was accompanied by similar amounts of piRNAs against the P-element at both temperatures. Nevertheless, we also observed fewer P-element insertions in piRNA clusters than expected, which is not compatible with a simple trap model. The ping-pong cycle, which degrades TE transcripts, becomes typically active after the copy number plateaued. We generated a model, with few parameters, that largely captures the observed invasion dynamics. We conclude that the transposition rate has at the most only a minor influence on TE abundance, but other factors, such as paramutations or selection against TE insertions are shaping the TE composition.


Subject(s)
Drosophila melanogaster , Evolution, Molecular , Animals , DNA Transposable Elements/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila simulans/genetics , Mammals/genetics , RNA, Small Interfering/genetics
12.
Chromosome Res ; 30(2-3): 141-150, 2022 09.
Article in English | MEDLINE | ID: mdl-35635636

ABSTRACT

Sex-ratio (SR) meiotic drivers are X-linked selfish genetic elements that promote their own transmission by preventing the production of Y-bearing sperm, which usually lowers male fertility. The spread of SR drivers in populations is expected to trigger the evolution of unlinked drive suppressors, a theoretically predicted co-evolution that has been observed in nature. Once completely suppressed, the drivers are expected either to decline if they still affect the fitness of their carriers, or to evolve randomly and possibly get fixed if the suppressors eliminate their deleterious effects. To explore this issue, we used the Paris sex-ratio system of Drosophila simulans in which drive results from the joint effect of two elements on the X chromosome: a segmental duplication and a deficient allele of the HP1D2 gene. We set up six experimental populations starting with 2/3 of X chromosomes carrying both elements (XSR) in a fully suppressing background. We let them evolve independently during almost a hundred generations under strong sexual competition, a condition known to cause the rapid disappearance of unsuppressed Paris XSR in previous experimental populations. In our study, the fate of XSR chromosomes varied among populations, from extinction to their maintenance at a frequency close to the starting one. While the reasons for these variable outcomes are still to be explored, our results show that complete suppression can prevent the demise of an otherwise deleterious XSR chromosome, turning a genetic conflict into cooperation between unlinked loci. Observations in natural populations suggest a contrasting fate of the two elements: disappearance of the duplication and maintenance of deficient HP1D2 alleles.


Subject(s)
Drosophila simulans , Drosophila , Animals , Drosophila/genetics , Drosophila simulans/genetics , Evolution, Molecular , Male , Meiosis , Semen , X Chromosome/genetics
13.
PLoS Genet ; 16(6): e1008861, 2020 06.
Article in English | MEDLINE | ID: mdl-32525870

ABSTRACT

In metazoan germlines, the piRNA pathway acts as a genomic immune system, employing small RNA-mediated silencing to defend host DNA from the harmful effects of transposable elements (TEs). Expression of genomic TEs is proposed to initiate self regulation by increasing the production of repressive piRNAs, thereby "adapting" piRNA-mediated control to the most active TE families. Surprisingly, however, piRNA pathway proteins, which execute piRNA biogenesis and enforce silencing of targeted sequences, evolve rapidly and adaptively in animals. If TE silencing is ensured through piRNA biogenesis, what necessitates changes in piRNA pathway proteins? Here we used interspecific complementation to test for functional differences between Drosophila melanogaster and D. simulans alleles of three adaptively evolving piRNA pathway proteins: Armitage, Aubergine and Spindle-E. In contrast to piRNA-mediated transcriptional regulators examined in previous studies, these three proteins have cytoplasmic functions in piRNA maturation and post-transcriptional silencing. Across all three proteins we observed interspecific divergence in the regulation of only a handful of TE families, which were more robustly silenced by the heterospecific piRNA pathway protein. This unexpected result suggests that unlike transcriptional regulators, positive selection has not acted on cytoplasmic piRNA effector proteins to enhance their function in TE repression. Rather, TEs may evolve to "escape" silencing by host proteins. We further discovered that D. simulans alleles of aub and armi exhibit enhanced off-target effects on host transcripts in a D. melanogaster background, as well as modest reductions in the efficiency of piRNA biogenesis, suggesting that promiscuous binding of D. simulans Aub and Armi proteins to host transcripts reduces their participation in piRNA production. Avoidance of genomic auto-immunity may therefore be a critical target of selection. Our observations suggest that piRNA effector proteins are subject to an evolutionary trade-off between defending the host genome from the harmful effect of TEs while also minimizing collateral damage to host genes.


Subject(s)
Autoimmunity/genetics , DNA Transposable Elements/immunology , Drosophila simulans/genetics , Evolution, Molecular , Genome, Insect/immunology , RNA, Small Interfering/biosynthesis , Alleles , Animals , Animals, Genetically Modified , Cytoplasm/genetics , Cytoplasm/metabolism , DNA Transposable Elements/genetics , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Drosophila melanogaster/metabolism , Drosophila simulans/metabolism , Female , Gene Expression Regulation/immunology , Genome, Insect/genetics , Male , Mutation , RNA Interference/immunology
14.
Mol Biol (Mosk) ; 57(2): 384, 2023.
Article in Russian | MEDLINE | ID: mdl-37000666

ABSTRACT

Cases of horizontal transfer of transposable elements (TEs) between species are known for the Drosophilidae family. In the middle of the last century, the case of horizontal transfer of the P-element from the Drosophila willistoni to the D. melanogaster was described. A novel P-element invasion into the D. simulans genome from D. melanogaster occurred approximately 10 years ago. Currently, the P-element has spread across all D. melanogaster population and 30% of D. simulans populations in Europe, Africa and America. In this paper, we investigated the presence of the P-element in D. simulans lines caught in different years in three Asian populations (Tashkent, Nalchik and Sakhalin Island). We also examined the physiological characteristics (cytotype, lifespan, fecundity and locomotor activity) of D. simulans lines with and without the P-element to determine the significance of this new mobile element in the genome. The P-element was found in lines isolated from nature after 2012. The number of P-element copies per genome (two-to-three dozen according to fluorescence in situ hybridization data) was greater than in the American and comparable to the African populations. There were signs of intraspecific hybrid dysgenesis for some pairs of lines. However, in general the presence of the P-element did not adversely affect the physiological characteristics. Either adaptation to the new TE occurs very quickly, or the rate of movement of the P-element is so insignificant that its appearance in the genome remains unnoticed.


Subject(s)
Drosophila melanogaster , Drosophila simulans , Animals , Drosophila melanogaster/genetics , Drosophila simulans/genetics , In Situ Hybridization, Fluorescence , Drosophila/genetics , DNA Transposable Elements/genetics
15.
Mol Biol Evol ; 38(2): 437-448, 2021 01 23.
Article in English | MEDLINE | ID: mdl-32931587

ABSTRACT

In the last 240,000 years, males of the Drosophila simulans species clade have evolved striking differences in the morphology of their epandrial posterior lobes and claspers (surstyli). These appendages are used for grasping the female during mating and so their divergence is most likely driven by sexual selection. Mapping studies indicate a highly polygenic and generally additive genetic basis for these morphological differences. However, we have limited understanding of the gene regulatory networks that control the development of genital structures and how they evolved to result in this rapid phenotypic diversification. Here, we used new D. simulans/D. mauritiana introgression lines on chromosome arm 3L to generate higher resolution maps of posterior lobe and clasper differences between these species. We then carried out RNA-seq on the developing genitalia of both species to identify the expressed genes and those that are differentially expressed between the two species. This allowed us to test the function of expressed positional candidates during genital development in D. melanogaster. We identified several new genes involved in the development and possibly the evolution of these genital structures, including the transcription factors Hairy and Grunge. Furthermore, we discovered that during clasper development Hairy negatively regulates tartan (trn), a gene known to contribute to divergence in clasper morphology. Taken together, our results provide new insights into the regulation of genital development and how this has evolved between species.


Subject(s)
Biological Evolution , Drosophila simulans/genetics , Animals , Drosophila simulans/anatomy & histology , Drosophila simulans/growth & development , Drosophila simulans/metabolism , Genitalia, Male/anatomy & histology , Genitalia, Male/growth & development , Genitalia, Male/metabolism , Male
16.
PLoS Biol ; 17(2): e3000128, 2019 02.
Article in English | MEDLINE | ID: mdl-30716062

ABSTRACT

The genetic architecture of adaptive traits is of key importance to predict evolutionary responses. Most adaptive traits are polygenic-i.e., result from selection on a large number of genetic loci-but most molecularly characterized traits have a simple genetic basis. This discrepancy is best explained by the difficulty in detecting small allele frequency changes (AFCs) across many contributing loci. To resolve this, we use laboratory natural selection to detect signatures for selective sweeps and polygenic adaptation. We exposed 10 replicates of a Drosophila simulans population to a new temperature regime and uncovered a polygenic architecture of an adaptive trait with high genetic redundancy among beneficial alleles. We observed convergent responses for several phenotypes-e.g., fitness, metabolic rate, and fat content-and a strong polygenic response (99 selected alleles; mean s = 0.059). However, each of these selected alleles increased in frequency only in a subset of the evolving replicates. We discerned different evolutionary paradigms based on the heterogeneous genomic patterns among replicates. Redundancy and quantitative trait (QT) paradigms fitted the experimental data better than simulations assuming independent selective sweeps. Our results show that natural D. simulans populations harbor a vast reservoir of adaptive variation facilitating rapid evolutionary responses using multiple alternative genetic pathways converging at a new phenotypic optimum. This key property of beneficial alleles requires the modification of testing strategies in natural populations beyond the search for convergence on the molecular level.


Subject(s)
Adaptation, Physiological/genetics , Drosophila simulans/genetics , Drosophila simulans/physiology , Multifactorial Inheritance/genetics , Alleles , Animals , Biological Evolution , Genetic Fitness , Genetic Heterogeneity , Genome, Insect , Haplotypes/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
17.
PLoS Biol ; 17(4): e3000244, 2019 04.
Article in English | MEDLINE | ID: mdl-31022179

ABSTRACT

The evolution of sexual dimorphism is constrained by a shared genome, leading to 'sexual antagonism', in which different alleles at given loci are favoured by selection in males and females. Despite its wide taxonomic incidence, we know little about the identity, genomic location, and evolutionary dynamics of antagonistic genetic variants. To address these deficits, we use sex-specific fitness data from 202 fully sequenced hemiclonal Drosophila melanogaster fly lines to perform a genome-wide association study (GWAS) of sexual antagonism. We identify approximately 230 chromosomal clusters of candidate antagonistic single nucleotide polymorphisms (SNPs). In contradiction to classic theory, we find no clear evidence that the X chromosome is a hot spot for sexually antagonistic variation. Characterising antagonistic SNPs functionally, we find a large excess of missense variants but little enrichment in terms of gene function. We also assess the evolutionary persistence of antagonistic variants by examining extant polymorphism in wild D. melanogaster populations and closely related species. Remarkably, antagonistic variants are associated with multiple signatures of balancing selection across the D. melanogaster distribution range and in their sister species D. simulans, indicating widespread and evolutionarily persistent (about 1 million years) genomic constraints on the evolution of sexual dimorphism. Based on our results, we propose that antagonistic variation accumulates because of constraints on the resolution of sexual conflict over protein coding sequences, thus contributing to the long-term maintenance of heritable fitness variation.


Subject(s)
Reproduction/genetics , Sex Characteristics , Alleles , Animals , Biological Evolution , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila simulans/genetics , Evolution, Molecular , Female , Genetic Fitness/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Male , Phenotype , Polymorphism, Single Nucleotide/genetics , Selection, Genetic/genetics
18.
Proc Natl Acad Sci U S A ; 116(24): 11839-11844, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31127048

ABSTRACT

Biodiversity refugia formed by unique features of the Mediterranean arid landscape, such as the dramatic ecological contrast of "Evolution Canyon," provide a natural laboratory in which local adaptations to divergent microclimate conditions can be investigated. Significant insights have been provided by studies of Drosophila melanogaster diversifying along the thermal gradient in Evolution Canyon, but a comparative framework to survey adaptive convergence across sister species at the site has been lacking. To fill this void, we present an analysis of genomic polymorphism and evolutionary divergence of Drosophila simulans, a close relative of Drosophila melanogaster with which it co-occurs on both slopes of the canyon. Our results show even deeper interslope divergence in D. simulans than in D. melanogaster, with extensive signatures of selective sweeps present in flies from both slopes but enhanced in the population from the hotter and drier south-facing slope. Interslope divergence was enriched for genes related to electrochemical balance and transmembrane transport, likely in response to increased selection for dehydration resistance on the hotter slope. Both species shared genomic regions that underwent major selective sweeps, but the overall level of adaptive convergence was low, demonstrating no shortage of alternative genomic solutions to cope with the challenges of the microclimate contrast. Mobile elements were a major source of genetic polymorphism and divergence, affecting all parts of the genome, including coding sequences of mating behavior-related genes.


Subject(s)
Behavior, Animal/physiology , Drosophila simulans/genetics , Genome/genetics , Animals , Biodiversity , Drosophila melanogaster/genetics , Evolution, Molecular , Genomics/methods , Israel , Membrane Proteins/genetics , Polymorphism, Genetic/genetics
19.
Mol Biol Evol ; 37(8): 2241-2256, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32191304

ABSTRACT

Satellite DNAs (satDNAs) are among the most dynamically evolving components of eukaryotic genomes and play important roles in genome regulation, genome evolution, and speciation. Despite their abundance and functional impact, we know little about the evolutionary dynamics and molecular mechanisms that shape satDNA distributions in genomes. Here, we use high-quality genome assemblies to study the evolutionary dynamics of two complex satDNAs, Rsp-like and 1.688 g/cm3, in Drosophila melanogaster and its three nearest relatives in the simulans clade. We show that large blocks of these repeats are highly dynamic in the heterochromatin, where their genomic location varies across species. We discovered that small blocks of satDNA that are abundant in X chromosome euchromatin are similarly dynamic, with repeats changing in abundance, location, and composition among species. We detail the proliferation of a rare satellite (Rsp-like) across the X chromosome in D. simulans and D. mauritiana. Rsp-like spread by inserting into existing clusters of the older, more abundant 1.688 satellite, in events likely facilitated by microhomology-mediated repair pathways. We show that Rsp-like is abundant on extrachromosomal circular DNA in D. simulans, which may have contributed to its dynamic evolution. Intralocus satDNA expansions via unequal exchange and the movement of higher order repeats also contribute to the fluidity of the repeat landscape. We find evidence that euchromatic satDNA repeats experience cycles of proliferation and diversification somewhat analogous to bursts of transposable element proliferation. Our study lays a foundation for mechanistic studies of satDNA proliferation and the functional and evolutionary consequences of satDNA movement.


Subject(s)
DNA, Satellite/genetics , Drosophila melanogaster/genetics , Drosophila simulans/genetics , Evolution, Molecular , X Chromosome , Animals , Euchromatin
20.
Mol Biol Evol ; 37(3): 864-880, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31774527

ABSTRACT

The behaviors of closely related species can be remarkably different, and these differences have important ecological and evolutionary consequences. Although the recent boom in genotype-phenotype studies has led to a greater understanding of the genetic architecture and evolution of a variety of traits, studies identifying the genetic basis of behaviors are, comparatively, still lacking. This is likely because they are complex and environmentally sensitive phenotypes, making them difficult to measure reliably for association studies. The Drosophila species complex holds promise for addressing these challenges, as the behaviors of closely related species can be readily assayed in a common environment. Here, we investigate the genetic basis of an evolved behavioral difference, pupation site choice, between Drosophila melanogaster and D. simulans. In this study, we demonstrate a significant contribution of the X chromosome to the difference in pupation site choice behavior between these species. Using a panel of X-chromosome deficiencies, we screened the majority of the X chromosome for causal loci and identified two regions associated with this X-effect. We then collect gene disruption and RNAi data supporting a single gene that affects pupation behavior within each region: Fas2 and tilB. Finally, we show that differences in tilB expression correlate with the differences in pupation site choice behavior between species. This evidence associating two genes with differences in a complex, environmentally sensitive behavior represents the first step toward a functional and evolutionary understanding of this behavioral divergence.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Choice Behavior/physiology , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Drosophila simulans/physiology , Animals , Behavior, Animal/physiology , Biological Evolution , Drosophila melanogaster/genetics , Drosophila simulans/genetics , Female , Gene Expression Regulation , Male , Phenotype , X Chromosome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL