Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.616
Filter
1.
Cell ; 186(26): 5859-5875.e24, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38052213

ABSTRACT

Embryogenesis necessitates harmonious coordination between embryonic and extraembryonic tissues. Although stem cells of both embryonic and extraembryonic origins have been generated, they are grown in different culture conditions. In this study, utilizing a unified culture condition that activates the FGF, TGF-ß, and WNT pathways, we have successfully derived embryonic stem cells (FTW-ESCs), extraembryonic endoderm stem cells (FTW-XENs), and trophoblast stem cells (FTW-TSCs) from the three foundational tissues of mouse and cynomolgus monkey (Macaca fascicularis) blastocysts. This approach facilitates the co-culture of embryonic and extraembryonic stem cells, revealing a growth inhibition effect exerted by extraembryonic endoderm cells on pluripotent cells, partially through extracellular matrix signaling. Additionally, our cross-species analysis identified both shared and unique transcription factors and pathways regulating FTW-XENs. The embryonic and extraembryonic stem cell co-culture strategy offers promising avenues for developing more faithful embryo models and devising more developmentally pertinent differentiation protocols.


Subject(s)
Embryo, Mammalian , Embryonic Stem Cells , Animals , Coculture Techniques , Macaca fascicularis , Embryonic Stem Cells/metabolism , Cell Differentiation , Endoderm/metabolism , Cell Lineage
2.
Cell ; 185(5): 777-793.e20, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35196500

ABSTRACT

In development, lineage segregation is coordinated in time and space. An important example is the mammalian inner cell mass, in which the primitive endoderm (PrE, founder of the yolk sac) physically segregates from the epiblast (EPI, founder of the fetus). While the molecular requirements have been well studied, the physical mechanisms determining spatial segregation between EPI and PrE remain elusive. Here, we investigate the mechanical basis of EPI and PrE sorting. We find that rather than the differences in static cell surface mechanical parameters as in classical sorting models, it is the differences in surface fluctuations that robustly ensure physical lineage sorting. These differential surface fluctuations systematically correlate with differential cellular fluidity, which we propose together constitute a non-equilibrium sorting mechanism for EPI and PrE lineages. By combining experiments and modeling, we identify cell surface dynamics as a key factor orchestrating the correct spatial segregation of the founder embryonic lineages.


Subject(s)
Blastocyst , Embryo, Mammalian , Endoderm , Animals , Blastocyst/metabolism , Cell Differentiation/physiology , Cell Lineage/physiology , Cell Membrane/metabolism , Embryo, Mammalian/metabolism , Embryonic Development , Endoderm/metabolism , Mammals , Mice , Protein Transport
3.
Cell ; 177(4): 910-924.e22, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30982595

ABSTRACT

The assembly of organized colonies is the earliest manifestation in the derivation or induction of pluripotency in vitro. However, the necessity and origin of this assemblance is unknown. Here, we identify human pluripotent founder cells (hPFCs) that initiate, as well as preserve and establish, pluripotent stem cell (PSC) cultures. PFCs are marked by N-cadherin expression (NCAD+) and reside exclusively at the colony boundary of primate PSCs. As demonstrated by functional analysis, hPFCs harbor the clonogenic capacity of PSC cultures and emerge prior to commitment events or phenotypes associated with pluripotent reprogramming. Comparative single-cell analysis with pre- and post-implantation primate embryos revealed hPFCs share hallmark properties with primitive endoderm (PrE) and can be regulated by non-canonical Wnt signaling. Uniquely informed by primate embryo organization in vivo, our study defines a subset of founder cells critical to the establishment pluripotent state.


Subject(s)
Antigens, CD/metabolism , Cadherins/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Cell Differentiation , Cell Lineage , Embryonic Development , Embryonic Stem Cells/metabolism , Endoderm/metabolism , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Single-Cell Analysis , Wnt Signaling Pathway
4.
Cell ; 163(7): 1678-91, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26686652

ABSTRACT

Somatic cells can be reprogrammed into pluripotent stem cells (PSCs) by using pure chemicals, providing a different paradigm to study somatic reprogramming. However, the cell fate dynamics and molecular events that occur during the chemical reprogramming process remain unclear. We now show that the chemical reprogramming process requires the early formation of extra-embryonic endoderm (XEN)-like cells and a late transition from XEN-like cells to chemically-induced (Ci)PSCs, a unique route that fundamentally differs from the pathway of transcription factor-induced reprogramming. Moreover, precise manipulation of the cell fate transition in a step-wise manner through the XEN-like state allows us to identify small-molecule boosters and establish a robust chemical reprogramming system with a yield up to 1,000-fold greater than that of the previously reported protocol. These findings demonstrate that chemical reprogramming is a promising approach to manipulate cell fates.


Subject(s)
Cellular Reprogramming Techniques , Pluripotent Stem Cells/cytology , Animals , Drug Discovery , Embryo, Mammalian/cytology , Endoderm/cytology , Endoderm/metabolism , Fibroblasts/metabolism , Gene Expression , Mice , Pluripotent Stem Cells/drug effects
5.
Nature ; 627(8004): 636-645, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418875

ABSTRACT

A hallmark of cancer is the avoidance of immune destruction. This process has been primarily investigated in locally advanced or metastatic cancer1-3; however, much less is known about how pre-malignant or early invasive tumours evade immune detection. Here, to understand this process in early colorectal cancers (CRCs), we investigated how naive colon cancer organoids that were engineered in vitro to harbour Apc-null, KrasG12D and Trp53-null (AKP) mutations adapted to the in vivo native colonic environment. Comprehensive transcriptomic and chromatin analyses revealed that the endoderm-specifying transcription factor SOX17 became strongly upregulated in vivo. Notably, whereas SOX17 loss did not affect AKP organoid propagation in vitro, its loss markedly reduced the ability of AKP tumours to persist in vivo. The small fraction of SOX17-null tumours that grew displayed notable interferon-γ (IFNγ)-producing effector-like CD8+ T cell infiltrates in contrast to the immune-suppressive microenvironment in wild-type counterparts. Mechanistically, in both endogenous Apc-null pre-malignant adenomas and transplanted organoid-derived AKP CRCs, SOX17 suppresses the ability of tumour cells to sense and respond to IFNγ, preventing anti-tumour T cell responses. Finally, SOX17 engages a fetal intestinal programme that drives differentiation away from LGR5+ tumour cells to produce immune-evasive LGR5- tumour cells with lower expression of major histocompatibility complex class I (MHC-I). We propose that SOX17 is a transcription factor that is engaged during the early steps of colon cancer to orchestrate an immune-evasive programme that permits CRC initiation and progression.


Subject(s)
Adenoma , Colorectal Neoplasms , Immune Evasion , SOXF Transcription Factors , Animals , Humans , Mice , Adenoma/immunology , Adenoma/pathology , CD8-Positive T-Lymphocytes/immunology , Chromatin/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Gene Expression Profiling , Interferon-gamma/immunology , Organoids/immunology , Organoids/pathology , SOXF Transcription Factors/metabolism , Tumor Microenvironment/immunology , Mutation , Endoderm/metabolism , Disease Progression
6.
Cell ; 152(5): 1008-20, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23452850

ABSTRACT

Metazoan evolution involves increasing protein domain complexity, but how this relates to control of biological decisions remains uncertain. The Ras guanine nucleotide exchange factor (RasGEF) Sos1 and its adaptor Grb2 are multidomain proteins that couple fibroblast growth factor (FGF) signaling to activation of the Ras-Erk pathway during mammalian development and drive embryonic stem cells toward the primitive endoderm (PrE) lineage. We show that the ability of Sos1/Grb2 to appropriately regulate pluripotency and differentiation factors and to initiate PrE development requires collective binding of multiple Sos1/Grb2 domains to their protein and phospholipid ligands. This provides a cooperative system that only allows lineage commitment when all ligand-binding domains are occupied. Furthermore, our results indicate that the interaction domains of Sos1 and Grb2 have evolved so as to bind ligands not with maximal strength but with specificities and affinities that maintain cooperativity. This optimized system ensures that PrE lineage commitment occurs in a timely and selective manner during embryogenesis.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Stem Cells/metabolism , GRB2 Adaptor Protein/metabolism , SOS1 Protein/metabolism , Amino Acid Sequence , Animals , Cell Lineage , Endoderm/metabolism , Eukaryota/genetics , Eukaryota/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Alignment , ras Guanine Nucleotide Exchange Factors/metabolism
7.
Development ; 151(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38078543

ABSTRACT

The kinase PAR-4/LKB1 is a major regulator of intestinal homeostasis, which prevents polyposis in humans. Moreover, its ectopic activation is sufficient to induce polarization and formation of microvilli-like structures in intestinal cell lines. Here, we use Caenorhabditis elegans to examine the role of PAR-4 during intestinal development in vivo. We show that it is not required to establish enterocyte polarity and plays only a minor role in brush border formation. By contrast, par-4 mutants display severe deformations of the intestinal lumen as well as supernumerary intestinal cells, thereby revealing a previously unappreciated function of PAR-4 in preventing intestinal hyperplasia. The presence of supernumerary enterocytes in par-4 mutants is not due to excessive cell proliferation, but rather to the abnormal expression of the intestinal cell fate factors end-1 and elt-2 outside the E lineage. Notably, par-4 mutants also display reduced expression of end-1 and elt-2 inside the E lineage. Our work thereby unveils an essential and dual role of PAR-4, which both restricts intestinal specification to the E lineage and ensures its robust differentiation.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/metabolism , Cell Polarity , Endoderm/metabolism , Hyperplasia/metabolism , Intestines , Embryo, Nonmammalian/metabolism
8.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38563517

ABSTRACT

The lineage decision that generates the epiblast and primitive endoderm from the inner cell mass (ICM) is a paradigm for cell fate specification. Recent mathematics has formalized Waddington's landscape metaphor and proven that lineage decisions in detailed gene network models must conform to a small list of low-dimensional stereotypic changes called bifurcations. The most plausible bifurcation for the ICM is the so-called heteroclinic flip that we define and elaborate here. Our re-analysis of recent data suggests that there is sufficient cell movement in the ICM so the FGF signal, which drives the lineage decision, can be treated as spatially uniform. We thus extend the bifurcation model for a single cell to the entire ICM by means of a self-consistently defined time-dependent FGF signal. This model is consistent with available data and we propose additional dynamic experiments to test it further. This demonstrates that simplified, quantitative and intuitively transparent descriptions are possible when attention is shifted from specific genes to lineages. The flip bifurcation is a very plausible model for any situation where the embryo needs control over the relative proportions of two fates by a morphogen feedback.


Subject(s)
Blastocyst , Cell Differentiation , Cell Lineage , Models, Biological , Animals , Mice , Blastocyst/metabolism , Blastocyst/cytology , Signal Transduction , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Endoderm/cytology , Endoderm/metabolism , Germ Layers/cytology , Germ Layers/metabolism
9.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38752427

ABSTRACT

Bone morphogenic protein (BMP) signaling plays an essential and highly conserved role in embryo axial patterning in animal species. However, in mammalian embryos, which develop inside the mother, early development includes a preimplantation stage, which does not occur in externally developing embryos. During preimplantation, the epiblast is segregated from extra-embryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling is imprecisely defined in mouse early embryos. Here, we show that, in contrast to previous reports, BMP signaling (SMAD1/5/9 phosphorylation) is not detectable until implantation when it is detected in the primitive endoderm - an extra-embryonic lineage. Moreover, preimplantation development appears to be normal following deletion of maternal and zygotic Smad4, an essential effector of canonical BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extra-embryonic cell types drives epiblast morphogenesis postimplantation.


Subject(s)
Embryo Implantation , Germ Layers , Morphogenesis , Signal Transduction , Smad4 Protein , Animals , Smad4 Protein/metabolism , Smad4 Protein/genetics , Germ Layers/metabolism , Embryo Implantation/genetics , Mice , Morphogenesis/genetics , Female , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Gene Expression Regulation, Developmental , Embryonic Development/genetics , Mice, Knockout , Embryo, Mammalian/metabolism , Endoderm/metabolism , Endoderm/embryology , Blastocyst/metabolism , Blastocyst/cytology
10.
Development ; 150(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37840469

ABSTRACT

Although mechanical and biochemical descriptions of development are each essential, integration of upstream morphogenic cues with downstream tissue mechanics remains understudied during vertebrate morphogenesis. Here, we developed a two-dimensional chemo-mechanical model to investigate how mechanical properties of the endoderm and transport properties of fibroblast growth factor (FGF) regulate avian hindgut morphogenesis in a coordinated manner. Posterior endoderm cells convert a gradient of FGF ligands into a contractile force gradient, leading to a force imbalance that drives collective cell movements that elongate the forming hindgut tube. We formulated a 2D reaction-diffusion-advection model describing the formation of an FGF protein gradient as a result of posterior displacement of cells transcribing unstable Fgf8 mRNA during axis elongation, coupled with translation, diffusion and degradation of FGF protein. The endoderm was modeled as an active viscous fluid that generates contractile stresses in proportion to FGF concentration. With parameter values constrained by experimental data, the model replicates key aspects of hindgut morphogenesis, suggests that graded isotropic contraction is sufficient to generate large anisotropic cell movements, and provides new insight into how chemo-mechanical coupling across the mesoderm and endoderm coordinates hindgut elongation with axis elongation.


Subject(s)
Digestive System , Endoderm , Animals , Endoderm/metabolism , Digestive System/metabolism , Morphogenesis/genetics , Fibroblast Growth Factors/metabolism , Vertebrates/metabolism , Mesoderm/metabolism
11.
Development ; 150(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37191061

ABSTRACT

Thyroid tissue, the site of de novo thyroid hormone biosynthesis, is derived from ventral pharyngeal endoderm and defects in morphogenesis are a predominant cause of congenital thyroid diseases. The first molecularly recognizable step of thyroid development is the specification of thyroid precursors in anterior foregut endoderm. Recent studies have identified crucial roles of FGF and BMP signaling in thyroid specification, but the interplay between signaling cues and thyroid transcription factors remained elusive. By analyzing Pax2a and Nkx2.4b expression dynamics in relation to endodermal FGF and BMP signaling activities in zebrafish embryos, we identified a Pax2a-expressing thyroid progenitor population that shows enhanced FGF signaling but lacks Nkx2.4b expression and BMP signaling. Concurrent with upregulated BMP signaling, a subpopulation of these progenitors subsequently differentiates into lineage-committed thyroid precursors co-expressing Pax2a and Nkx2.4b. Timed manipulation of FGF/BMP activities suggests a model in which FGF signaling primarily regulates Pax2a expression, whereas BMP signaling regulates both Pax2a and Nkx2.4b expression. Our observation of similar expression dynamics of Pax8 and Nkx2-1 in mouse embryos suggests that this refined model of thyroid cell specification is evolutionarily conserved in mammals.


Subject(s)
Fibroblast Growth Factors , Zebrafish , Animals , Mice , Zebrafish/genetics , Zebrafish/metabolism , Fibroblast Growth Factors/metabolism , Thyroid Gland , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Signal Transduction/genetics , Gene Expression Regulation, Developmental , Endoderm/metabolism , Mammals/metabolism
12.
Nucleic Acids Res ; 52(9): 4935-4949, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38421638

ABSTRACT

TGF-ß signaling family plays an essential role to regulate fate decisions in pluripotency and lineage specification. How the action of TGF-ß family signaling is intrinsically executed remains not fully elucidated. Here, we show that HBO1, a MYST histone acetyltransferase (HAT) is an essential cell intrinsic determinant for TGF-ß signaling in human embryonic stem cells (hESCs). HBO1-/- hESCs fail to response to TGF-ß signaling to maintain pluripotency and spontaneously differentiate into neuroectoderm. Moreover, HBO1 deficient hESCs show complete defect in mesendoderm specification in BMP4-triggered gastruloids or teratomas. Molecularly, HBO1 interacts with SMAD4 and co-binds the open chromatin labeled by H3K14ac and H3K4me3 in undifferentiated hESCs. Upon differentiation, HBO1/SMAD4 co-bind and maintain the mesoderm genes in BMP4-triggered mesoderm cells while lose chromatin occupancy in neural cells induced by dual-SMAD inhibition. Our data reveal an essential role of HBO1, a chromatin factor to determine the action of SMAD in both human pluripotency and mesendoderm specification.


Subject(s)
Cell Differentiation , Histone Acetyltransferases , Mesoderm , Signal Transduction , Smad4 Protein , Humans , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/genetics , Cell Line , Chromatin/metabolism , Endoderm/cytology , Endoderm/metabolism , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Histones/metabolism , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Mesoderm/metabolism , Mesoderm/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Smad4 Protein/metabolism , Smad4 Protein/genetics , Transforming Growth Factor beta/metabolism
13.
Proc Natl Acad Sci U S A ; 120(44): e2311946120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37871215

ABSTRACT

The T-box transcription factor Eomesodermin (Eomes), also known as Tbr2, plays essential roles in the early mouse embryo. Loss-of-function mutant embryos arrest at implantation due to Eomes requirements in the trophectoderm cell lineage. Slightly later, expression in the visceral endoderm promotes anterior visceral endoderm formation and anterior-posterior axis specification. Early induction in the epiblast beginning at day 6 is necessary for nascent mesoderm to undergo epithelial to mesenchymal transition (EMT). Eomes acts in a temporally and spatially restricted manner to sequentially specify the yolk sac haemogenic endothelium, cardiac mesoderm, definitive endoderm, and axial mesoderm progenitors during gastrulation. Little is known about the underlying molecular mechanisms governing Eomes actions during the formation of these distinct progenitor cell populations. Here, we introduced a degron-tag and mCherry reporter sequence into the Eomes locus. Our experiments analyzing homozygously tagged embryonic stem cells and embryos demonstrate that the degron-tagged Eomes protein is fully functional. dTAG (degradation fusion tag) treatment in vitro results in rapid protein degradation and recapitulates the Eomes-null phenotype. However in utero administration of dTAG resulted in variable and lineage-specific degradation, likely reflecting diverse cell type-specific Eomes expression dynamics. Finally, we demonstrate that Eomes protein rapidly recovers following dTAG wash-out in vitro. The ability to temporally manipulate Eomes protein expression in combination with cell marking by the mCherry-reporter offers a powerful tool for dissecting Eomes-dependent functional roles in these diverse cell types in the early embryo.


Subject(s)
Epithelial-Mesenchymal Transition , T-Box Domain Proteins , Mice , Animals , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Germ Layers/metabolism , Embryo, Mammalian/metabolism , Mesoderm/metabolism , Endoderm/metabolism , Gene Expression Regulation, Developmental
14.
Genes Dev ; 32(21-22): 1430-1442, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30366903

ABSTRACT

After acquiring competence for selected cell fates, embryonic primordia may remain plastic for variable periods before tissue identity is irrevocably determined (commitment). We investigated the chromatin basis for these developmental milestones in mouse endoderm, a tissue with recognizable rostro-caudal patterning and transcription factor (TF)-dependent interim plasticity. Foregut-specific enhancers are as accessible and active in early midgut as in foregut endoderm, and intestinal enhancers and identity are established only after ectopic cis-regulatory elements are decommissioned. Depletion of the intestinal TF CDX2 before this cis element transition stabilizes foregut enhancers, reinforces ectopic transcriptional programs, and hence imposes foregut identities on the midgut. Later in development, as the window of chromatin plasticity elapses, CDX2 depletion weakens intestinal, without strengthening foregut, enhancers. Thus, midgut endoderm is primed for heterologous cell fates, and TFs act on a background of shifting chromatin access to determine intestinal at the expense of foregut identity. Similar principles likely govern other fate commitments.


Subject(s)
Endoderm/metabolism , Enhancer Elements, Genetic , Intestinal Mucosa/metabolism , Intestines/embryology , Transcription, Genetic , Animals , CDX2 Transcription Factor/genetics , CDX2 Transcription Factor/metabolism , Chromatin/metabolism , Endoderm/embryology , Intestines/anatomy & histology , Mice
15.
Development ; 149(20)2022 10 15.
Article in English | MEDLINE | ID: mdl-35899604

ABSTRACT

Directed differentiation of pluripotent stem cells (PSCs) is a powerful model system for deconstructing embryonic development. Although mice are the most advanced mammalian model system for genetic studies of embryonic development, state-of-the-art protocols for directed differentiation of mouse PSCs into defined lineages require additional steps and generates target cell types with lower purity than analogous protocols for human PSCs, limiting their application as models for mechanistic studies of development. Here, we examine the potential of mouse epiblast stem cells cultured in media containing Wnt pathway inhibitors as a starting point for directed differentiation. As a proof of concept, we focused our efforts on two specific cell/tissue types that have proven difficult to generate efficiently and reproducibly from mouse embryonic stem cells: definitive endoderm and neural organoids. We present new protocols for rapid generation of nearly pure definitive endoderm and forebrain-patterned neural organoids that model the development of prethalamic and hippocampal neurons. These differentiation models present new possibilities for combining mouse genetic tools with in vitro differentiation to characterize molecular and cellular mechanisms of embryonic development.


Subject(s)
Endoderm , Pluripotent Stem Cells , Animals , Cell Differentiation/physiology , Endoderm/metabolism , Female , Germ Layers , Humans , Mammals , Mice , Organoids , Pregnancy , Prosencephalon
16.
Development ; 149(20)2022 10 15.
Article in English | MEDLINE | ID: mdl-36102628

ABSTRACT

The cellular microenvironment, together with intrinsic regulators, shapes stem cell identity and differentiation capacity. Mammalian early embryos are exposed to hypoxia in vivo and appear to benefit from hypoxic culture in vitro. Yet, how hypoxia influences stem cell transcriptional networks and lineage choices remain poorly understood. Here, we investigated the molecular effects of acute and prolonged hypoxia on embryonic and extra-embryonic stem cells as well as the functional impact on differentiation potential. We find a temporal and cell type-specific transcriptional response including an early primitive streak signature in hypoxic embryonic stem cells mediated by HIF1α. Using a 3D gastruloid differentiation model, we show that hypoxia-induced T expression enables symmetry breaking and axial elongation in the absence of exogenous WNT activation. When combined with exogenous WNT activation, hypoxia enhances lineage representation in gastruloids, as demonstrated by highly enriched signatures of gut endoderm, notochord, neuromesodermal progenitors and somites. Our findings directly link the microenvironment to stem cell function and provide a rationale supportive of applying physiological conditions in models of embryo development.


Subject(s)
Endoderm , Primitive Streak , Animals , Cell Differentiation/physiology , Embryonic Stem Cells , Endoderm/metabolism , Hypoxia/metabolism , Mammals
17.
Development ; 149(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-35976266

ABSTRACT

Mouse embryonic stem cells have an inherent propensity to explore gene regulatory states associated with either self-renewal or differentiation. This property depends on ERK, which downregulates pluripotency genes such as Nanog. Here, we aimed at identifying repressive histone modifications that would mark Nanog for inactivation in response to ERK activity. We found that the transcription factor ZFP57, which binds methylated DNA to nucleate heterochromatin, is recruited upstream of Nanog, within a region enriched for histone H3 lysine 9 tri-methylation (H3K9me3). Whereas before differentiation H3K9me3 at Nanog depends on ERK, in somatic cells it becomes independent of ERK. Moreover, the loss of H3K9me3 at Nanog, induced by deleting the region or by knocking out DNA methyltransferases or Zfp57, is associated with reduced heterogeneity of NANOG, delayed commitment into differentiation and impaired ability to acquire a primitive endoderm fate. Hence, a network axis centred on DNA methylation, ZFP57 and H3K9me3 links Nanog regulation to ERK activity for the timely establishment of new cell identities. We suggest that establishment of irreversible H3K9me3 at specific master regulators allows the acquisition of particular cell fates during differentiation.


Subject(s)
Embryonic Stem Cells , Endoderm , Histone Code , Nanog Homeobox Protein/genetics , Animals , Cell Differentiation , Endoderm/metabolism , Genes, Homeobox , Mice , Nanog Homeobox Protein/metabolism
18.
Development ; 149(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35758255

ABSTRACT

The architecture of gene regulatory networks determines the specificity and fidelity of developmental outcomes. We report that the core regulatory circuitry for endoderm development in Caenorhabditis elegans operates through a transcriptional cascade consisting of six sequentially expressed GATA-type factors that act in a recursive series of interlocked feedforward modules. This structure results in sequential redundancy, in which removal of a single factor or multiple alternate factors in the cascade leads to a mild or no effect on gut development, whereas elimination of any two sequential factors invariably causes a strong phenotype. The phenotypic strength is successfully predicted with a computational model based on the timing and levels of transcriptional states. We found that one factor in the middle of the cascade, END-1, which straddles the distinct events of specification and differentiation, functions in both processes. Finally, we reveal roles for key GATA factors in establishing spatial regulatory state domains by repressing other fates, thereby defining boundaries in the digestive tract. Our findings provide a paradigm that could account for the genetic redundancy observed in many developmental regulatory systems.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Endoderm/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Logic , Transcription Factors/metabolism
19.
Development ; 149(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36196618

ABSTRACT

Endoderm specification in Caenorhabditis elegans occurs through a network in which maternally provided SKN-1/Nrf, with additional input from POP-1/TCF, activates the GATA factor cascade MED-1,2→END-1,3→ELT-2,7. Orthologues of the MED, END and ELT-7 factors are found only among nematodes closely related to C. elegans, raising the question of how gut is specified in their absence in more distant species in the genus. We find that the C. angaria, C. portoensis and C. monodelphis orthologues of the GATA factor gene elt-3 are expressed in the early E lineage, just before their elt-2 orthologues. In C. angaria, Can-pop-1(RNAi), Can-elt-3(RNAi) and a Can-elt-3 null mutation result in a penetrant 'gutless' phenotype. Can-pop-1 is necessary for Can-elt-3 activation, showing that it acts upstream. Forced early E lineage expression of Can-elt-3 in C. elegans can direct the expression of a Can-elt-2 transgene and rescue an elt-7 end-1 end-3; elt-2 quadruple mutant strain to viability. Our results demonstrate an ancestral mechanism for gut specification and differentiation in Caenorhabditis involving a simpler POP-1→ELT-3→ELT-2 gene network.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis , Animals , Endoderm/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis/genetics , Caenorhabditis/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Gene Regulatory Networks
20.
Development ; 149(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34908109

ABSTRACT

Development entails patterned emergence of diverse cell types within the embryo. In mammals, cells positioned inside the embryo give rise to the inner cell mass (ICM), which eventually forms the embryo itself. Yet, the molecular basis of how these cells recognise their 'inside' position to instruct their fate is unknown. Here, we show that provision of extracellular matrix (ECM) to isolated embryonic cells induces ICM specification and alters the subsequent spatial arrangement between epiblast (EPI) and primitive endoderm (PrE) cells that emerge within the ICM. Notably, this effect is dependent on integrin ß1 activity and involves apical-to-basal conversion of cell polarity. We demonstrate that ECM-integrin activity is sufficient for 'inside' positional signalling and is required for correct EPI/PrE patterning. Thus, our findings highlight the significance of ECM-integrin adhesion in enabling position sensing by cells to achieve tissue patterning.


Subject(s)
Body Patterning , Ectoderm/metabolism , Endoderm/metabolism , Extracellular Matrix/metabolism , Integrin beta1/metabolism , Signal Transduction , Animals , Cell Differentiation , Cell Polarity , Cells, Cultured , Ectoderm/cytology , Endoderm/cytology , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL