Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.030
Filter
1.
Proc Natl Acad Sci U S A ; 121(13): e2319838121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38513093

ABSTRACT

The evolution of pest resistance to management tools reduces productivity and results in economic losses in agricultural systems. To slow its emergence and spread, monitoring and prevention practices are implemented in resistance management programs. Recent work suggests that genomic approaches can identify signs of emerging resistance to aid in resistance management. Here, we empirically examined the sensitivity of genomic monitoring for resistance management in transgenic Bt crops, a globally important agricultural innovation. Whole genome resequencing of wild North American Helicoverpa zea collected from non-expressing refuge and plants expressing Cry1Ab confirmed that resistance-associated signatures of selection were detectable after a single generation of exposure. Upon demonstrating its sensitivity, we applied genomic monitoring to wild H. zea that survived Vip3A exposure resulting from cross-pollination of refuge plants in seed-blended plots. Refuge seed interplanted with transgenic seed exposed H. zea to sublethal doses of Vip3A protein in corn ears and was associated with allele frequency divergence across the genome. Some of the greatest allele frequency divergence occurred in genomic regions adjacent to a previously described candidate gene for Vip3A resistance. Our work highlights the power of genomic monitoring to sensitively detect heritable changes associated with field exposure to Bt toxins and suggests that seed-blended refuge will likely hasten the evolution of resistance to Vip3A in lepidopteran pests.


Subject(s)
Bacillus thuringiensis , Endotoxins , Animals , Larva/metabolism , Endotoxins/genetics , Endotoxins/metabolism , Bacillus thuringiensis/genetics , Pollination , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Bacterial Proteins/metabolism , Hemolysin Proteins/metabolism , Pest Control, Biological/methods , Insecticide Resistance/genetics , Genomics , Seeds/metabolism , Zea mays/genetics
2.
PLoS Pathog ; 20(1): e1011823, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38236820

ABSTRACT

A variety of coordinated host-cell responses are activated as defense mechanisms against pore-forming toxins (PFTs). Bacillus thuringiensis (Bt) is a worldwide used biopesticide whose efficacy and precise application methods limits its use to replace synthetic pesticides in agricultural settings. Here, we analyzed the intestinal defense mechanisms of two lepidopteran insect pests after intoxication with sublethal dose of Bt PFTs to find out potential functional genes. We show that larval intestinal epithelium was initially damaged by the PFTs and that larval survival was observed after intestinal epithelium regeneration. Further analyses showed that the intestinal regeneration caused by Cry9A protein is regulated through c-Jun NH (2) terminal kinase (JNK) and Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. JAK/STAT signaling regulates intestinal regeneration through proliferation and differentiation of intestinal stem cells to defend three different Bt proteins including Cry9A, Cry1F or Vip3A in both insect pests, Chilo suppressalis and Spodoptera frugiperda. Consequently, a nano-biopesticide was designed to improve pesticidal efficacy based on the combination of Stat double stranded RNA (dsRNA)-nanoparticles and Bt strain. This formulation controlled insect pests with better effect suggesting its potential use to reduce the use of synthetic pesticides in agricultural settings for pest control.


Subject(s)
Bacillus thuringiensis , Pesticides , Animals , Bacillus thuringiensis/genetics , Janus Kinases/genetics , Tyrosine , Endotoxins/genetics , Insecta , Spodoptera/genetics , Larva , Pesticides/pharmacology , Regeneration , Bacterial Proteins/pharmacology , Bacterial Proteins/genetics , Hemolysin Proteins/pharmacology , Hemolysin Proteins/genetics , Plants, Genetically Modified , Pest Control, Biological/methods
3.
Proc Natl Acad Sci U S A ; 120(44): e2306932120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37874855

ABSTRACT

Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized control of some major pests. However, more than 25 cases of field-evolved practical resistance have reduced the efficacy of transgenic crops producing crystalline (Cry) Bt proteins, spurring adoption of alternatives including crops producing the Bt vegetative insecticidal protein Vip3Aa. Although practical resistance to Vip3Aa has not been reported yet, better understanding of the genetic basis of resistance to Vip3Aa is urgently needed to proactively monitor, delay, and counter pest resistance. This is especially important for fall armyworm (Spodoptera frugiperda), which has evolved practical resistance to Cry proteins and is one of the world's most damaging pests. Here, we report the identification of an association between downregulation of the transcription factor gene SfMyb and resistance to Vip3Aa in S. frugiperda. Results from a genome-wide association study, fine-scale mapping, and RNA-Seq identified this gene as a compelling candidate for contributing to the 206-fold resistance to Vip3Aa in a laboratory-selected strain. Experimental reduction of SfMyb expression in a susceptible strain using RNA interference (RNAi) or CRISPR/Cas9 gene editing decreased susceptibility to Vip3Aa, confirming that reduced expression of this gene can cause resistance to Vip3Aa. Relative to the wild-type promoter for SfMyb, the promoter in the resistant strain has deletions and lower activity. Data from yeast one-hybrid assays, genomics, RNA-Seq, RNAi, and proteomics identified genes that are strong candidates for mediating the effects of SfMyb on Vip3Aa resistance. The results reported here may facilitate progress in understanding and managing pest resistance to Vip3Aa.


Subject(s)
Bacillus thuringiensis , Insecticides , Animals , Bacillus thuringiensis/genetics , Spodoptera/genetics , Bacillus thuringiensis Toxins/metabolism , Down-Regulation , Transcription Factors/metabolism , Genome-Wide Association Study , Insecticides/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Bacterial Proteins/metabolism , Crops, Agricultural/genetics , Endotoxins/genetics , Endotoxins/pharmacology , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insecticide Resistance/genetics , Larva/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
4.
Proc Natl Acad Sci U S A ; 120(44): e2306177120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37871210

ABSTRACT

Lepidopterans affect crop production worldwide. The use of transgenes encoding insecticidal proteins from Bacillus thuringiensis (Bt) in crop plants is a well-established technology that enhances protection against lepidopteran larvae. Concern about widespread field-evolved resistance to Bt proteins has highlighted an urgent need for new insecticidal proteins with different modes or sites of action. We discovered a new family of insecticidal proteins from ferns. The prototype protein from Pteris species (Order Polypodiales) and variants from two other orders of ferns, Schizaeales and Ophioglossales, were effective against important lepidopteran pests of maize and soybean in diet-based assays. Transgenic maize and soybean plants producing these proteins were more resistant to insect damage than controls. We report here the crystal structure of a variant of the prototype protein to 1.98 Å resolution. Remarkably, despite being derived from plants, the structure resembles the 3-domain Cry proteins from Bt but has only two out of three of their characteristic domains, lacking the C-terminal domain which is typically required for their activities. Two of the fern proteins were effective against strains of fall armyworm that were resistant to Bt 3-domain Cry proteins Cry1Fa or Cry2A.127. This therefore represents a novel family of insecticidal proteins that have the potential to provide future tools for pest control.


Subject(s)
Bacillus thuringiensis , Ferns , Insecticides , Tracheophyta , Animals , Insecticides/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pest Control, Biological , Endotoxins/genetics , Endotoxins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Tracheophyta/metabolism , Zea mays/metabolism
5.
BMC Genomics ; 25(1): 355, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594617

ABSTRACT

BACKGROUND: Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS: To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS: This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.


Subject(s)
Bacillus thuringiensis , Moths , Pesticides , Animals , Larva/genetics , Larva/metabolism , Glycine max/genetics , Endotoxins/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pest Control, Biological/methods , Moths/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/chemistry , Bacillus thuringiensis/metabolism , Chromosomes/metabolism , Hemolysin Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Insecticide Resistance/genetics
6.
BMC Biotechnol ; 24(1): 37, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825715

ABSTRACT

BACKGROUND: As part of a publicly funded initiative to develop genetically engineered Brassicas (cabbage, cauliflower, and canola) expressing Bacillus thuringiensis Crystal (Cry)-encoded insecticidal (Bt) toxin for Indian and Australian farmers, we designed several constructs that drive high-level expression of modified Cry1B and Cry1C genes (referred to as Cry1BM and Cry1CM; with M indicating modified). The two main motivations for modifying the DNA sequences of these genes were to minimise any licensing cost associated with the commercial cultivation of transgenic crop plants expressing CryM genes, and to remove or alter sequences that might adversely affect their activity in plants. RESULTS: To assess the insecticidal efficacy of the Cry1BM/Cry1CM genes, constructs were introduced into the model Brassica Arabidopsis thaliana in which Cry1BM/Cry1CM expression was directed from either single (S4/S7) or double (S4S4/S7S7) subterranean clover stunt virus (SCSV) promoters. The resulting transgenic plants displayed a high-level of Cry1BM/Cry1CM expression. Protein accumulation for Cry1CM ranged from 5.18 to 176.88 µg Cry1CM/g dry weight of leaves. Contrary to previous work on stunt promoters, we found no correlation between the use of either single or double stunt promoters and the expression levels of Cry1BM/Cry1CM genes, with a similar range of Cry1CM transcript abundance and protein content observed from both constructs. First instar Diamondback moth (Plutella xylostella) larvae fed on transgenic Arabidopsis leaves expressing the Cry1BM/Cry1CM genes showed 100% mortality, with a mean leaf damage score on a scale of zero to five of 0.125 for transgenic leaves and 4.2 for wild-type leaves. CONCLUSIONS: Our work indicates that the modified Cry1 genes are suitable for the development of insect resistant GM crops. Except for the PAT gene in the USA, our assessment of the intellectual property landscape of components presents within the constructs described here suggest that they can be used without the need for further licensing. This has the capacity to significantly reduce the cost of developing and using these Cry1M genes in GM crop plants in the future.


Subject(s)
Arabidopsis , Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Plants, Genetically Modified , Plants, Genetically Modified/genetics , Arabidopsis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hemolysin Proteins/genetics , Animals , Endotoxins/genetics , Promoter Regions, Genetic/genetics , Bacillus thuringiensis/genetics , Moths/genetics , Brassica/genetics , Pest Control, Biological/methods , Insecticides/pharmacology
7.
Transgenic Res ; 33(3): 75-88, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578501

ABSTRACT

Genetically engineered (GE) cotton event MON 88702, producing Mpp51Aa2 (previously mCry51Aa2) from Bacillus thuringiensis (Bt), controls sucking pests, such as Lygus spp. (Hemiptera: Miridae) and thrips (Thysanoptera). Ingesting high doses of the insecticidal protein resulted in adverse effects on life table parameters of beneficial, predatory Orius spp. (Hemiptera: Anthocoridae). This triggered laboratory studies with more realistic food treatments, including different combinations of prey types with and without Bt protein to further characterize risks to this important group of non-target organisms. In this work, exclusive feeding of frozen spider mites (Tetranychus urticae, Acari: Tetranychidae) from Bt cotton confirmed adverse effects on longevity and fecundity of O. majusculus adults. Alternate feeding of Bt protein-containing spider mites and Bt-free Ephestia kuehniella (Lepidoptera: Pyralidae) eggs mitigated effects on longevity, but not on fecundity. When living larvae of Spodoptera littoralis (Lepidoptera: Noctuidae) from Bt cotton were fed to the predators, however, no effects on longevity and reproduction of female O. majusculus were observed, despite the fact that Bt protein concentrations in larvae were almost as high as concentrations in spider mites. When a diverse mix of prey species with various Bt protein concentrations is consumed in the field, it is unlikely that exposure of Orius spp. to Mpp51Aa2 is high enough to exert adverse effects on predator populations. MON 88702 cotton may thus be a valuable tool for integrated management of sucking pests.


Subject(s)
Bacillus thuringiensis , Gossypium , Longevity , Pest Control, Biological , Plants, Genetically Modified , Reproduction , Animals , Gossypium/genetics , Gossypium/parasitology , Gossypium/growth & development , Gossypium/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/parasitology , Bacillus thuringiensis/genetics , Reproduction/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Predatory Behavior , Fertility/genetics , Spodoptera/growth & development , Spodoptera/physiology , Spodoptera/genetics , Larva/growth & development , Larva/genetics , Bacillus thuringiensis Toxins/genetics , Endotoxins/genetics , Endotoxins/metabolism , Heteroptera/genetics , Heteroptera/physiology , Heteroptera/growth & development , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Tetranychidae/genetics , Female
8.
Appl Microbiol Biotechnol ; 108(1): 56, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38175241

ABSTRACT

Antifungal peptides (AFPs) can be used as novel preservatives, but achieving large-scale production and application remains a long-term challenge. In this study, we developed a hybrid peptide MD (metchnikowin-drosomycin fusion) secreted into Escherichia coli supernatant, demonstrating strong inhibitory activity against Aspergillus flavus and Botrytis cinerea. The fusion tag did not impact its activity. Moreover, an endotoxin-free and oxidative leaky strain was developed by knocking out the trxB, gor, and lpp genes of endotoxin-free E. coli ClearColi-BL21(DE3). This strain facilitates the proper folding of multi-disulfide bond proteins and promotes the extracellular production of recombinant bioactive AFP MD, achieving efficient production of endotoxin-free MD. In addition, temperature control replaces chemical inducers to further reduce production costs and circumvent the toxicity of inducers. This extracellularly produced MD exhibited favorable effectiveness in inhibiting fruit mold growth, and its safety was preliminarily established by gavage testing in mice, suggesting that it can be developed into a green and sustainable fruit fungicide. In conclusion, this study provides novel approaches and systematic concepts for producing extracellularly active proteins or peptides with industrial significance. KEY POINTS: • First report of extracellular production of bioactive antifungal peptide in Escherichia coli. • The hybrid antifungal peptide MD showed strong inhibitory activity against Aspergillus flavus and Botrytis cinerea, and the activity was not affected by the fusion tag. • Endotoxin-free oxidative Escherichia coli suitable for the expression of multi-disulfide bond proteins was constructed.


Subject(s)
Antifungal Agents , Escherichia coli , Animals , Mice , Antifungal Agents/pharmacology , Escherichia coli/genetics , Peptides/pharmacology , Aspergillus flavus/genetics , Endotoxins/genetics , Disulfides , Oxidative Stress
9.
Curr Microbiol ; 81(3): 80, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281302

ABSTRACT

Cry4Aa, produced by Bacillus thuringiensis subsp. israelensis, exhibits specific toxicity to larvae of medically important mosquito genera. Cry4Aa functions as a pore-forming toxin, and a helical hairpin (α4-loop-α5) of domain I is believed to be the transmembrane domain that forms toxin pores. Pore formation is considered to be a central mode of Cry4Aa action, but the relationship between pore formation and toxicity is poorly understood. In the present study, we constructed Cry4Aa mutants in which each polar amino acid residues within the transmembrane α4 helix was replaced with glutamic acid. Bioassays using Culex pipiens mosquito larvae and subsequent ion permeability measurements using symmetric KCl solution revealed an apparent correlation between toxicity and toxin pore conductance for most of the Cry4Aa mutants. In contrast, the Cry4Aa mutant H178E was a clear exception, almost losing its toxicity but still exhibiting a moderately high conductivity of about 60% of the wild-type. Furthermore, the conductance of the pore formed by the N190E mutant (about 50% of the wild-type) was close to that of H178E, but the toxicity was significantly higher than that of H178E. Ion selectivity measurements using asymmetric KCl solution revealed a significant decrease in cation selectivity of toxin pores formed by H178E compared to N190E. Our data suggest that the toxicity of Cry4Aa is primarily pore related. The formation of toxin pores that are highly ion-permeable and also highly cation-selective may enhance the influx of cations and water into the target cell, thereby facilitating the eventual death of mosquito larvae.


Subject(s)
Aedes , Bacillus thuringiensis , Culex , Culicidae , Animals , Bacillus thuringiensis/metabolism , Culicidae/metabolism , Endotoxins/genetics , Endotoxins/toxicity , Endotoxins/chemistry , Bacillus thuringiensis Toxins , Amino Acid Sequence , Hemolysin Proteins/genetics , Hemolysin Proteins/toxicity , Larva , Cations/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/toxicity , Bacterial Proteins/chemistry
10.
Pestic Biochem Physiol ; 199: 105777, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458684

ABSTRACT

The fall armyworm (Spodoptera frugiperda) is a major global pest causing severe damage to various crops, especially corn. Transgenic corn producing the Cry1F pesticidal protein from the bacterium Bacillus thuringiensis (Cry1F corn) showed effectiveness in controlling this pest until S. frugiperda populations at locations in North and South America evolved practical resistance. The mechanism for practical resistance involved disruptive mutations in an ATP binding cassette transporter subfamily C2 gene (SfABCC2), which serves as a functional Cry1F receptor in the midgut cells of susceptible S. frugiperda. The SfABCC2 protein contains two transmembrane domains (TMD1 and TMD2), each with a cytosolic nucleotide (ATP) binding domain (NBD1 and NBD2, respectively). Previous reports have demonstrated that disruptive mutations in TMD2 were linked with resistance to Cry1F, yet whether the complete SfABCC2 structure is needed for receptor functionality or if a single TMD-NBD protein can serve as functional Cry1F receptor remains unknown. In the present study, we separately expressed TMD1 and TMD2 with their corresponding NBDs in cultured insect cells and tested their Cry1F receptor functionality. Our results show that the complete SfABCC2 structure is required for Cry1F receptor functionality. Moreover, binding competition assays revealed that Cry1F specifically bound to SfABCC2, whereas neither SfTMD1-NBD1 nor SfTMD2-NBD2 exhibited any significant binding. These results provide insights into the molecular mechanism of Cry1F recognition by SfABCC2 in S. frugiperda, which could facilitate the development of more effective insecticidal proteins.


Subject(s)
Bacillus thuringiensis , Endotoxins , Animals , Spodoptera , Endotoxins/genetics , Insecticide Resistance/genetics , Bacillus thuringiensis Toxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacillus thuringiensis/metabolism , Zea mays , Hemolysin Proteins/genetics , Plants, Genetically Modified/genetics
11.
Gene Ther ; 30(7-8): 575-580, 2023 08.
Article in English | MEDLINE | ID: mdl-34744169

ABSTRACT

Immune responses to Cas proteins have been demonstrated recently and these may prove to be an impediment to their clinical use in gene editing. To make meaningful assessments of Cas9 immunogenicity during drug development and licensure it is imperative the reagents are free of impurities that could affect in vitro assessments of immunogenicity. Here we address the issue of endotoxin levels in laboratory grade Cas9 proteins used to measure T-cell memory responses. Many of these reagents have not been developed for immunogenicity assays, are or microbial origin and carry varying levels of endotoxin. The use of these reagents, off the shelf, without measuring endotoxin levels is likely to introduce incorrect estimates of the prevalence of memory T-cell responses in research studies. We demonstrate wide variation in endotoxin levels in Cas9 proteins from seven suppliers. Different lots from the same supplier also contained varying levels of endotoxin. ELISPOT assays showed similar large variations in the interferon-γ signals. Finally, when we carried out endotoxin depletion in four Cas9 proteins with strong signals in the ELISPOT assay, we found dampening of the interferon-γ signals.


Subject(s)
CRISPR-Associated Protein 9 , T-Lymphocytes , CRISPR-Cas Systems , Interferon-gamma/genetics , Endotoxins/genetics
12.
Plant Biotechnol J ; 21(2): 391-404, 2023 02.
Article in English | MEDLINE | ID: mdl-36345605

ABSTRACT

China is the world's second-largest maize producer and consumer. In recent years, the invasive fall armyworm Spodoptera frugiperda (J.E. Smith) has adversely affected maize productivity and compromised food security. To mitigate pest-inflicted food shortages, China's Government issued biosafety certificates for two genetically modified (GM) Bt maize hybrids, Bt-Cry1Ab DBN9936 and Bt-Cry1Ab/Cry2Aj Ruifeng 125, in 2019. Here, we quantitatively assess the impact of both Bt maize hybrids on pest feeding damage, crop yield and food safety throughout China's maize belt. Without a need to resort to synthetic insecticides, Bt maize could mitigate lepidopteran pest pressure by 61.9-97.3%, avoid yield loss by 16.4-21.3% (range -11.9-99.2%) and lower mycotoxin contamination by 85.5-95.5% as compared to the prevailing non-Bt hybrids. Yield loss avoidance varied considerably between experimental sites and years, as mediated by on-site infestation pressure and pest identity. For either seed mixtures or block refuge arrangements, pest pressure was kept below established thresholds at 90% Bt maize coverage in Yunnan (where S. frugiperda was the dominant species) and 70% Bt maize coverage in other sites dominated by Helicoverpa armigera (Hübner) and Ostrinia furnacalis (Guenée). Drawing on experiences from other crop/pest systems, Bt maize in se can provide area-wide pest management and thus, contribute to a progressive phase-down of chemical pesticide use. Hence, when consciously paired with agroecological and biodiversity-based measures, GM insecticidal crops can ensure food and nutrition security, contribute to the sustainable intensification of China's agriculture and reduce food systems' environmental footprint.


Subject(s)
Insecticides , Moths , Animals , Zea mays/genetics , Endotoxins/genetics , Bacillus thuringiensis Toxins , Plants, Genetically Modified/genetics , Hemolysin Proteins/genetics , Bacterial Proteins/genetics , China , Insecticides/pharmacology , Pest Control, Biological , Food Safety
13.
Plant Biotechnol J ; 21(9): 1827-1838, 2023 09.
Article in English | MEDLINE | ID: mdl-37353991

ABSTRACT

Bacillus thuringiensis (Bt)-secreted crystal (Cry) toxins form oligomeric pores in host cell membranes and are a common element in generating insect-resistant transgenic crops. Although Cry toxin function has been well documented, cellular defences against pore-formation have not been as well developed. Elucidation of the processes underlying this defence, however, could contribute to the development of enhanced Bt crops. Here, we demonstrate that Cry1Ca-mediated downregulation of microRNA-7322-5p (miR-7322-5p), which binds to the 3' untranslated region of p38, negatively regulates the susceptibility of Chilo suppressalis to Cry1Ca. Moreover, Cry1Ca exposure enhanced phosphorylation of Hsp19, and hsp19 downregulation increased susceptibility to Cry1Ca. Further, Hsp19 phosphorylation occurs downstream of p38, and pull-down assays confirmed the interactions between Hsp19 and Cry1Ca, suggesting that activation of Hsp19 by the miR-7322-5p/p38/Hsp19 pathway promotes Cry1Ca sequestration. To assess the efficacy of targeting this pathway in planta, double-stranded RNA (dsRNA) targeting C. suppressalis p38 (dsp38) was introduced into a previously generated cry1Ca-expressing rice line (1CH1-2) to yield a single-copy cry1Ca/dsp38 rice line (p38-rice). Feeding on this rice line triggered a significant reduction in C. suppressalis p38 expression and the line was more resistant to C. suppressalis than 1CH1-2 in both short term (7-day) and continuous feeding bioassays as well as field trials. These findings provide new insights into invertebrate epithelium cellular defences and demonstrate a potential new pyramiding strategy for Bt crops.


Subject(s)
Bacillus thuringiensis , MicroRNAs , Moths , Oryza , Animals , Oryza/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Larva/genetics , Pest Control, Biological , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plants, Genetically Modified/metabolism , Moths/physiology , Endotoxins/genetics , Endotoxins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism
14.
PLoS Pathog ; 17(1): e1009199, 2021 01.
Article in English | MEDLINE | ID: mdl-33465145

ABSTRACT

The insecticidal Cry11Aa and Cyt1Aa proteins are produced by Bacillus thuringiensis as crystal inclusions. They work synergistically inducing high toxicity against mosquito larvae. It was proposed that these crystal inclusions are rapidly solubilized and activated in the gut lumen, followed by pore formation in midgut cells killing the larvae. In addition, Cyt1Aa functions as a Cry11Aa binding receptor, inducing Cry11Aa oligomerization and membrane insertion. Here, we used fluorescent labeled crystals, protoxins or activated toxins for in vivo localization at nano-scale resolution. We show that after larvae were fed solubilized proteins, these proteins were not accumulated inside the gut and larvae were not killed. In contrast, if larvae were fed soluble non-toxic mutant proteins, these proteins were found inside the gut bound to gut-microvilli. Only feeding with crystal inclusions resulted in high larval mortality, suggesting that they have a role for an optimal intoxication process. At the macroscopic level, Cry11Aa completely degraded the gastric caeca structure and, in the presence of Cyt1Aa, this effect was observed at lower toxin-concentrations and at shorter periods. The labeled Cry11Aa crystal protein, after midgut processing, binds to the gastric caeca and posterior midgut regions, and also to anterior and medium regions where it is internalized in ordered "net like" structures, leading finally to cell break down. During synergism both Cry11Aa and Cyt1Aa toxins showed a dynamic layered array at the surface of apical microvilli, where Cry11Aa is localized in the lower layer closer to the cell cytoplasm, and Cyt1Aa is layered over Cry11Aa. This array depends on the pore formation activity of Cry11Aa, since the non-toxic mutant Cry11Aa-E97A, which is unable to oligomerize, inverted this array. Internalization of Cry11Aa was also observed during synergism. These data indicate that the mechanism of action of Cry11Aa is more complex than previously anticipated, and may involve additional steps besides pore-formation activity.


Subject(s)
Aedes/drug effects , Bacillus thuringiensis Toxins/metabolism , Drug Synergism , Endotoxins/metabolism , Gastrointestinal Tract/drug effects , Hemolysin Proteins/metabolism , Insecticides/metabolism , Larva/drug effects , Aedes/metabolism , Animals , Bacillus thuringiensis Toxins/genetics , Bacillus thuringiensis Toxins/toxicity , Bacterial Proteins , Endotoxins/genetics , Endotoxins/toxicity , Gastrointestinal Tract/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/toxicity , Insecticides/toxicity , Larva/metabolism , Protein Binding
15.
Appl Environ Microbiol ; 89(2): e0165222, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36749061

ABSTRACT

pTAND672-2, a 144-kb resident plasmid of Bacillus thuringiensis serovar israelensis strain TAND672, was sequenced and characterized. This extrachromosomal element carries mosquitocidal toxin-, conjugation-, and recombinase-encoding genes, together with a putative arbitrium system, a genetic module recently discovered in temperate phages controlling lysogeny-lysis transition and in mobile genetic elements (MGEs) where its function remains clarified. Using conjugation experiments, pTAND672-2 is shown to be a novel integrative and conjugative element (ICE), which can horizontally transfer from B. thuringiensis serovar israelensis to Lysinibacillus sphaericus, another mosquitocidal bacterium, where it integrates into the chromosome. Its integration and circularization are reversible and involve a single-cross recombination between 33-bp specific sites, attB in the chromosome of L. sphaericus and attP in pTAND672-2. CDS143, coding for the putative tyrosine integrase Int143 distantly related to site-specific tyrosine Xer recombinases and phage integrases, can mediate the integration of pTAND672-2 to attB. The B. thuringiensis mosquito-killing genes carried by pTAND672-2 are efficiently transcribed and expressed in L. sphaericus, displaying a slight increased toxicity in this bacterium against Aedes albopictus larvae. The occurrence of pTAND672-2-like plasmids within the Bacillus cereus group was also explored and indicated that they all share a similar genetic backbone with diverse plasmid sizes, ranging from 58 to 225 kb. Interestingly, among them, the pEFR-4-4 plasmid of Bacillus paranthracis EFR-4 and p5 of B. thuringiensis BT-59 also display conjugative capability; moreover, like pTAND672-2 displays a chimeric structure between the pCH_133-e- and pBtoxis-like plasmids, pBTHD789-3 also appears to be mosaic of two plasmids. IMPORTANCE Horizontal transfer of mobile genetic elements carrying mosquitocidal toxin genes may play a driving role in the diversity of mosquitocidal bacteria. Here, the 144-kb mosquitocidal toxin-encoding plasmid pTAND672-2 is the first verified integrative and conjugative element (ICE) identified in Bacillus thuringiensis serovar israelensis. The key tyrosine integrase Int143, involved in the specific integration, is distantly related to other tyrosine recombinases. The study also reports the occurrence and potential interspecies transmission of pTAND672-2-like plasmids with varied sizes in B. thuringiensis, Bacillus paranthracis, and Bacillus wiedmannii isolates belonging to the Bacillus cereus group. This study is important for further understanding the evolution and ecology of mosquitocidal bacteria, as well as for providing new direction for the genetic engineering of biopesticides in the control of disease-transmitting mosquitoes.


Subject(s)
Aedes , Bacillus thuringiensis , Animals , Bacillus thuringiensis/genetics , Plasmids/genetics , Endotoxins/genetics , Aedes/genetics , Bacterial Proteins/genetics
16.
Appl Environ Microbiol ; 89(7): e0051223, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37358425

ABSTRACT

The pesticidal toxins of Bacillus thuringiensis (Bt) supply the active proteins for genetically modified insect-resistant crops. There is therefore keen interest in finding new toxins, or improving known toxins, in order to increase the mortality of various targets. The production and screening of large libraries of mutagenized toxins are among the means of identifying improved toxins. Since Cry toxins are public goods, and do not confer advantages to producers in competition, conventional directed evolution approaches cannot be used here. Instead, thousands of individual mutants have to be sequenced and assayed individually, a costly and time-consuming process. In this study, we tested a group selection-based approach that could be used to screen an uncharacterized pool of Cry toxin mutants. This involved selecting for infectivity between subpopulations of Bt clones within metapopulations of infected insects in three rounds of passage. We also tested whether additional mutagenesis from exposure to ethyl methanesulfonate could increase infectivity or supply additional Cry toxin diversity during passage. Sequencing of pools of mutants at the end of selection showed that we could effectively screen out Cry toxin variants that had reduced toxicity with our group selection approach. The addition of extra mutagenesis during passage decreased the efficiency of selection for infectivity and did not produce any additional novel toxin diversity. Toxins with loss-of-function mutations tend to dominate mutagenized libraries, and so a process for screening out these mutants without time-consuming sequencing and characterization steps could be beneficial when applied to larger libraries. IMPORTANCE Insecticidal toxins from the bacterium Bacillus thuringiensis are widely exploited in genetically modified plants. This application creates a demand for novel insecticidal toxins that can be used to better manage resistant pests or control new or recalcitrant target species. An important means of producing novel toxins is via high-throughput mutagenesis and screening of existing toxins, a lengthy and resource-intensive process. This study describes the development and testing of an efficient means of screening a test library of mutagenized insecticidal toxins. Here, we showed that it is possible to screen out loss-of-function mutations with low infectivity within a pool without the need to characterize and sequence each mutant individually. This has the potential to improve the efficiency of processes used to identify novel proteins.


Subject(s)
Bacillus thuringiensis , Insecticides , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Insecticides/pharmacology , Insecticides/metabolism , Endotoxins/genetics , Endotoxins/metabolism , Bacillus thuringiensis Toxins , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Insecta , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
17.
BMC Microbiol ; 23(1): 91, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37003972

ABSTRACT

BACKGROUND: Bacillus thuringiensis (Bt) is a gram-positive ubiquitous saprophytic bacterium that produces proteins (Crystal protein, Vegetative insecticidal protein, and Secreted insecticidal protein) toxic to insects during its growth cycle. In the present study, the whole genome of a locally isolated B. thuringiensis strain BA04 was sequenced to explore the genetic makeup and to identify the genes responsible to produce insecticidal proteins including the virulence factors. The strain was isolated from the soil sample of the Kaziranga National Park, Assam, North-Eastern part of India (Latitude: 26°34'39.11''N and Longitude: 93°10'16.04''E). RESULTS: The whole genome sequencing (WGS) of the BA04 strain revealed that it has a circular genome of size 6,113,005 bp with four numbers of plasmids. A total of 6,111 genes including two novel crystal protein-encoding genes (MH753362.1 and MH753363.1) were identified. The BLASTn analysis of MH753362.1 showed 84% similarities (maximum identity) with Cry1Ia (KJ710646.1) gene, whereas MH753363.1 exhibited 66% identity with Insecticidal Crystal Protein (ICP)-6 gene (KM053257.1). At the protein level, MH753362.1 and MH753363.1 shared 79% identity with Cry1Ia (AIW52613.1) and 40% identity with Insecticidal Crystal Protein (ICP)-6 (AJW76687.1) respectively. Three-dimensional structures of these two novel protein sequences revealed that MH753362.1 have 48% structural similarity with Cry8ea1 protein, whereas MH753363.1 showed only 20% structural similarity with Cry4Aa protein. Apart from these insecticidal genes, the strain was also found to contain virulence and virulence-associated factors including the antibiotic resistance genes and Clustered regularly interspaced short palindromic repeat (CRISPR) sequences. CONCLUSION: This is the first report on the whole genome sequence of Bt strain BA04 isolated from Assam, a North-Eastern state of India. The WGS of strain BA04 unveils the presence of two novel types of insecticidal crystal protein-encoding genes which can be used for the development of insect-resistant transgenic crops. Additionally, the strain could be used for the formulations of effective biopesticides. The WGS provides the fastest and cheapest platform for a better understanding of the genetic makeup of a strain and helps to explore the role of virulence genes in pathogenicity against the insect host.


Subject(s)
Bacillus thuringiensis , Insecticides , Animals , Bacillus thuringiensis/genetics , Insecticides/pharmacology , Insecticides/metabolism , Whole Genome Sequencing , Insecta/metabolism , Plasmids/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Endotoxins/genetics , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism
18.
BMC Microbiol ; 23(1): 100, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055727

ABSTRACT

Mosquitoes of many species are key disease vectors, killing millions of people each year. Bacillus thuringiensis-based insecticide formulations are largely recognized as among the most effective, ecologically safe, and long-lasting methods of managing insect pests. New B. thuringiensis strains with high mosquito control effectiveness were isolated, identified, genetically defined, and physiologically characterized. Eight B. thuringiensis strains were identified and shown to carry endotoxin-producing genes. Using a scanning electron microscope, results revealed typical crystal forms of various shapes in B. thuringiensis strains. Fourteen cry and cyt genes were found in the strains examined. Although the genome of the B. thuringiensis A4 strain had twelve cry and cyt genes, not all of them were expressed, and only a few protein profiles were observed. The larvicidal activity of the eight B. thuringiensis strains was found to be positive (LC50: 1.4-28.5 g/ml and LC95: 15.3-130.3 g/ml). Bioassays in a laboratory environment demonstrated that preparations containing B. thuringiensis spores and crystals were particularly active to mosquito larvae and adults. These new findings show that the novel preparation containing B. thuringiensis A4 spores and crystals mixture might be used to control larval and adult mosquitoes in a sustainable and ecologically friendly manner.


Subject(s)
Bacillus thuringiensis , Culex , Insecticides , Humans , Animals , Insecticides/pharmacology , Insecticides/metabolism , Bacillus thuringiensis/genetics , Culex/metabolism , Larva/metabolism , Bacillus thuringiensis Toxins/metabolism , Mosquito Vectors , Endotoxins/genetics , Endotoxins/pharmacology , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Hemolysin Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Bacterial Proteins/chemistry
19.
Microb Pathog ; 185: 106455, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995881

ABSTRACT

Maize is an important food crop in the world, but the yield and quality of maize have been significantly reduced due to the impact of insect pests. In order to address this issue, the cry1Ah gene was subjected to error-prone PCR for mutagenesis, and subsequently, the mutant cry1Ah-1 gene was introduced into maize inbred line GSH9901 callus using the Agrobacterium-mediated method. The T2 generation transformed plants were obtained by subculture, and 9 transgenic positive plants were obtained by molecular detection which was carried out by PCR, qRT-PCR, Bt gold-labeled immunoassay test strips, Western blot and ELISA. It was found that the Cry1Ah-1 gene could be transcribed normally in maize leaves, of which OE1 and OE3 had higher relative expression levels and could successfully express proteins of 71.94 KD size. They were expressed in different tissues at the 6-leaf stage, heading stage and grain-filling stage, and could ensure the protection of maize from corn borer throughout the growth period. The biological activities of OE1 and OE3 were tested indoors and in the field, and the results showed that in indoors, the corn borer that fed on OE1 and OE3 corn leaves had a mortality rate of 100 % after 3 days; in the field, OE1 and OE3 had strong insecticidal activity against corn borer, reaching a high resistance level. In conclusion, the transgenic cry1Ah-1 maize has a strong insecticidal effect on corn borer, and has a good prospect of commercialization.


Subject(s)
Bacillus thuringiensis , Insecticides , Moths , Animals , Endotoxins/genetics , Endotoxins/metabolism , Zea mays/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Insecticides/metabolism , Plants, Genetically Modified/genetics , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Pest Control, Biological
20.
Arch Microbiol ; 205(5): 168, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37017772

ABSTRACT

Despite the successful application of toxins from Bacillus thuringiensis as biological control agents against pests, pests are showing resistance against an increasing number of Bacillus thuringiensis toxins due to evolution; thus, new toxins with higher toxicity and broad-spectrum activity against insects are being increasingly identified. To find new toxins, whole genome sequencing of the novel B. thuringiensis strain Bt S3076-1 was performed, and ten predicted toxic genes were identified in this study, including six cry genes, two tpp genes, one cyt gene and one vip gene, among which six were novel toxins. Subsequently, SDS‒PAGE analysis showed that the major proteins at the spore maturation stage were approximately 120 kDa, 70 kDa, 67 kDa, 60 kDa and 40 kDa, while active proteins after trypsin digestion (approximately 70 kDa and 40 kDa) exhibited LC50 values of 149.64 µg/g and 441.47 µg/g against Spodoptera frugiperda and Helicoverpa armigera larvae, respectively. Furthermore, pathological observation results showed that the peritrophic membrane of Spodoptera frugiperda and Helicoverpa armigera larvae was degraded. These findings will provide an experimental reference for further research on the insecticidal activity, toxicity spectrum and synergism of these toxins in Bt S3076-1.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Spodoptera/metabolism , Bacillus thuringiensis/genetics , Endotoxins/genetics , Bacterial Proteins/genetics , Hemolysin Proteins/genetics , Larva , Pest Control, Biological
SELECTION OF CITATIONS
SEARCH DETAIL