Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 222
Filter
1.
Nature ; 609(7928): 835-845, 2022 09.
Article in English | MEDLINE | ID: mdl-36045294

ABSTRACT

Phycobilisome (PBS) structures are elaborate antennae in cyanobacteria and red algae1,2. These large protein complexes capture incident sunlight and transfer the energy through a network of embedded pigment molecules called bilins to the photosynthetic reaction centres. However, light harvesting must also be balanced against the risks of photodamage. A known mode of photoprotection is mediated by orange carotenoid protein (OCP), which binds to PBS when light intensities are high to mediate photoprotective, non-photochemical quenching3-6. Here we use cryogenic electron microscopy to solve four structures of the 6.2 MDa PBS, with and without OCP bound, from the model cyanobacterium Synechocystis sp. PCC 6803. The structures contain a previously undescribed linker protein that binds to the membrane-facing side of PBS. For the unquenched PBS, the structures also reveal three different conformational states of the antenna, two previously unknown. The conformational states result from positional switching of two of the rods and may constitute a new mode of regulation of light harvesting. Only one of the three PBS conformations can bind to OCP, which suggests that not every PBS is equally susceptible to non-photochemical quenching. In the OCP-PBS complex, quenching is achieved through the binding of four 34 kDa OCPs organized as two dimers. The complex reveals the structure of the active form of OCP, in which an approximately 60 Å displacement of its regulatory carboxy terminal domain occurs. Finally, by combining our structure with spectroscopic properties7, we elucidate energy transfer pathways within PBS in both the quenched and light-harvesting states. Collectively, our results provide detailed insights into the biophysical underpinnings of the control of cyanobacterial light harvesting. The data also have implications for bioengineering PBS regulation in natural and artificial light-harvesting systems.


Subject(s)
Phycobilisomes , Sunlight , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Energy Transfer/radiation effects , Photosynthesis/radiation effects , Phycobilisomes/chemistry , Phycobilisomes/metabolism , Phycobilisomes/radiation effects , Synechocystis/metabolism , Synechocystis/radiation effects
2.
J Am Chem Soc ; 143(50): 21211-21217, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34905347

ABSTRACT

Oximes are valuable synthetic intermediates for the preparation of a variety of functional groups. To date, the stereoselective synthesis of oximes remains a major challenge, as most current synthetic methods either provide mixtures of E and Z isomers or furnish the thermodynamically preferred E isomer. Herein we report a mild and general method to achieve Z isomers of aryl oximes by photoisomerization of oximes via visible-light-mediated energy transfer (EnT) catalysis. Facile access to (Z)-oximes provides opportunities to achieve regio- and chemoselectivity complementary to those of widely used transformations employing oxime starting materials. We show an enhanced one-pot protocol for photocatalyzed oxime isomerization and subsequent Beckmann rearrangement that enables novel reactivity with alkyl groups migrating preferentially over aryl groups, reversing the regioselectivity of the traditional Beckmann reaction. Chemodivergent N- or O- cyclizations of alkenyl oximes are also demonstrated, leading to nitrones or cyclic oxime ethers, respectively.


Subject(s)
Light , Oximes/chemistry , Catalysis , Cyclization , Energy Transfer/radiation effects , Ethers/chemistry , Stereoisomerism
3.
Photosynth Res ; 147(1): 61-73, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33231791

ABSTRACT

Photosynthesis and respiration rates, pigment contents, CO2 compensation point, and carbonic anhydrase activity in Cyanidioschizon merolae cultivated in blue, red, and white light were measured. At the same light quality as during the growth, the photosynthesis of cells in blue light was significantly lowered, while under red light only slightly decreased as compared with white control. In white light, the quality of light during growth had no effect on the rate of photosynthesis at low O2 and high CO2 concentration, whereas their atmospheric level caused only slight decrease. Blue light reduced markedly photosynthesis rate of cells grown in white and red light, whereas the effect of red light was not so great. Only cells grown in the blue light showed increased respiration rate following the period of both the darkness and illumination. Cells grown in red light had the greatest amount of chlorophyll a, zeaxanthin, and ß-carotene, while those in blue light had more phycocyanin. The dependence on O2 concentration of the CO2 compensation point and the rate of photosynthesis indicate that this alga possessed photorespiration. Differences in the rate of photosynthesis at different light qualities are discussed in relation to the content of pigments and transferred light energy together with the possible influence of related processes. Our data showed that blue and red light regulate photosynthesis in C. merolae for adjusting its metabolism to unfavorable for photosynthesis light conditions.


Subject(s)
Carbon Dioxide/metabolism , Energy Transfer/radiation effects , Oxygen/metabolism , Photosynthesis , Rhodophyta/physiology , Zeaxanthins/metabolism , Chlorophyll/metabolism , Chlorophyll/radiation effects , Darkness , Light , Phycocyanin/metabolism , Rhodophyta/radiation effects , beta Carotene/metabolism
4.
Chemistry ; 27(9): 3013-3018, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-32743875

ABSTRACT

Photosystem I (PS I) is a transmembrane protein that assembles perpendicular to the membrane, and performs light harvesting, energy transfer, and electron transfer to a final, water-soluble electron acceptor. We present here a supramolecular model of it formed by a bicationic oligofluorene 12+ bound to the bisanionic photoredox catalyst eosin Y (EY2- ) in phospholipid bilayers. According to confocal microscopy, molecular modeling, and time dependent density functional theory calculations, 12+ prefers to align perpendicularly to the lipid bilayer. In presence of EY2- , a strong complex is formed (Ka =2.1±0.1×106 m-1 ), which upon excitation of 12+ leads to efficient energy transfer to EY2- . Follow-up electron transfer from the excited state of EY2- to the water-soluble electron donor EDTA was shown via UV-Vis absorption spectroscopy. Overall, controlled self-assembly and photochemistry within the membrane provides an unprecedented yet simple synthetic functional mimic of PS I.


Subject(s)
Energy Transfer/radiation effects , Light , Lipid Bilayers/chemistry , Lipid Bilayers/radiation effects , Phospholipids/chemistry , Phospholipids/radiation effects , Photosystem I Protein Complex/radiation effects , Electron Transport/radiation effects , Photochemistry
5.
Nucleic Acids Res ; 46(7): 3543-3551, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29186575

ABSTRACT

The ordered structure of UV chromophores in DNA resembles photosynthetic light-harvesting complexes in which quantum coherence effects play a major role in highly efficient directional energy transfer. The possible role of coherent excitons in energy transport in DNA remains debated. Meanwhile, energy transport properties are greatly important for understanding the mechanisms of photochemical reactions in cellular DNA and for DNA-based artificial nanostructures. Here, we studied energy transfer in DNA complexes formed with silver nanoclusters and with intercalating dye (acridine orange). Steady-state fluorescence measurements with two DNA templates (15-mer DNA duplex and calf thymus DNA) showed that excitation energy can be transferred to the clusters from 21 and 28 nucleobases, respectively. This differed from the DNA-acridine orange complex for which energy transfer took place from four neighboring bases only. Fluorescence up-conversion measurements showed that the energy transfer took place within 100 fs. The efficient energy transport in the Ag-DNA complexes suggests an excitonic mechanism for the transfer, such that the excitation is delocalized over at least four and seven stacked bases, respectively, in one strand of the duplexes stabilizing the clusters. This result demonstrates that the exciton delocalization length in some DNA structures may not be limited to just two bases.


Subject(s)
DNA/chemistry , Energy Transfer/radiation effects , Nucleic Acid Conformation/radiation effects , Acridine Orange/chemistry , Animals , Cattle , DNA/genetics , DNA/radiation effects , Fluorescence , Nanostructures/chemistry , Photosynthesis/genetics , Photosynthesis/radiation effects , Quantum Theory , Silver/chemistry , Ultraviolet Rays
6.
Nano Lett ; 19(4): 2614-2619, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30848602

ABSTRACT

Design and engineering of highly efficient light-harvesting nanomaterial systems to emulate natural photosynthesis for maximizing energy conversion have stimulated extensive efforts. Here we present a new class of photoactive semiconductor nanocrystals that exhibit high-efficiency energy transfer for enhanced photocatalytic hydrogen production under visible light. These nanocrystals are formed through noncovalent self-assembly of In(III) meso-tetraphenylporphine chloride (InTPP) during microemulsion assisted nucleation and growth process. Through kinetic control, a series of uniform nanorods with controlled aspect ratio and high crystallinity have been fabricated. Self-assembly of InTPP porphyrins results in extensive optical coupling and broader coverage of the visible spectrum for efficient light harvesting. As a result, these nanocrystals display excellent photocatalytic hydrogen production and photostability under the visible light in comparison with the commercial InTPP porphyrin powders.


Subject(s)
Catalysis , Hydrogen/chemistry , Nanoparticles/chemistry , Porphyrins/chemistry , Emulsions/radiation effects , Energy Transfer/radiation effects , Light , Nanoparticles/radiation effects , Nanostructures/chemistry , Photosynthesis/radiation effects , Porphyrins/chemical synthesis
7.
Photosynth Res ; 139(1-3): 145-154, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29808364

ABSTRACT

Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.


Subject(s)
Chlorella/metabolism , Light , Chlorella/radiation effects , Energy Transfer/radiation effects , Photosynthesis/radiation effects , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/radiation effects , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/radiation effects
8.
Biochemistry (Mosc) ; 84(9): 1065-1073, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31693466

ABSTRACT

Changes in the light energy distribution between the photosystems 1 and 2 (PS1 and PS2, respectively) due to the reversible migration of a part of the light-harvesting complex (LHC2) between the photosystems (state transitions, ST) have been studied in leaves of barley (Hordeum vulgare) and Arabidopsis thaliana plants upon short-term illumination with light of various intensity that excited predominantly PS2. Changes in the ratio of fluorescence maxima at 745 and 685 nm in the low-temperature (77 K) fluorescence spectrum of chlorophyll a (Chl a) characterizing energy absorption by the PS1 and PS2, respectively, were insufficient for revealing the differences in the STs in barley and Arabidopsis plants at various light intensities, because they were not associated with STs at high-intensity illumination. Light-induced accumulation of the LHC2 phosphorylated proteins Lhcb1 and Lhcb2 involved in the relocation of a part of the LHC2 from PS2 to PS1 in the leaves of both plants decreased with the increase in the light intensity and was more pronounced in barley than in Arabidopsis at the same light intensity. Relaxation of the non-photochemical quenching (NPQ) of Chl a fluorescence after illumination corresponding to the return of the part of LHC2 from PS1 to PS2 was observed in barley leaves in a wider range of increasing light intensities than in Arabidopsis leaves. The differences in the accumulation of phosphorylated Lhcb1 and Lhcb2, as well as in the parameters of NPQ relaxation after illumination, revealed that STs in barley leaves could occur not only at low-but also at high-intensity light, when it is absent in Arabidopsis leaves.


Subject(s)
Arabidopsis/radiation effects , Hordeum/radiation effects , Light-Harvesting Protein Complexes/radiation effects , Light , Lighting , Photosynthesis/radiation effects , Arabidopsis/metabolism , Energy Transfer/radiation effects , Hordeum/metabolism , Light-Harvesting Protein Complexes/metabolism
9.
Luminescence ; 34(5): 500-507, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30924274

ABSTRACT

Under a 980-nm excitation, the up-conversion (UC) spectra of LuNbO4 :Yb3+ ,Tm3+ powders exhibited predominantly near-infrared bands (~805 nm) of Tm3+ through an energy transfer process from Yb3+ to Tm3+ . Regarding the down-conversion (DC) luminescence of the powders, the photoluminescence excitation spectra consisted of a broad charge transfer band (270 nm) due to [NbO4 ]3- and sharp band (360 nm) of Tm3+ , while the corresponding emission spectra exhibited a blue emission at 458 nm. Upon substitution of Ga3+ and Ta5+ for Lu3+ and Nb5+ , respectively, both UC and DC luminescence properties were significantly enhanced. For the Ga3+ substitution, the increased emission intensity could be explained by the crystal field asymmetry surrounding the Tm3+ ions induced by the large difference in ionic radius between Ga3+ and Lu3+ . For the Ta5+ substitution, we believe that an M'-LuTaO4 substructure was formed in the host, which led to the formation of a TaO6 octahedral coordination instead of a NbO4 tetrahedral coordination. Consequently, the crystal symmetry of the local structure was modified, and thus the UC and DC luminescence properties were enhanced. The dual-mode (UC and DC) luminescence demonstrates that LuNbO4 :Yb3+ ,Tm3+ has a great potential in the fields of temperature sensing probes, anti-counterfeiting, and bioapplications.


Subject(s)
Gallium/chemistry , Tantalum/chemistry , Thulium/chemistry , Yttrium/chemistry , Color , Energy Transfer/radiation effects , Infrared Rays , Luminescence
10.
Proc Natl Acad Sci U S A ; 112(52): 15880-5, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26669441

ABSTRACT

Photosynthesis relies on energy transfer from light-harvesting complexes to reaction centers. Phycobilisomes, the light-harvesting antennas in cyanobacteria and red algae, attach to the membrane via the multidomain core-membrane linker, L(CM). The chromophore domain of L(CM) forms a bottleneck for funneling the harvested energy either productively to reaction centers or, in case of light overload, to quenchers like orange carotenoid protein (OCP) that prevent photodamage. The crystal structure of the solubly modified chromophore domain from Nostoc sp. PCC7120 was resolved at 2.2 Å. Although its protein fold is similar to the protein folds of phycobiliproteins, the phycocyanobilin (PCB) chromophore adopts ZZZssa geometry, which is unknown among phycobiliproteins but characteristic for sensory photoreceptors (phytochromes and cyanobacteriochromes). However, chromophore photoisomerization is inhibited in L(CM) by tight packing. The ZZZssa geometry of the chromophore and π-π stacking with a neighboring Trp account for the functionally relevant extreme spectral red shift of L(CM). Exciton coupling is excluded by the large distance between two PCBs in a homodimer and by preservation of the spectral features in monomers. The structure also indicates a distinct flexibility that could be involved in quenching. The conclusions from the crystal structure are supported by femtosecond transient absorption spectra in solution.


Subject(s)
Bacterial Proteins/metabolism , Nostoc/metabolism , Phycobiliproteins/metabolism , Phycobilisomes/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Crystallography, X-Ray , Energy Transfer/radiation effects , Kinetics , Light , Models, Molecular , Mutation , Nostoc/genetics , Nostoc/radiation effects , Photosynthesis/radiation effects , Phycobiliproteins/chemistry , Phycobiliproteins/genetics , Protein Folding , Protein Multimerization , Protein Structure, Tertiary , Spectrophotometry/methods
11.
Biochim Biophys Acta ; 1857(6): 634-42, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27013332

ABSTRACT

In the purple phototrophic bacterium Rhodobacter sphaeroides, light harvesting LH2 complexes transfer absorbed solar energy to RC-LH1-PufX core complexes, which are mainly found in the dimeric state. Many other purple phototrophs have monomeric core complexes and the basis for requiring dimeric cores is not fully established, so we analysed strains of Rba. sphaeroides that contain either native dimeric core complexes or altered monomeric cores harbouring a deletion of the first 12 residues from the N-terminus of PufX, which retains the PufX polypeptide but removes the major determinant of core complex dimerization. Membranes were purified from strains with dimeric or monomeric cores, and with either high or low levels of the LH2 complex. Samples were interrogated with absorption, steady-state fluorescence, and picosecond time-resolved fluorescence kinetic spectroscopies to reveal their light-harvesting and energy trapping properties. We find that under saturating excitation light intensity the photosynthetic membranes containing LH2 and monomeric core complexes have fluorescence lifetimes nearly twice that of membranes with LH2 plus dimeric core complexes. This trend of increased lifetime is maintained with RCs in the open state as well, and for two different levels of LH2 content. Thus, energy trapping is more efficient when photosynthetic membranes of Rba. sphaeroides consist of RC-LH1-PufX dimers and LH2 complexes.


Subject(s)
Bacterial Chromatophores/metabolism , Bacterial Proteins/metabolism , Light-Harvesting Protein Complexes/metabolism , Rhodobacter sphaeroides/metabolism , Algorithms , Bacterial Chromatophores/radiation effects , Bacterial Proteins/chemistry , Energy Transfer/radiation effects , Kinetics , Light , Light-Harvesting Protein Complexes/chemistry , Models, Biological , Photosynthesis/radiation effects , Protein Multimerization/radiation effects , Rhodobacter sphaeroides/radiation effects , Spectrophotometry
12.
Biochim Biophys Acta ; 1857(6): 625-33, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26946087

ABSTRACT

The efficient use of excitation energy in photosynthetic membranes is achieved by a dense network of pigment-protein complexes. These complexes fulfill specific functions and interact dynamically with each other in response to rapidly changing environmental conditions. Here, we studied how in the intact cells of Chlamydomonas reinhardtii (C.r.) the lack of the photosystem I (PSI) core or the photosystem II (PSII) core affects these interactions. To that end the mutants F15 and M18 (both PSI-deficient) and FUD7 (PSII-deficient) were incubated under conditions known to promote state transitions in wild-type. The intact cells were then instantly frozen to 77K and the full-spectrum time-resolved fluorescence emission of the cells was measured by means of streak camera. In the PSI-deficient mutants excitation energy transfer (EET) towards light-harvesting complexes of PSI (Lhca) occurs in less than 0.5 ns, and fluorescence from Lhca decays in 3.1 ns. Decreased trapping by PSII and increased fluorescence of Lhca upon state 1 (S1)→state 2 (S2) transition appears in the F15 and less in the M18 mutant. In the PSII-deficient mutant FUD7, quenched (0.5 ns) and unquenched (2 ns) light-harvesting complexes of PSII (LHCII) are present in both states, with the quenched form more abundant in S2 than in S1. Moreover, EET of 0.4 ns from the remaining LHCII to PSI increases upon S1→S2 transition. We relate the excitation energy kinetics observed in F15, M18 and FUD7 to the remodeling of the photosynthetic apparatus in these mutants under S1 and S2 conditions.


Subject(s)
Algal Proteins/metabolism , Chlamydomonas reinhardtii/metabolism , Energy Transfer/physiology , Light-Harvesting Protein Complexes/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Algal Proteins/genetics , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/radiation effects , Energy Transfer/genetics , Energy Transfer/radiation effects , Immunoblotting , Light , Light-Harvesting Protein Complexes/genetics , Mutation , Photosynthesis/genetics , Photosynthesis/physiology , Photosynthesis/radiation effects , Photosystem I Protein Complex/genetics , Photosystem II Protein Complex/genetics , Spectrometry, Fluorescence , Thylakoids/genetics , Thylakoids/metabolism , Thylakoids/radiation effects
13.
J Am Chem Soc ; 139(29): 9807-9810, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28683547

ABSTRACT

Herein, we present the intramolecular [2+2] cycloadditions of dienones promoted through sensitization, using a polypyridyl iridium(III) catalyst, to form bridged cyclobutanes. In contrast to previous examples of straight [2+2] cycloadditions, these efficient crossed additions were achieved under irradiation with visible light. The reactions delivered desired bridged benzobicycloheptanone products with excellent regioselectivity in high yields (up to 96%). This process is superior to previous syntheses of benzobicyclo[3.1.1]heptanones, which are readily converted to B-norbenzomorphan analogues of biological significance. Electrochemical, computational, and spectroscopic studies substantiated the mechanism of triplet energy transfer and explained the unusual regiocontrol.


Subject(s)
Cycloaddition Reaction , Cyclobutanes/chemical synthesis , Energy Transfer/radiation effects , Ketones/chemistry , Light , Photochemical Processes , Catalysis , Cyclobutanes/chemistry , Iridium/chemistry , Molecular Structure
14.
J Am Chem Soc ; 139(43): 15292-15295, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28969423

ABSTRACT

Applicability of phototherapeutic CO-releasing molecules (photoCORMs) is limited because they are activated by harmful and poorly tissue-penetrating near-ultraviolet light. Here, a strategy is demonstrated to activate classical photoCORM Mn2(CO)10 using red light (635 nm). By mixing in solution a triplet photosensitizer (PS) with the photoCORM and shining red light, energy transfer occurs from triplet excited-state 3PS* to a photolabile triplet state of Mn2(CO)10, which, like under near-UV irradiation, led to complete release of carbonyls. Crucially, such "triplet-sensitized CO-release" occurred in solid-state materials: when PS and Mn2(CO)10 were embedded in electrospun nonwoven fabrics, CO was liberated upon irradiation with low-intensity red light (≤36 mW 635 nm).


Subject(s)
Carbon Monoxide/chemistry , Color , Light , Manganese Compounds/chemistry , Manganese Compounds/radiation effects , Polymers/chemistry , Carbon Monoxide/radiation effects , Energy Transfer/radiation effects , Polymers/radiation effects , Ultraviolet Rays/adverse effects
15.
Nat Methods ; 11(9): 923-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25108686

ABSTRACT

We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast global conformational change that arises within picoseconds and precedes the propagation of heat through the protein. This provides direct structural evidence for a 'protein quake': the hypothesis that proteins rapidly dissipate energy through quake-like structural motions.


Subject(s)
Energy Transfer/radiation effects , Lasers , Phycobiliproteins/radiation effects , Phycobiliproteins/ultrastructure , Scattering, Small Angle , X-Ray Diffraction/methods , Phycobiliproteins/chemistry , Protein Conformation/radiation effects , Radiation Dosage
16.
Proc Natl Acad Sci U S A ; 110(24): 10022-7, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23716688

ABSTRACT

Photosynthetic reaction centers are sensitive to high light conditions, which can cause damage because of the formation of reactive oxygen species. To prevent high-light induced damage, cyanobacteria have developed photoprotective mechanisms. One involves a photoactive carotenoid protein that decreases the transfer of excess energy to the reaction centers. This protein, the orange carotenoid protein (OCP), is present in most cyanobacterial strains; it is activated by high light conditions and able to dissipate excess energy at the site of the light-harvesting antennae, the phycobilisomes. Restoration of normal antenna capacity involves the fluorescence recovery protein (FRP). The FRP acts to dissociate the OCP from the phycobilisomes by accelerating the conversion of the active red OCP to the inactive orange form. We have determined the 3D crystal structure of the FRP at 2.5 Å resolution. Remarkably, the FRP is found in two very different conformational and oligomeric states in the same crystal. Based on amino acid conservation analysis, activity assays of FRP mutants, FRP:OCP docking simulations, and coimmunoprecipitation experiments, we conclude that the dimer is the active form. The second form, a tetramer, may be an inactive form of FRP. In addition, we have identified a surface patch of highly conserved residues and shown that those residues are essential to FRP activity.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Cyanobacteria/radiation effects , Light , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalytic Domain , Crystallography, X-Ray , Cyanobacteria/genetics , Electrophoresis, Polyacrylamide Gel , Energy Transfer/radiation effects , Models, Molecular , Mutation , Phycobilisomes/metabolism , Phycobilisomes/radiation effects , Protein Binding , Protein Conformation , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Synechocystis/genetics , Synechocystis/metabolism , Synechocystis/radiation effects
17.
Proc Natl Acad Sci U S A ; 110(24): 10016-21, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23716695

ABSTRACT

Plants and green algae have a low pH-inducible mechanism in photosystem II (PSII) that dissipates excess light energy, measured as the nonphotochemical quenching of chlorophyll fluorescence (qE). Recently, nonphotochemical quenching 4 (npq4), a mutant strain of the green alga Chlamydomonas reinhardtii that is qE-deficient and lacks the light-harvesting complex stress-related protein 3 (LHCSR3), was reported [Peers G, et al. (2009) Nature 462(7272):518-521]. Here, applying a newly established procedure, we isolated the PSII supercomplex and its associated light-harvesting proteins from both WT C. reinhardtii and the npq4 mutant grown in either low light (LL) or high light (HL). LHCSR3 was present in the PSII supercomplex from the HL-grown WT, but not in the supercomplex from the LL-grown WT or mutant. The purified PSII supercomplex containing LHCSR3 exhibited a normal fluorescence lifetime at a neutral pH (7.5) by single-photon counting analysis, but a significantly shorter lifetime at pH 5.5, which mimics the acidified lumen of the thylakoid membranes in HL-exposed chloroplasts. The switch from light-harvesting mode to energy-dissipating mode observed in the LHCSR3-containing PSII supercomplex was sensitive to dicyclohexylcarbodiimide, a protein-modifying agent specific to protonatable amino acid residues. We conclude that the PSII-LHCII-LHCSR3 supercomplex formed in the HL-grown C. reinhardtii cells is capable of energy dissipation on protonation of LHCSR3.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Chlamydomonas reinhardtii/genetics , Dicyclohexylcarbodiimide/pharmacology , Energy Transfer/drug effects , Energy Transfer/radiation effects , Hydrogen-Ion Concentration , Immunoblotting , Kinetics , Light , Light-Harvesting Protein Complexes/genetics , Mutation , Photosystem II Protein Complex/genetics , Plant Proteins/genetics , Protein Binding/drug effects , Protein Binding/radiation effects , Protons , Recombinant Proteins/metabolism , Spectrometry, Fluorescence
18.
Top Curr Chem ; 356: 183-201, 2015.
Article in English | MEDLINE | ID: mdl-24563011

ABSTRACT

Guanine rich DNA strands, such as those encountered at the extremities of human chromosomes, have the ability to form four-stranded structures (G-quadruplexes) whose building blocks are guanine tetrads. G-quadruplex structures are intensively studied in respect of their biological role, as targets for anticancer therapy and, more recently, of their potential applications in the field of molecular electronics. Here we focus on their electronic excited states which are compared to those of non-interacting mono-nucleotides and those of single and double stranded structures. Particular emphasis is given to excited state relaxation processes studied by time-resolved fluorescence spectroscopy from femtosecond to nanosecond time scales. They include ultrafast energy transfer and trapping of ππ* excitations by charge transfer states. The effect of various structural parameters, such as the nature of the metal cations located in the central cavity of G-quadruplexes, the number of tetrads or the conformation of the constitutive single strands, are examined.


Subject(s)
Cytosine/chemistry , Energy Transfer , G-Quadruplexes , Guanine/chemistry , Cytosine/radiation effects , Energy Transfer/radiation effects , G-Quadruplexes/radiation effects , Guanine/radiation effects , Models, Molecular , Molecular Structure , Photochemical Processes , Spectrometry, Fluorescence , Ultraviolet Rays
19.
Phys Chem Chem Phys ; 17(22): 14405-16, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-25872495

ABSTRACT

Light-harvesting pigment-protein complexes (PPC) represent the fundamental units through which the photosynthetic organisms absorb sunlight and funnel the energy to the reaction centre for carrying out the primary energy conversion reactions of photosynthesis. Here we apply a multiscale computational strategy to a specific PPC present in the photosystem II of plants and algae (CP29) to investigate in what detail should the environment effects due to protein and membrane/solvent be included for an accurate description of optical spectra. We find that a refinement of the crystal structure is needed before any meaningful quantum chemical calculations of pigment transition energies can be performed. For this purpose we apply classical molecular dynamics simulations of the PPC within its natural environment and we perform ab initio computations of the exciton Hamiltonian of the complex, including the environment either implicitly by the polarizable continuum model (PCM) or explicitly using the polarizable QM/MM methodology (MMPol). However, PCM essentially leads to an unspecific redshift of all transition energies, and MMPol is able to reveal site-specific changes in the optical properties of the pigments. Based on the latter and the excitonic couplings obtained within a polarizable QM/MM methodology, optical spectra are calculated, which are in good qualitative agreement with experimental data. A weakness of the approach is however found in the overestimation of the fluctuations of the excitonic parameters of the pigments along the MD trajectory. An explanation for such a finding in terms of the limits of the force fields commonly used for protein cofactors is presented and discussed.


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/ultrastructure , Models, Chemical , Molecular Dynamics Simulation , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/ultrastructure , Quantum Theory , Computer Simulation , Energy Transfer/radiation effects , Light , Light-Harvesting Protein Complexes/radiation effects , Photosystem II Protein Complex/radiation effects , Protein Conformation/radiation effects , Radiation Dosage , Spectrum Analysis/methods
20.
J Nanosci Nanotechnol ; 15(8): 5775-84, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26369151

ABSTRACT

UV-vis absorption, steady state and time resolved spectroscopic investigations in pico and nanosecond time domain were made in the different environments on a novel synthesized dyad, 3-(2-methoxynaphthalen-1-yl)-1-(4-methoxyphenyl)prop-2-en-1-one (MNTMA) in its pristine form and when combined with gold (Au) nanoparticles i.e., in its nanocomposite structure. Both steady state and time resolved measurements coupled with the DFT calculations performed by using Gaussian 03 suit of software operated in the linux operating system show that though the dyad exhibits mainly the folded conformation in the ground state but on photoexcitation the nanocomposite form of dyad prefers to be in elongated structure in the excited state indicating its photoswitchable nature. Due to the predominancy of elongated isomeric form of the dyad in the excited state in presence of Au Nps, it appears that the dyad MNTMA may behave as a good light energy converter specially in its nanocomposite form. As larger charge separation rate (kcs ~ 4 x 10(8) s-1) is found relative to the rate associated with the energy wasting charge recombination processes (kcR ~ 3 x 10(5) s-1) in the nanocomposite form of the dyad, it demonstrates the suitability of constructing the efficient light energy conversion devices with Au-dyad hybrid nanomaterials.


Subject(s)
Electric Power Supplies , Gold/chemistry , Metal Nanoparticles/chemistry , Models, Chemical , Nanocomposites/chemistry , Organic Chemicals/chemistry , Computer Simulation , Energy Transfer/radiation effects , Equipment Design , Equipment Failure Analysis , Gold/radiation effects , Light , Materials Testing , Metal Nanoparticles/radiation effects , Nanocomposites/radiation effects , Organic Chemicals/radiation effects , Particle Size , Radiation Dosage , Spectrum Analysis/methods , Surface Properties , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL