Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Eukaryot Microbiol ; 70(4): e12973, 2023.
Article in English | MEDLINE | ID: mdl-36912454

ABSTRACT

Euglenids are a diverse group of flagellates that inhabit most environments and exhibit many different nutritional modes. The most prominent euglenids are phototrophs, but phagotrophs constitute the majority of phylogenetic diversity of euglenids. They are pivotal to our understanding of euglenid evolution, yet we are only starting to understand relationships amongst phagotrophs, with the backbone of the tree being most elusive. Ploeotids make up most of this backbone diversity-yet despite their morphological similarities, SSU rDNA analyses and multigene analyses show that they are non-monophyletic. As more ploeotid diversity is sampled, known taxa have coalesced into some subgroups (e.g. Alistosa), but the relationships amongst these are not always supported and some taxa remain unsampled for multigene phylogenetics. Here, we used light microscopy and single-cell transcriptomics to characterize five ploeotid euglenids and place them into a multigene phylogenetic framework. Our analyses place Decastava in Alistosa; while Hemiolia branches with Liburna, establishing the novel clade Karavia. We describe Hemiolia limna, a freshwater-dwelling species in an otherwise marine clade. Intriguingly, two undescribed ploeotids are found to occupy pivotal positions in the tree: Chelandium granulatum nov. gen. nov. sp. branches as sister to Olkasia, and Gaulosia striata nov. gen. nov. sp. remains an orphan taxon.


Subject(s)
Euglenida , Euglenida/classification , Euglenida/cytology , Euglenida/genetics , British Columbia , Phylogeny , Single-Cell Gene Expression Analysis , Hydrobiology , RNA, Protozoan/genetics
2.
Mol Phylogenet Evol ; 159: 107088, 2021 06.
Article in English | MEDLINE | ID: mdl-33545276

ABSTRACT

Euglenids are a well-known group of single-celled eukaryotes, with phototrophic, osmotrophic and phagotrophic members. Phagotrophs represent most of the phylogenetic diversity of euglenids, and gave rise to the phototrophs and osmotrophs, but their evolutionary relationships are poorly understood. Symbiontids, in contrast, are anaerobes that are alternatively inferred to be derived euglenids, or a separate euglenozoan group. Most phylogenetic studies of euglenids have examined the SSU rDNA only, which is often highly divergent. Also, many phagotrophic euglenids (and symbiontids) are uncultured, restricting collection of other molecular data. We generated transcriptome data for 28 taxa, mostly using a single-cell approach, and conducted the first multigene phylogenetic analyses of euglenids to include phagotrophs and symbiontids. Euglenids are recovered as monophyletic, with symbiontids forming an independent branch within Euglenozoa. Spirocuta, the clade of flexible euglenids that contains both the phototrophs (Euglenophyceae) and osmotrophs (Aphagea), is robustly resolved, with the ploeotid Olkasia as its sister group, forming the new taxon Olkaspira. Ploeotids are paraphyletic, although Ploeotiidae (represented by Ploeotia spp.), Lentomonas, and Keelungia form a robust clade (new taxon Alistosa). Petalomonadida branches robustly as sister to other euglenids in outgroup-rooted analyses. Within Spirocuta, Euglenophyceae is a robust clade that includes Rapaza, and Anisonemia is a well-supported monophyletic group containing Anisonemidae (Anisonema and Dinema spp.), 'Heteronema II' (represented by H. vittatum), and a clade of Neometanema plus Aphagea. Among 'peranemid' phagotrophs, Chasmostoma branches with included Urceolus, and Peranema with the undescribed 'Jenningsia II', while other relationships are weakly supported and consequently the closest sister group to Euglenophyceae remains unresolved. Our results are inconsistent with recent inferences that Entosiphon is the evolutionarily pivotal sister either to other euglenids, or to Spirocuta. At least three transitions between posterior and anterior flagellar gliding occurred in euglenids, with the phylogenetic positions and directions of those transitions remaining ambiguous.


Subject(s)
Euglenida/classification , Phylogeny , Transcriptome , Biological Evolution , Euglenida/genetics
3.
J Eukaryot Microbiol ; 68(1): e12824, 2021 01.
Article in English | MEDLINE | ID: mdl-32865301

ABSTRACT

Green euglenophytes are a group of eukaryotes with ancient origin. In order to understand the evolution of the group, it is interesting to know which characteristics are more primitive. Here, a phylogenetic tree of green euglenophytes based on the 18S rRNA gene was constructed, and ancestral states were reconstructed based on eight morphological characters. This research clarifies the phylogenetic relationships of green euglenophytes and provides a basis for the study of the origin of these plants. The phylogenetic tree, which was constructed by Bayesian inference, revealed that: Eutreptia and Eutreptiella were sister groups and that Lepocinclis, Phacus, and Discoplastis were close relatives; Euglena, Cryptoglena, Monomorphina, and Colacium were closely related in addition to Trachelomonas and Strombomonas; and Euglena was not monophyletic. An ancestral reconstruction based on morphological characters revealed seven primitive character states: ductile surface, spirally striated, slightly narrowing or sharp elongated cauda, absence of a lorica, chloroplast lamellar, shield or large discoid, pyrenoid with sheath, and with many small paramylon grains. However, the ancestral state of the length of the flagellum could not be inferred. Euglena and Euglenaria, which both possessed all of the ancestral character states, might represent the most ancient lineages of green euglenophytes.


Subject(s)
Euglenida/classification , Euglenida/cytology , Euglenida/genetics , Phylogeny , RNA, Protozoan/analysis , RNA, Ribosomal, 18S/analysis
4.
J Eukaryot Microbiol ; 65(5): 648-660, 2018 07.
Article in English | MEDLINE | ID: mdl-29418041

ABSTRACT

The latest studies of chloroplast genomes of phototrophic euglenoids yielded different results according to intrageneric variability such as cluster arrangement or diversity of introns. Although the genera Euglena and Monomorphina in those studies show high syntenic arrangements at the intrageneric level, the two investigated Eutreptiella species comprise low synteny. Furthermore Trachelomonas volvocina show low synteny to the chloroplast genomes of the sister genera Monomorphina aenigmatica, M. parapyrum, Cryptoglena skujae, Euglenaria anabaena, Strombomonas acuminata, all of which were highly syntenic. Consequently, this study aims at the analysis of the cpGenome of Trachelomonas grandis and a comparative examination of T. volvocina to investigate whether the cpGenomes are of such resemblance as could be expected for a genus within the Euglenaceae. Although these analyses resulted in almost identical gene content to other Euglenaceae, the chloroplast genome showed significant novelties: In the rRNA operon, we detected group II introns, not yet found in any other cpGenome of Euglenaceae and a substantially heterogeneous cluster arrangement in the genus Trachelomonas. The phylogenomic analysis with 84 genes of 19 phototrophic euglenoids and 18 cpGenome sequences from Chlorophyta and Streptophyta resulted in a well-supported cpGenome phylogeny, which is in accordance to former phylogenetic analyses.


Subject(s)
Euglenida/genetics , Genome, Chloroplast , Phylogeny , Chloroplasts/genetics , DNA, Chloroplast/genetics , Euglenida/classification , Euglenida/metabolism , Genetic Variation , Introns , Phototrophic Processes , Synteny , rRNA Operon
5.
J Phycol ; 52(3): 404-11, 2016 06.
Article in English | MEDLINE | ID: mdl-27273533

ABSTRACT

The Euglenophyceae chloroplast was acquired when a heterotrophic euglenoid engulfed a green alga and subsequently retained the algal chloroplast, in a process known as secondary endosymbiosis. Since this event, Euglenophyceae have diverged widely and their chloroplast genomes (cpGenomes) have as well. Changes to the cpGenome include extensive gene rearrangement and the proliferation of introns, the analyses of which have proven to be useful in examining cpGenome changes throughout the Euglenophyceae. The Euglenales fall into two families, Euglenaceae and Phacaceae. Euglenaceae contains eight genera and at least one cpGenome has been published for each genus. Phacaceae, on the other hand, contains three genera, none of which have had a representative chloroplast genome sequenced. Members of this family have many small disk-shaped chloroplasts that lack pyrenoids. We sequenced and annotated the cpGenome of Phacus orbicularis in order to fill in the large gap in our understanding of Euglenophyceae cpGenome evolution, especially in regard to intron number and gene order. We compared this cpGenome to those of species from both the Euglenaceae and Eutreptiales of the Euglenophyceae phylogenetic tree. The cpGenome showed characteristics that were more derived than that of the basal species Eutreptia viridis, with extensive gene rearrangements and nearly three times as many introns. In contrast, it contained fewer introns than all but one of the previously reported Euglenaceae cpGenomes, had a smaller estimated genome size, and shared greater synteny with two main branches of that family.


Subject(s)
Euglenida/classification , Euglenida/genetics , Genome, Chloroplast , Evolution, Molecular , Gene Rearrangement , Introns , Molecular Sequence Annotation , Phylogeny , Sequence Analysis, DNA
6.
J Phycol ; 52(6): 951-960, 2016 12.
Article in English | MEDLINE | ID: mdl-27317884

ABSTRACT

Autotrophic euglenids (Euglenophyceae) are a common and abundant group of microbial eukaryotes in freshwater habitats. They have a limited number of features, which can be observed using light microscopy, thus species identification is often problematic. Establishing a barcode for this group is therefore an important step toward the molecular identification of autotrophic euglenids. Based on the literature, we selected verified species and used a plethora of available methods to validate two molecular markers: COI and 18S rDNA (the whole sequence and three fragments separately) as potential DNA barcodes. Analyses of the COI gene were performed based on the data set of 43 sequences (42 obtained in this study) representing 24 species and the COI gene was discarded as a DNA barcode mainly due to a lack of universal primer sites. For 18S rDNA analyses we used a data set containing 263 sequences belonging to 86 taxonomically verified species. We demonstrated that the whole 18S rDNA is too long to be a useful marker, but from the three shorter analyzed variable regions we recommend variable regions V2V3 and V4 of 18S rDNA as autotrophic euglenid barcodes due to their high efficiency (above 95% and 90%, respectively).


Subject(s)
DNA Barcoding, Taxonomic , Euglenida/classification , DNA, Protozoan/genetics , Electron Transport Complex IV/genetics , Euglenida/genetics , Protozoan Proteins/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
7.
J Eukaryot Microbiol ; 62(3): 362-73, 2015.
Article in English | MEDLINE | ID: mdl-25377266

ABSTRACT

Photosynthetic euglenids acquired chloroplasts by secondary endosymbiosis, which resulted in changes to their mode of nutrition and affected the evolution of their morphological characters. Mapping morphological characters onto a reliable molecular tree could elucidate major trends of those changes. We analyzed nucleotide sequence data from regions of three nuclear-encoded genes (nSSU, nLSU, hsp90), one chloroplast-encoded gene (cpSSU) and one nuclear-encoded chloroplast gene (psbO) to estimate phylogenetic relationships among 59 photosynthetic euglenid species. Our results were consistent with previous works; most genera were monophyletic, except for the polyphyletic genus Euglena, and the paraphyletic genus Phacus. We also analyzed character evolution in photosynthetic euglenids using our phylogenetic tree and eight morphological traits commonly used for generic and species diagnoses, including: characters corresponding to well-defined clades, apomorphies like presence of lorica and mucilaginous stalks, and homoplastic characters like rigid cells and presence of large paramylon grains. This research indicated that pyrenoids were lost twice during the evolution of phototrophic euglenids, and that mucocysts, which only occur in the genus Euglena, evolved independently at least twice. In contrast, the evolution of cell shape and chloroplast morphology was difficult to elucidate, and could not be unambiguously reconstructed in our analyses.


Subject(s)
Euglenida/classification , Euglenida/genetics , Evolution, Molecular , Genes, Protozoan , Phylogeny , Computational Biology , Euglenida/cytology , HSP90 Heat-Shock Proteins/genetics , Photosystem II Protein Complex/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
8.
J Eukaryot Microbiol ; 62(6): 773-85, 2015.
Article in English | MEDLINE | ID: mdl-25976746

ABSTRACT

Over the last few years multiple studies have been published outlining chloroplast genomes that represent many of the photosynthetic euglenid genera. However, these genomes were scattered throughout the euglenophyceaean phylogenetic tree, and focused on comparisons with Euglena gracilis. Here, we present a study exclusively on taxa within the Euglenaceae. Six new chloroplast genomes were characterized, those of Cryptoglena skujai, E. gracilis var. bacillaris, Euglena viridis, Euglenaria anabaena, Monomorphina parapyrum, and Trachelomonas volvocina, and added to six previously published chloroplast genomes to determine if trends existed within the family. With this study: at least one genome has now been characterized for each genus, the genomes of different strains from two taxa were characterized to explore intraspecific variability, and a second taxon has been characterized for the genus Monomorphina to examine intrageneric variability. Overall results showed a large amount of variability among the genomes, though a few trends could be identified both within Euglenaceae and within Euglenophyta. In addition, the intraspecific analysis indicated that the similarity of a genome sequence between strains was taxon dependent, and the intrageneric analysis indicated that the majority of the evolutionary changes within the Euglenaceae occurred intergenerically.


Subject(s)
DNA, Chloroplast/genetics , Euglenida/genetics , Evolution, Molecular , Genome, Chloroplast , Base Sequence , Chromosome Mapping , Conserved Sequence , DNA, Chloroplast/chemistry , Euglena gracilis/genetics , Euglenida/classification , Molecular Sequence Annotation , Open Reading Frames , Phylogeny , Sequence Analysis, DNA , Sequence Homology , Synteny
9.
BMC Evol Biol ; 14: 25, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24517416

ABSTRACT

BACKGROUND: Methionine adenosyltransferase (MAT) is a ubiquitous essential enzyme that, in eukaryotes, occurs in two relatively divergent paralogues: MAT and MATX. MATX has a punctate distribution across the tree of eukaryotes and, except for a few cases, is mutually exclusive with MAT. This phylogenetic pattern could have arisen by either differential loss of old paralogues or the spread of one of these paralogues by horizontal gene transfer. Our aim was to map the distribution of MAT/MATX genes within the Euglenida in order to more comprehensively characterize the evolutionary history of MATX. RESULTS: We generated 26 new sequences from 23 different lineages of euglenids and one prasinophyte alga Pyramimonas parkeae. MATX was present only in photoautotrophic euglenids. The mixotroph Rapaza viridis and the prasinophyte alga Pyramimonas parkeae, which harbors chloroplasts that are most closely related to the chloroplasts in photoautotrophic euglenids, both possessed only the MAT paralogue. We found both the MAT and MATX paralogues in two photoautotrophic species (Phacus orbicularis and Monomorphina pyrum). The significant conflict between eukaryotic phylogenies inferred from MATX and SSU rDNA data represents strong evidence that MATX paralogues have undergone horizontal gene transfer across the tree of eukaryotes. CONCLUSIONS: Our results suggest that MATX entered the euglenid lineage in a single horizontal gene transfer event that took place after the secondary endosymbiotic origin of the euglenid chloroplast. The origin of the MATX paralogue is unclear, and it cannot be excluded that it arose by a gene duplication event before the most recent common ancestor of eukaryotes.


Subject(s)
Chlorophyta/enzymology , Euglenida/enzymology , Evolution, Molecular , Methionine Adenosyltransferase/genetics , Protozoan Proteins/genetics , Chlorophyta/genetics , Chlorophyta/physiology , Chloroplasts/genetics , Euglenida/classification , Euglenida/genetics , Euglenida/physiology , Gene Transfer, Horizontal , Molecular Sequence Data , Phylogeny , Symbiosis
10.
J Eukaryot Microbiol ; 61(5): 463-79, 2014.
Article in English | MEDLINE | ID: mdl-24890091

ABSTRACT

Petalomonads are particularly important for understanding the early evolution of euglenids, but are arguably the least studied major group within this taxon. We have established a culture of the biflagellate petalomonad Notosolenus urceolatus, and conducted electron microscopy observations and molecular phylogenetic analysis. Notosolenus urceolatus has eight pellicular strips bordered by grooves and underlain by close-set microtubules. There are ventral and dorsal Golgi bodies. Mitochondria apparently contain fibrous inclusions, as in Petalomonas cantuscygni. A previously undocumented type of large, globular extrusome is present instead of the tubular extrusomes characteristic of Euglenozoa. The feeding apparatus lacks rods and vanes, and is partly supported by an "MTR". The flagella have complex transition zones that are extremely elongated but unswollen. Only the emergent portion of the anterior flagellum has an organised paraxonemal rod, and also has very fine mastigonemes. The basal bodies are offset and lack connecting fibres. 18S rRNA gene phylogenies show that N. urceolatus is closely related to Petalomonas sphagnophila and P. cantuscygni, not Notosolenus ostium, confirming that current generic assignments based on the number of emergent flagella are phylogenetically unreliable, and making it difficult to infer whether features shared by N. urceolatus and P. cantuscygni (for example) are general for petalomonads.


Subject(s)
Euglenida/classification , Euglenida/growth & development , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Euglenida/genetics , Euglenida/isolation & purification , Genes, rRNA , Molecular Sequence Data , Phylogeny
11.
J Eukaryot Microbiol ; 61(2): 166-72, 2014.
Article in English | MEDLINE | ID: mdl-24325246

ABSTRACT

Since its creation in 1917 the genus Cyclidiopsis, and its validity, has been a source of debate among euglenid taxonomists. While many authors have supported its legitimacy, various other authors have considered it to be a subgenus of Astasia or even promoted its complete dissolution. In this study, we have sequenced the small subunit and large subunit ribosomal DNA of Cyclidiopsis acus, the type species for the genus. Subsequent phylogenetic analyses showed that C. acus grouped with taxa from the genus Lepocinclis, which necessitated the removal of this taxon from Cyclidiopsis and into Lepocinclis as Lepocinclis cyclidiopsis nom. nov. After an extensive literature search it was determined that only two other previously described Cyclidiopsis taxa were morphologically distinct, and the rest were reassigned as synonyms of L. cyclidiopsis. These findings prompted a re-examination of the initial description of Cyclidiopsis, and it was determined that the morphological characters establishing the genus as a distinct group were no longer valid in light of current phylogenetic analyses and the emended generic description for Lepocinclis. Therefore, the remaining two taxa were formally moved to the genus Lepocinclis as L. crescentia comb. nov. and L. pseudomermis comb. nov.


Subject(s)
Euglenida/classification , Euglenida/genetics , Cluster Analysis , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Molecular Sequence Data , Phylogeny , RNA, Protozoan/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
12.
Protist ; 175(4): 126045, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851023

ABSTRACT

This study presents the results of a complex survey of freshwater heterotrophic euglenoids in the Czech Republic, including both literature data and own field surveys of 469 sites visited in the course of three years. The checklist includes 189 taxa in 28 genera: Anisonema (10), Astasia (26), Atraktomonas (1), Calycimonas (2), Chasmostoma (1), Dinematomonas (3), Distigma (8), Dylakosoma (1), Entosiphon (4), Euglena (1), Gyropaigne (1), Heteronema (19), Jenningsia (11), Khawkinea (1), Lepocinclis (1), Menoidium (7), Neometanema (3), Notosolenus (18), Petalomonas (40), Phacus (1), Ploeotia (2), Pseudoperanema (7), Rhabdomonas (5), Scytomonas (1), Sphenomonas (5), Teloprocta (1) Tropidocyphus (1), Urceolus (4), and 4 species of uncertain identity. In addition, a general description of habitat types in which the taxa were found and a review of the current taxonomy and nomenclature of included taxa are provided. Several taxonomic and nomenclatural novelties are proposed, based on the review of morphological features, mostly applying to the genera Notosolenus and Jenningsia.


Subject(s)
Euglenida , Czech Republic , Euglenida/classification , Euglenida/genetics , Checklist , Fresh Water , Species Specificity
13.
Protist ; 175(3): 126024, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452550

ABSTRACT

This study reports a comprehensive analysis of photoautotrophic euglenids' distribution and biodiversity in 16 small water bodies of various types (including fish ponds, field ponds, rural ponds and park ponds) located in three regions of Poland: Masovia, Masuria and Pomerania during a period of three years. By employing a euglenid specific barcode marker and a curated database of V2 18S rDNA sequences it was possible to identify 97.7 % of euglenid reads at species level. A total of 152 species classified in 13 genera were identified. The number of euglenid species found in one pond varied from 40 to 102. The most common species were Euglena agilis and Euglenaria caudata, found in every analysed waterbody. The highest number of observed species belonged to Trachelomonas and Phacus. Certain species exhibited a tendency to coexist, suggesting the presence of distinct species assemblages. Among them, the most distinctive cluster was associated with water bodies located in the Masuria region, characterized also by the greatest species richness, including many very rare species: Euglenaformis chlorophoenicea, Lepocinclis autumnalis, L. marssonii, Trachelomonas eurystoma, T. manschurica, T. mucosa, T. zuberi, T. zuberi var. nepos.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Euglenida , Euglenida/genetics , Euglenida/classification , Poland , RNA, Ribosomal, 18S/genetics , Phylogeny , DNA, Protozoan/genetics , Autotrophic Processes , DNA, Ribosomal/genetics
14.
J Eukaryot Microbiol ; 60(6): 615-25, 2013.
Article in English | MEDLINE | ID: mdl-23879661

ABSTRACT

Phagotrophic euglenids are one of the most diverse and important forms of heterotrophic flagellates in sediment systems, and are key to understanding the evolution of photosynthetic euglenids and 'primary osmotrophs', yet relatively little is known about their biodiversity and phylogenetic relationships. A wealth of light microscopy-based information is available, but little progress has been made in associating this with molecular sequence data. We established a protocol to obtain light microscopy data and molecular data from single euglenid cells isolated from environmental samples. Individual cells from freshwater and marine benthic samples were isolated and rinsed by micropipetting, documented using high-resolution photomicroscopy, then subjected to single-cell nested PCR using taxon-specific primers in combination with universal eukaryotic primers, generating > 75% or full-length SSU rDNA sequences. As a proof-of-principle eight individuals were characterised and subjected to phylogenetic analyses. Many of these cells were identified as Anisonema or Dinema, and grouped with existing sequences assigned to these taxa, and with a 'Peranema sp.' sequence that we could now clearly demonstrate was misidentified or misannotated. Another cell is Heteronema c.f. exaratum, the first 'skidding heteronemid' for which sequence data are available. This is not closely related to Heteronema scaphurum, and intriguingly, branches as the sister group to primary osmotrophs. A cell similar to Ploeotia vitrea (the type of this genus), shows no particular phylogenetic affinity to Ploeotia costata, the best studied Ploeotia species. Our experimental protocol provides a useful starting point for future analyses on euglenid biodiversity (including environmental sequence surveys), and their evolution and systematics.


Subject(s)
Euglenida/cytology , Euglenida/genetics , Fresh Water/parasitology , Geologic Sediments/parasitology , Cluster Analysis , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Euglenida/classification , Euglenida/isolation & purification , Genes, rRNA , Microscopy , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , RNA, Protozoan/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
15.
J Eukaryot Microbiol ; 60(2): 107-20, 2013.
Article in English | MEDLINE | ID: mdl-23317460

ABSTRACT

Euglenids comprise a distinct clade of flagellates with diverse modes of nutrition, including phagotrophy, osmotrophy and phototrophy. Much of the previous research on euglenids has focused on phototrophic species because of their ecological abundance and significance as indicators for the health of aquatic ecosystems. Although largely understudied, phagotrophic species probably represent the majority of euglenid diversity. Phagotrophic euglenids tend to be either bacterivorous or eukaryovorous and use an elaborate feeding apparatus for capturing prey cells. We characterized the ultrastructure and molecular phylogenetic position of Heteronema scaphurum, a eukaryovorous euglenid collected in freshwater. This species was equipped with a distinct cytoproct through which waste products were eliminated in the form of faecal pellets; a cytoproct has not been reported in any other member of the Euglenida. Heteronema scaphurum also had a novel predatory mode of feeding. The euglenid ensnared and corralled several green algal prey cells (i.e. Chlamydomonas) with hook-like flagella covered in mucous before engulfing the bundle of prey cells whole. Molecular phylogenetic analyses inferred from small subunit rDNA sequences placed this species with other eukaryovorous euglenids, which was consistent with ultrastructural features associated with the feeding apparatus, flagellar apparatus, extrusomes, and pellicle.


Subject(s)
Euglenida/classification , Euglenida/ultrastructure , Cluster Analysis , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Endocytosis , Euglenida/isolation & purification , Euglenida/physiology , Fresh Water/parasitology , Genes, rRNA , Microscopy , Molecular Sequence Data , Phylogeny , RNA, Protozoan/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
16.
BMC Evol Biol ; 11: 105, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21501489

ABSTRACT

BACKGROUND: Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont. RESULTS: We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome. CONCLUSIONS: Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.


Subject(s)
Chlorophyta/genetics , Euglenida/genetics , Gene Transfer, Horizontal , Genome , Mosaicism , Rhodophyta/genetics , Chlorophyta/physiology , Euglenida/classification , Euglenida/physiology , Molecular Sequence Data , Phylogeny , Plastids/genetics , Rhodophyta/physiology , Symbiosis
17.
J Environ Biol ; 32(4): 463-71, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22315825

ABSTRACT

This study provides valuable information on the ultrastructure and environmental conditions of the Trachelomonas Ehr. (Euglenophyceae) genus in the Guadalupe Dam, a eutrophic reservoir located in the suburbs of Mexico City, which receives a considerable volume of wastewaters. Specimens were collected at surface level between November 2005 and May 2006. Using LM and SEM twelve taxa from phytoplankton were identified of which, 9 are new records for Mexico. The reservoir is warm monomictic, with basic pH values (7.4-10.1), a high concentration of chlorophyll a(18-101 microg l(-1), a permanent anoxic bottom, specific conductivity (K25) of 205 to 290 microS cm(-1), N-NO3, 0.19-1.2 mg l(-1) and P-PO4 0.22-1.6 mg l(-1). Water temperature was 15.6-23.0 degrees C. Most of the Trachelomonas species were found during the dry season, when concentrations of organic matter, nitrogen and phosphorus as well as the temperature were the highest. Higher species richness was also associated with the warmer months. This research contributes to increase our knowledge on Trachelomonas in Mexico and constitutes the first detailed description of lorica ultrastructure of 12 taxa that grow in a body of water with high concentration of nutrients and a moderate amount of mineral contents.


Subject(s)
Euglenida/classification , Water Supply , Euglenida/ultrastructure , Mexico
18.
Protist ; 171(5): 125757, 2020 11.
Article in English | MEDLINE | ID: mdl-33126020

ABSTRACT

Euglenids are a diverse group of euglenozoan flagellates that includes phototrophs, osmotrophs, and phagotrophs. Despite making up most of the phylogenetic diversity of euglenids, phagotrophs remain understudied, and recent work has focused on 'deep-branching' groups. Spirocuta is the large clade encompassing all flexible euglenids including the phototroph and primary osmotroph clades, plus various phagotrophs. Understanding the phylogenetic diversity of phagotrophic spirocutes is crucial for tracing euglenid evolution, including how phototrophs arose. We used single-cell approaches to greatly increase sampling of SSU rDNA for phagotrophic euglenids, particularly spirocutes, including the first sequences from Urceolus, Jenningsia, Chasmostoma, and Sphenomonas, and expanded coverage for Dinema and Heteronema sensu lato, amongst others. Urceolus monophyly is unconfirmed. Organisms referred to Jenningsia form two distinct clades. Heteronema vittatum and similar cells branch separately from Heteronema (c.f.) globuliferum and Teloprocta/Heteronema scaphurum, while Dinema appears as 2-3 clades. Sphenomonas is monophyletic and the deepest branch within Petalomonadida. The census of genera markedly underestimates the phylogenetic diversity of phagotrophs, but taxonomic restraint is necessary when sequences are not available from type species or reasonable surrogates. SSU rDNA phylogenies do not resolve most deep relationships within Spirocuta, but identify units of diversity to sample in future multigene analyses.


Subject(s)
Euglenida/classification , Genetic Variation , Euglenida/genetics , Phylogeny , RNA, Ribosomal, 18S/genetics , Species Specificity
19.
Environ Microbiol Rep ; 12(1): 78-91, 2020 02.
Article in English | MEDLINE | ID: mdl-31845515

ABSTRACT

Euglenophyceae are unicellular algae with the majority of their diversity known from small freshwater reservoirs. Only two dozen species have been described to occur in marine habitats, but their abundance and diversity remain unexplored. Phylogenetic studies revealed marine prasinophyte green alga, Pyramimonas parkeae, as the closest extant relative of the euglenophytes' plastid, but similarly to euglenophytes, our knowledge about the diversity of Pyramimonadales is limited. Here we explored Euglenophyceae and Pyramimonadales phylogenetic diversity in marine environmental samples. We yielded 18S rDNA and plastid 16S rDNA sequences deposited in public repositories and reconstructed Euglenophyceae reference trees. We searched high-throughput environmental sequences from the TARA Oceans expedition and Ocean Sampling Day initiative for 18S rDNA and 16S rDNA, placed them in the phylogenetic context and estimated their relative abundances. To avoid polymerase chain reaction (PCR) bias, we also exploited metagenomic data from the TARA Oceans expedition for the presence of rRNA sequences from these groups. Finally, we targeted these protists in coastal samples by specific PCR amplification of two parts of the plastid genome uniquely shared between euglenids and Pyramimonadales. All approaches revealed previously undetected, but relatively low-abundant lineages of marine Euglenophyceae. Surprisingly, some of those lineages are branching within the freshwater or brackish genera.


Subject(s)
Chlorophyta/genetics , Genome, Chloroplast , Chlorophyta/classification , DNA, Plant/genetics , DNA, Ribosomal/genetics , Euglenida/classification , Euglenida/genetics , Genome, Plant , Photosynthesis , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 18S/genetics
20.
BMC Microbiol ; 9: 16, 2009 Jan 27.
Article in English | MEDLINE | ID: mdl-19173734

ABSTRACT

BACKGROUND: The Euglenozoa is a large group of eukaryotic flagellates with diverse modes of nutrition. The group consists of three main subclades - euglenids, kinetoplastids and diplonemids--that have been confirmed with both molecular phylogenetic analyses and a combination of shared ultrastructural characteristics. Several poorly understood lineages of putative euglenozoans live in anoxic environments, such as Calkinsia aureus, and have yet to be characterized at the molecular and ultrastructural levels. Improved understanding of these lineages is expected to shed considerable light onto the ultrastructure of prokaryote-eukaryote symbioses and the associated cellular innovations found within the Euglenozoa and beyond. RESULTS: We collected Calkinsia aureus from core samples taken from the low-oxygen seafloor of the Santa Barbara Basin (580 - 592 m depth), California. These biflagellates were distinctively orange in color and covered with a dense array of elongated epibiotic bacteria. Serial TEM sections through individually prepared cells demonstrated that C. aureus shares derived ultrastructural features with other members of the Euglenozoa (e.g. the same paraxonemal rods, microtubular root system and extrusomes). However, C. aureus also possessed several novel ultrastructural systems, such as modified mitochondria (i.e. hydrogenosome-like), an "extrusomal pocket", a highly organized extracellular matrix beneath epibiotic bacteria and a complex flagellar transition zone. Molecular phylogenies inferred from SSU rDNA sequences demonstrated that C. aureus grouped strongly within the Euglenozoa and with several environmental sequences taken from low-oxygen sediments in various locations around the world. CONCLUSION: Calkinsia aureus possesses all of the synapomorphies for the Euglenozoa, but lacks traits that are specific to any of the three previously recognized euglenozoan subgroups. Molecular phylogenetic analyses of C. aureus demonstrate that this lineage is a member of a novel euglenozoan subclade consisting of uncharacterized cells living in low-oxygen environments. Our ultrastructural description of C. aureus establishes the cellular identity of a fourth group of euglenozoans, referred to as the "Symbiontida".


Subject(s)
Euglenida/genetics , Euglenida/ultrastructure , Phylogeny , Animals , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Euglenida/classification , Microscopy, Electron, Transmission , Sequence Alignment , Sequence Analysis, DNA , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL