Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.236
Filter
1.
J Biol Chem ; 295(8): 2186-2202, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31771979

ABSTRACT

Tyrosyl-tRNA synthetase ligates tyrosine to its cognate tRNA in the cytoplasm, but it can also be secreted through a noncanonical pathway. We found that extracellular tyrosyl-tRNA synthetase (YRS) exhibited proinflammatory activities. In addition to acting as a monocyte/macrophage chemoattractant, YRS initiated signaling through Toll-like receptor 2 (TLR2) resulting in NF-κB activation and release of tumor necrosis factor α (TNFα) and multiple chemokines, including MIP-1α/ß, CXCL8 (IL8), and CXCL1 (KC) from THP1 monocyte and peripheral blood mononuclear cell-derived macrophages. Furthermore, YRS up-regulated matrix metalloproteinase (MMP) activity in a TNFα-dependent manner in M0 macrophages. Because MMPs process a variety of intracellular proteins that also exhibit extracellular moonlighting functions, we profiled 10 MMPs for YRS cleavage and identified 55 cleavage sites by amino-terminal oriented mass spectrometry of substrates (ATOMS) positional proteomics and Edman degradation. Stable proteoforms resulted from cleavages near the start of the YRS C-terminal EMAPII domain. All of the MMPs tested cleaved at ADS386↓387LYV and VSG405↓406LVQ, generating 43- and 45-kDa fragments. The highest catalytic efficiency for YRS was demonstrated by MMP7, which is highly expressed by monocytes and macrophages, and by neutrophil-specific MMP8. MMP-cleaved YRS enhanced TLR2 signaling, increased TNFα secretion from macrophages, and amplified monocyte/macrophage chemotaxis compared with unprocessed YRS. The cleavage of YRS by MMP8, but not MMP7, was inhibited by tyrosine, a substrate of the YRS aminoacylation reaction. Overall, the proinflammatory activity of YRS is enhanced by MMP cleavage, which we suggest forms a feed-forward mechanism to promote inflammation.


Subject(s)
Extracellular Space/enzymology , Inflammation Mediators/metabolism , Matrix Metalloproteinases/metabolism , Tyrosine-tRNA Ligase/metabolism , Chemokines/metabolism , Chemotaxis , Enzyme Stability , Humans , Macrophages/metabolism , Models, Biological , Monocytes/metabolism , NF-kappa B/metabolism , Signal Transduction , Substrate Specificity , THP-1 Cells , Toll-Like Receptor 2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tyrosine/metabolism
2.
Cell Commun Signal ; 19(1): 49, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33933071

ABSTRACT

BACKGROUND: Microtubule-associated protein Tau undergoes aggregation in Alzheimer`s disease (AD) and a group of other related diseases collectively known as Tauopathies. In AD, Tau forms aggregates, which are deposited intracellularly as neurofibrillary tangles. Histone deacetylase-6 (HDAC6) plays an important role in aggresome formation, where it recruits polyubiquitinated aggregates to the motor protein dynein. METHODS: Here, we have studied the effects of HDAC6 ZnF UBP on Tau phosphorylation, ApoE localization, GSK-3ß regulation and cytoskeletal organization in neuronal cells by immunocytochemical analysis. This analysis reveals that the cell exposure to the UBP-type zinc finger domain of HDAC6 (HDAC6 ZnF UBP) can modulate Tau phosphorylation and actin cytoskeleton organization. RESULTS: HDAC6 ZnF UBP treatment to cells did not affect their viability and resulted in enhanced neurite extension and formation of structures similar to podosomes, lamellipodia and podonuts suggesting the role of this domain in actin re-organization. Also, HDAC6 ZnF UBP treatment caused increase in nuclear localization of ApoE and tubulin localization in microtubule organizing centre (MTOC). Therefore, our studies suggest the regulatory role of this domain in different aspects of neurodegenerative diseases. Upon HDAC6 ZnF UBP treatment, inactive phosphorylated form of GSK-3ß increases without any change in total GSK-3ß level. CONCLUSIONS: HDAC6 ZnF UBP was found to be involved in cytoskeletal re-organization by modulating actin dynamics and tubulin localization. Overall, our study suggests that ZnF domain of HDAC6 performs various regulatory functions apart from its classical function in aggresome formation in protein misfolding diseases. Video abstract.


Subject(s)
Actins/metabolism , Extracellular Space/enzymology , Histone Deacetylase 6/chemistry , Histone Deacetylase 6/metabolism , Protein Processing, Post-Translational , Zinc Fingers , tau Proteins/metabolism , Animals , Apolipoproteins E/metabolism , Apoptosis , Cell Line , Cell Nucleus/metabolism , Down-Regulation , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Mice , Microtubule-Organizing Center/metabolism , Models, Biological , Neurons/metabolism , Phosphorylation , Podosomes/metabolism , Protein Domains , Tubulin/metabolism
3.
Cell Biol Int ; 45(3): 536-548, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32052524

ABSTRACT

Laccases are enzymes belonging to the family of blue copper oxidases. Due to their broad substrate specificity, they are widely used in many industrial processes and environmental bioremediations for removal of a large number of pollutants. During last decades, laccases attracted scientific interest also as highly promising enzymes to be used in bioanalytics. The aim of this study is to obtain a highly purified laccase from an efficient fungal producer and to demonstrate the applicability of this enzyme for analytics and bioremediation. To select the best microbial source of laccase, a screening of fungal strains was carried out and the fungus Monilinia fructicola was chosen as a producer of an extracellular enzyme. Optimal cultivation conditions for the highest yield of laccase were established; the enzyme was purified by a column chromatography and partially characterized. Molecular mass of the laccase subunit was determined to be near 35 kDa; the optimal pH ranges for the highest activity and stability are 4.5-5.0 and 3.0-5.0, respectively; the optimal temperature for laccase activity is 30°C. Laccase preparation was successfully used as a biocatalyst in the amperometric biosensor for bisphenol A assay and in the bioreactor for bioremediation of some xenobiotics.


Subject(s)
Ascomycota/enzymology , Extracellular Space/enzymology , Laccase/isolation & purification , Laccase/metabolism , Ascomycota/drug effects , Ascomycota/growth & development , Benzhydryl Compounds/metabolism , Benzothiazoles/metabolism , Biodegradation, Environmental/drug effects , Bioreactors/microbiology , Calibration , Carbon/pharmacology , Diclofenac/metabolism , Electrochemistry , Electrodes , Kinetics , Nitrogen/pharmacology , Phenols/metabolism , Salts/pharmacology , Sulfonic Acids/metabolism , Xenobiotics/metabolism
4.
Plant Cell Rep ; 40(2): 361-374, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33392730

ABSTRACT

KEY MESSAGE: MANNANASE7 gene in Brassica napus L. encodes a hemicellulose which located at cell wall or extracellular space and dehiscence-resistance can be manipulated by altering the expression of MANNANASE7. Silique dehiscence is an important physiological process in plant reproductive development, but causes heavy yield loss in crops. The lack of dehiscence-resistant germplasm limits the application of mechanized harvesting and greatly restricts the rapeseed (Brassica napus L.) production. Hemicellulases, together with cellulases and pectinases, play important roles in fruit development and maturation. The hemicellulase gene MANNANASE7 (MAN7) was previously shown to be involved in the development and dehiscence of Arabidopsis (Arabidopsis thaliana) siliques. Here, we cloned BnaA07g12590D (BnMAN7A07), an AtMAN7 homolog from rapeseed, and demonstrate its function in the dehiscence of rapeseed siliques. We found that BnMAN7A07 was expressed in both vegetative and reproductive organs and significantly highly expressed in leaves, flowers and siliques where the abscission or dehiscence process occurs. Subcellular localization experiment showed that BnMAN7A07 was localized in the cell wall. The biological activity of the BnMAN7A07 protein isolated and purified through prokaryotic expression system was verified to catalyse the decomposition of xylan into xylose. Phenotypic studies of RNA interference (RNAi) lines revealed that down-regulation of BnMAN7A07 in rapeseed could significantly enhance silique dehiscence-resistance. In addition, the expression of upstream silique development regulators is altered in BnMAN7A07-RNAi plants, suggesting that a possible feedback regulation mechanism exists in the regulation network of silique dehiscence. Our results demonstrate that dehiscence-resistance can be manipulated by altering the expression of hemicellulase gene BnMAN7A07, which could provide an available genetic resource for breeding practice in rapeseed which is beneficial to mechanized harvest.


Subject(s)
Brassica napus/enzymology , Glycoside Hydrolases/metabolism , Polysaccharides/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassica napus/genetics , Cell Wall/enzymology , Down-Regulation , Extracellular Space/enzymology , Flowers/enzymology , Flowers/genetics , Gene Expression Regulation, Plant , Glycoside Hydrolases/genetics , Mannosidases/genetics , Mannosidases/metabolism , Plant Breeding , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
5.
J Sci Food Agric ; 101(12): 5154-5162, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33608926

ABSTRACT

BACKGROUND: Alginate lyases (EC 4.4.2.3/4.4.2.11) have been applied to produce alginate oligosaccharides, which have physiological advantages such as prebiotic and antidiabetic effects, and are of benefit in the food and pharmaceutical industries. Extracellular production of recombinant proteins in Escherichia coli presents advantages including simplified downstream processing and high productivity; however, the presence of certain signal peptides does not always ensure successful secretion, which make the extracellular production of alginate lyase in E. coli rarely reported but of great significance. RESULTS: A PL7 family alginate lyase, Aly01, with its native signal peptide from Vibrio natriegens SK42.001, was identified, characterized, and extracellularly expressed in E. coli. The enzyme specifically released trisaccharide from alginate and was strictly NaCl activated. Green fluorescent protein (GFP) was fused with the Aly01 signal peptide and successfully secreted in E. coli to expand the feasibility of using this signal peptide to produce other heterologous proteins extracellularly. Through a synergistic strategy of utilizing Terrific Broth (TB) medium supplemented with 120 mmol L-1 glycine and 10 mmol L-1 calcium, the lag phase of protein secretion was reduced to 3 h from 12 h; meanwhile calcium remedied glycine-related cell growth impairment, leading to further enhancement of overall enzyme productivity, reaching a maximum of 4.55 U mL-1 . CONCLUSION: A new salt-activated alginate lyase, Aly01, was identified and characterized. E. coli employed its signal peptide and extracellularly expressed both Aly01 and a GFP, which indicated the signal peptide of Aly01 could be a powerful tool for extracellular production of other heterologous proteins in E. coli. © 2021 Society of Chemical Industry.


Subject(s)
Escherichia coli/genetics , Extracellular Space/enzymology , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/genetics , Sodium Chloride/metabolism , Alginates/metabolism , Amino Acid Sequence , Cloning, Molecular , Enzyme Activation , Enzyme Stability , Escherichia coli/metabolism , Extracellular Space/chemistry , Extracellular Space/genetics , Gene Expression , Hydrogen-Ion Concentration , Polysaccharide-Lyases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sodium Chloride/chemistry , Substrate Specificity
6.
Dokl Biochem Biophys ; 499(1): 220-224, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34426915

ABSTRACT

A reusable system for phenol determination in an aqueous medium was obtained by adsorption of extracellular oxidase from fungus Neonothopanus nambi onto modified nanodiamonds (MND) synthesized by detonation. It was found that the enzyme strongly binds to MND and exhibits catalytic activity in the reaction of co-oxidation of phenol with 4-aminoantipyrine without the addition of hydrogen peroxide. In the presence of the MND-oxidase complex, a significantly (by an order of magnitude) higher yield of the reaction product is recorded as compared to the yield in the presence of a free enzyme; the mechanism of the revealed effect is discussed. Model experiments have demonstrated the multiple use of the MND-oxidase complex for testing phenol in aqueous samples. The immobilized enzyme exhibits functional activity during long-term (2 months) storage of the MND-oxidase complex at 4°C. The data obtained create the prerequisites for using the created system in environmental monitoring of water pollution with phenol.


Subject(s)
Basidiomycota/enzymology , Biosensing Techniques/methods , Extracellular Space/enzymology , Nanodiamonds/chemistry , Oxidoreductases/metabolism , Phenol/analysis , Water/chemistry , Basidiomycota/cytology , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Oxidoreductases/chemistry
7.
Bioconjug Chem ; 31(3): 781-793, 2020 03 18.
Article in English | MEDLINE | ID: mdl-31894970

ABSTRACT

The concept of triggered drug release offers a possibility to overcome the toxic side effects of chemotherapeutics in cancer treatment by reducing systemic exposure to the active drug. In the present work, the concept foresees the use of the extracellular enzyme MMP9 as an enzymatic trigger for drug release in the proximity of tumor cells. METHODS: A paclitaxel-hemisuccinate-peptide conjugate as a building block for self-assembling nanoparticles was synthesized using standard conjugation approaches. The building block was purified via preparative HPLC and analyzed by LC-MS. Nanoparticles were formed using the nanoprecipitation method and characterized. For selection of a suitable in vitro model system, common bioanalytical methods were used to determine mRNA expression, enzyme amount, and activity of MMP9. RESULTS: The MMP9-labile prodrug was synthesized and characterized. Nanoparticles were formed out of MMP9-labile conjugate-building blocks. The nanoparticle's diameter averaged at around 120 nm and presented a spherical shape. LN-18 cells, a glioblastoma multiforme derived cell line, were chosen as an in vitro model based on findings in cancer tissue and cell line characterization. The prodrug showed cytotoxicity in LN-18 cells, which was reduced by addition of an MMP9 inhibitor. CONCLUSION: taken together, we confirmed increased MMP9 in several cancer tissues (cervical, esophageal, lung, and brain) compared to healthy tissue and showed the effectiveness of MMP9-labile prodrug in in vitro tests.


Subject(s)
Drug Design , Extracellular Space/enzymology , Matrix Metalloproteinase 9/metabolism , Paclitaxel/chemistry , Cell Line, Tumor , Cell Survival , Chemistry Techniques, Synthetic , Humans , Matrix Metalloproteinase 9/genetics , Paclitaxel/metabolism , Particle Size , Peptides/chemistry , Polyethylene Glycols/chemistry , RNA, Messenger/genetics
8.
Int J Mol Sci ; 21(2)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936535

ABSTRACT

Artificial light at night (ALAN/A) can not only alter the behavior and communication of biological organisms, it can also interact with other stressors. Despite its widespread use and the numerous potential ecological effects, little is known about the impact of ALAN on plant litter decomposition under cadmium (Cd) pollution in aquatic ecosystems. In an indoor microcosm experiment, we tested single and combined effects of ALAN and Cd on the activities and community structure of fungi associated with plant litter. The results showed that ALAN and/or Cd can change both water and leaf litter characteristics. ALAN exposure not only altered fungal community structure and their correlations, but also increased the activities of alkaline phosphatase, ß-glucosidase, and cellobiohydrolase. The leaf litter decomposition rate was 71% higher in the A-Cd treatment than that in the N-Cd treatment, indicating that the presence of ALAN weakened the negative impact of Cd on leaf litter decomposition. These results suggested that ALAN exposure mitigated the negative effect of Cd on leaf litter decomposition, contributing to the duel effect of ALAN on leaf litter decomposition. Overall, the results expand our understanding of ALAN on the environment and highlight the contribution of ALAN to Cd toxicity in aquatic ecosystems.


Subject(s)
Cadmium/toxicity , Environmental Pollution , Light , Microbiota/drug effects , Plant Leaves/microbiology , Biomass , Discriminant Analysis , Extracellular Space/enzymology , Fungi/classification , Fungi/drug effects , Plant Leaves/chemistry , Plant Leaves/drug effects , Rivers/chemistry , Species Specificity , Water/chemistry
9.
BMC Biotechnol ; 19(1): 29, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31118018

ABSTRACT

BACKGROUND: Several types of phospholipases have been described in phospholipids modification. The majority of phospholipase D (PLD) superfamily members can catalyze two separate reactions: the hydrolysis of phospholipids to produce phosphatidic acid (PA) and the transphosphatidylation of phosphatidyl groups into various phosphatidyl alcohols to produce modified phospholipids. Transphosphatidylation is a useful biocatalytic method for the synthesis of functional phospholipids from lecithin or phosphatidylcholine (PC), which are both easily accessible. Different PLD coding genes have been cloned from various sources from viral, prokaryotic, and eukaryotic organisms. Despite the catalytic potential of PLD, their low productivity has hampered their practical applications, probably because PLD, which is highly toxic to the host cells, when transformation of the PLD genes into the host cells, degrade PLs in the cell membrane. In this study, we designed a novel two-step expression system to produce and secrete recombinant PLD in extracellular medium, cellulose-binding domains as an affinity fused with PLD for immobilization and purification proteins. RESULTS: The engineered BL21 (DE3) host strain, which harbored the final expression vector pET28a-PLD-CBD-araC-ESN, was induced by IPTG and L-arabinose, the cell density decreased rapidly over a 2 h period and the enzymes released into the extracellular medium accounts owned 81.75% hydrolytic activity. Scanning electron microscopy results showed that there were obvious structural changes on the cell surface. The extracellularly secreted PLD-CBD powder was used to catalyze the transphosphatidylation reaction synthesis of phosphatidylserine, 2.3 U enzymes reacted for 12 h, during which the conversion rate reached 99% with very few by-products being produced. When the fused protein PLD-CBD immobilized on microcrystalline cellulose, the enzymes can be cycle used five times with 26% conversion rate was preserved. CONCLUSIONS: This study introduced an effective method for use in the expression of recombinant proteins and their extracellular secretion that simplifies the steps of sonication and purification and demonstrates great potential in the industrial application of enzymes. Cellulose as the most abundant renewable biomass resources in nature, and the cost is low, used for PLD immobilization make it more simple, effective and sustainable.


Subject(s)
Cellulose/metabolism , Enzymes, Immobilized/metabolism , Extracellular Space/enzymology , Phospholipase D/metabolism , Recombinant Fusion Proteins/metabolism , Autolysis , Binding Sites , Biocatalysis , Enzymes, Immobilized/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/ultrastructure , Genetic Engineering/methods , Kinetics , Microscopy, Electron, Scanning , Phospholipase D/genetics , Phospholipids/metabolism , Recombinant Fusion Proteins/genetics , Reproducibility of Results , Substrate Specificity
10.
Biosci Biotechnol Biochem ; 83(10): 1974-1984, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31216942

ABSTRACT

Burkholderia stabilis FERMP-21014 produces highly active cholesterol esterase in the presence of fatty acids. To develop an overexpression system for cholesterol esterase production, we carried out RNA sequencing analyses to screen strongly active promoters in FERMP-21014. Based on gene expression consistency analysis, we selected nine genes that were consistently expressed at high levels, following which we constructed expression vectors using their promoter sequences and achieved overproduction of extracellular cholesterol esterase under fatty acid-free conditions. Of the tested promoters, the promoter of BSFP_0720, which encodes the alkyl hydroperoxide reductase subunit AhpC, resulted in the highest cholesterol esterase activity (24.3 U mL-1). This activity level was 243-fold higher than that of the wild-type strain under fatty acid-free conditions. We confirmed that cholesterol esterase was secreted without excessive accumulation within the cells. The gene expression consistency analysis will be useful to screen promoters applicable to the overexpression of other industrially important enzymes.


Subject(s)
Burkholderia/genetics , Promoter Regions, Genetic , Sterol Esterase/biosynthesis , Extracellular Space/enzymology , Genes, Bacterial , Recombinant Proteins/biosynthesis , Sequence Analysis, RNA
11.
Ecotoxicol Environ Saf ; 181: 481-490, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31228824

ABSTRACT

Peroxidases and catalases are well-known antioxidant enzymes produced in almost all living organisms for the elimination of reactive oxygen species (ROS) and thus they prevent the occurrence of oxidative stress. In our study we focused on two soil fungi of the family Chaetomiaceae (mesophilic Chaetomium cochliodes and its thermophilic counterpart C. thermophilum var. dissitum) in order to explore the presence of peroxidase and catalase genes, formation of their native transcripts and protective effect of corresponding translation products in a case study. Predicted genes of our interest were confirmed by genomic PCR and their inducible transcripts by RT-PCR. We were able to quantify the expression levels of newly discovered fungal heme peroxidases and catalases with the reverse-transcription quantitative real-time PCR method. We compared obtained quantitative levels of mRNA production with the level of corresponding extracellular protein occurrence as detected with monitoring their specific peroxidase and catalase activities directly in the cultivation media at optimal growth temperatures. The presence of secretory Catalase 2 from C. thermophilum var. dissitum was detected and identified with mass spectrometry approach directly in the growth medium. This unique catalase is phylogenetically closely related with a previously described catalase-phenol oxidase thus representing an effective and versatile antioxidant in the environment of the fungal mycelia also involved in the catabolism of recalcitrant phenolic substances.


Subject(s)
Ascomycota/metabolism , Catalase/metabolism , Extracellular Space/enzymology , Oxidative Stress , Peroxidases/metabolism , Antioxidants/metabolism , Ascomycota/classification , Ascomycota/enzymology , Ascomycota/genetics , Catalase/genetics , Culture Media/metabolism , Extracellular Space/metabolism , Oxidation-Reduction , Peroxidases/genetics , Phylogeny , Temperature
12.
J Environ Sci (China) ; 76: 249-258, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30528015

ABSTRACT

A 120-day experiment was conducted to compare the removal of polycyclic aromatic hydrocarbons (PAHs) from agricultural soil after natural attenuation (NA), phytoremediation (P), mycoremediation (M), and plant-assisted mycoremediation (PAM) approaches in relation to the extracellular enzyme activities in soil. The NA treatment removed the total soil PAH content negligibly. The P treatment using maize (Zea mays) enhanced only the removal of low and medium molecular PAHs. The Pleurotus ostreatus cultivated on 30-50 mm wood chip substrate used in M treatment was the most successful in the removal of majority PAHs. Therefore, significantly (p < 0.05) highest total PAH removal by 541.4 µg/kg dw (dry weight) (36%) from all tested M treatments was observed. When using the same fungal substrate together with maize in PAM treatment, the total PAH removal was not statistically different from the previous M treatment. However, the maize-assisted mycoremediation treatment significantly boosted fungal biomass, microbial and manganese peroxidase activity in soil which strongly correlated with the removal of total PAHs. The higher PAH removal in that PAM treatment could be reflected in the following post-harvest time. Our suggested M and PAM approaches could be promising in situ bioremediation strategies for PAH-contaminated soils.


Subject(s)
Extracellular Space/enzymology , Peroxidases/metabolism , Polycyclic Aromatic Hydrocarbons/isolation & purification , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/isolation & purification , Soil Pollutants/metabolism , Soil/chemistry , Biodegradation, Environmental , Biomass , Pleurotus/cytology , Pleurotus/metabolism , Zea mays/cytology , Zea mays/metabolism
13.
Lab Invest ; 98(2): 248-257, 2018 02.
Article in English | MEDLINE | ID: mdl-29035383

ABSTRACT

The Nm23/NME gene family has been under intensive study since Nm23H1/NME1 was identified as the first metastasis suppressor. Inverse correlation between the expression levels of NME1/2 and prognosis has indeed been demonstrated in different tumor cohorts. Interestingly, the presence of NME proteins in the extracellular environment in normal and tumoral conditions has also been noted. In many reported cases, however, these extracellular NME proteins exhibit anti-differentiation or oncogenic functions, contradicting their canonical anti-metastatic action. This emerging field thus warrants further investigation. In this review, we summarize the current understanding of extracellular NME proteins. A role in promoting stem cell pluripotency and inducing development of central nervous system as well as a neuroprotective function of extracellular NME have been suggested. Moreover, a tumor-promoting function of extracellular NME also emerged at least in some tumor cohorts. In this complex scenario, the secretory mechanism through which NME proteins exit cells is far from being understood. Recently, some evidence obtained in the Drosophila and cancer cell line models points to the involvement of Dynamin in controlling the balance between intra- and extracellular levels of NME. Further analyses on extracellular NME will lead to a better understanding of its physiological function and in turn will allow understanding of how its deregulation contributes to carcinogenesis.


Subject(s)
Extracellular Space/enzymology , NM23 Nucleoside Diphosphate Kinases/metabolism , Neoplasms/enzymology , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , NM23 Nucleoside Diphosphate Kinases/genetics , Neoplasm Metastasis , Neoplasms/genetics , Neoplasms/pathology
14.
Protein Expr Purif ; 147: 1-12, 2018 07.
Article in English | MEDLINE | ID: mdl-29452270

ABSTRACT

Rhizopus oryzae lipase (ROL) is an important industrial enzyme limited in application due to its low production in native strains. Here, we used a new combined strategy to overexpress ROL in Pichia pastoris. An efficient method based on bio-brick was developed to construct a series of vectors harboring different copy numbers of ROL gene cassettes, which were then transformed into P. pastoris GS115 to generate a strain with specific copy numbers of ROL. An optimized gene-dosage recombinant strain of GS115/pAOα-5ROL 11# harboring five copies of ROL was screened, revealing production of the highest activity (2700 U/mL), which was 8-fold higher than that of the strain harboring one copy. The activity of GS115/pAOα-5ROL 11# was then enhanced to 3080 U/mL in a shaking flask under optimized culture conditions. Subsequently, the endoplasmic reticulum-associated protein-degradation-related genes Ubc1 or/and Hrd1 were co-expressed with ROL to further increase ROL expression. The activities of the recombinant strains, GS115/5ROL-Ubc1 22#, -Hrd1 15#, and -Hrd1-Ubc1 1#, were 4000 U/mL, 4200 U/mL, and 4750 U/mL, which was 29.9%, 36.4%, and 54.2% higher, respectively, than that observed in GS115/pAOα-5ROL 11#. Using the combined strategy, ROL expression was improved 15.8-fold, with maximum GS115/5ROL-Hrd1-Ubc1 1# activity reaching 33,900 U/mL via a sorbitol/methanol co-feeding strategy in a 3-L fermenter and resulting in a 1.65-, 1.26-, and 1.14-fold enhancement relative to the activities observed in strains GS115/pAOα-5ROL 11#, GS115/5ROL-Ubc1 22#, and GS115/5ROL-Hrd1 15#, respectively. These results indicated that heterologous overexpression of ROL in P. pastoris using this combined strategy is feasible for large-scale industrialization.


Subject(s)
Fungal Proteins/metabolism , Lipase/metabolism , Recombinant Proteins/metabolism , Rhizopus/enzymology , Endoplasmic Reticulum-Associated Degradation/genetics , Extracellular Space/enzymology , Fermentation , Fungal Proteins/genetics , Gene Dosage , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Industrial Microbiology/methods , Lipase/genetics , Pichia/genetics , Rhizopus/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
15.
J Theor Biol ; 456: 29-33, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30063924

ABSTRACT

After gene duplication, paralogous genes evolve independently, and consequently, the new proteins encoded by these duplicated genes are exposed to changes in their subcellular location. Although there are increasing evidence that phylogenetically related proteins play different functions in different subcellular compartments, the number of evolutionary steps required for the emergence of a novel protein with a novel subcellular localization remains unclear. Regarding this intriguing topic, here we examine in depth our previous reports describing both intracellular and extracellular polyhydroxybutyrate polymerases (PhaC) in the Pseudomonadales group. The recapitulation of the intracellular-to-extracellular localization switch of PhaC in these strains shows a gradual evolution from a simple cytosolic PhaC form to a complex extracellular PhaC form specifically secreted via the type 1 secretion system. This gradual evolution includes several adaptive and pre-adaptive changes at the genomic, genetic and enzymatic levels, which are intimately related to the lifestyle of organisms during the evolution of protein localization. We conclude that the protein localization switch can be an extremely complex process in nature.


Subject(s)
Acyltransferases/metabolism , Cytosol/enzymology , Evolution, Molecular , Extracellular Space/enzymology , Pseudomonas/enzymology , Amino Acid Sequence , Bacterial Proteins/metabolism , Phylogeny , Protein Transport/genetics , Pseudomonas/genetics , Sequence Alignment
16.
Microb Cell Fact ; 17(1): 163, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30348150

ABSTRACT

BACKGROUND: Bacillus subtilis has been widely used as a host for heterologous protein expression in food industry. B. subtilis ATCC6051 is an alternative expression host for the production of industrial enzymes, and exhibits favorable growth properties compared to B. subtilis 168. Extracellular expression of pullulanase from recombinant B. subtilis is still limited due to the issues on promoters of B. subtilis expression system. This study was undertaken to develop a new, high-level expression system in B. subtilis ATCC6051. RESULTS: To further optimize B. subtilis ATCC6051 as a expression host, eight extracellular proteases (aprE, nprE, nprB, epr, mpr, bpr, vpr and wprA), the sigma factor F (spoIIAC) and a surfactin (srfAC) were deleted, yielding the mutant B. subtilis ATCC6051∆10. ATCC6051∆10 showed rapid growth and produced much more extracellular protein compared to the widetype strain ATCC6051, due to the inactivation of multiple proteases. Using this mutant as the host, eleven plasmids equipped with single promoters were constructed for recombinant expression of pullulanase (PUL) from Bacillus naganoensis. The plasmid containing the PspovG promoter produced the highest extracellular PUL activity, which achieved 412.9 U/mL. Subsequently, sixteen dual-promoter plasmids were constructed and evaluated using this same method. The plasmid containing the dual promoter PamyL-PspovG produced the maximum extracellular PUL activity (625.5 U/mL) and showed the highest expression level (the dry cell weight of 18.7 g/L). CONCLUSIONS: Taken together, we constructed an effective B. subtilis expression system by deleting multiple proteases and screening strong promoters. The dual-promoter PamyL-PspovG system was found to support superior expression of extracellular proteins in B. subtilis ATCC6051.


Subject(s)
Bacillus subtilis/metabolism , Biotechnology/methods , Extracellular Space/enzymology , Gene Expression , Glycoside Hydrolases/biosynthesis , Promoter Regions, Genetic
17.
Cell Mol Biol (Noisy-le-grand) ; 64(14): 53-60, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30511621

ABSTRACT

L-Asparaginase is an enzyme that hydrolyses the amino acid L-Asparagine into aspartic acid and ammonia. As a medication, L-Asparaginase is used in chemotherapy to treat acute lymphoblastic leukaemia by depleting circulating Asparagine and depriving tumor cells. Interest in Actinomycetes as potential producers of antibiotics and enzymes encouraged us to investigate an isolated strain (CA01) from soft wheat bran.The Actinomycete strain was characterized based on its morphological and biochemical characteristics and selected due to a proved promising ability to produce L-Asparaginase optimized in both solid and liquid media cultures.The conditions of enzyme production were standardized according to a one-factor-at-a-time (OFAT) experimental design.To obtain optimal medium combination, a Box-Behnken Response Surface Methodology (RSM) has been adopted by choosing the most influential factors. The optimal conditions for the enzyme production were (g/l): L-Asparagine 10.7; Glucose 2.7; starch 7, in based medium containing (g/l): K2HPO4 0.5; MgSO4, 7H2O 0.1, corresponding to an optimal enzymatic activity of 8.03 IU/ml at 27.83°C. The maximum production of enzyme was reached on the sixth day of experiment. The ANOVA test (P value ˂ 0.05) and adjusted R2 values close to the experimental R2 show that the obtained model of the active L-Asparaginase of CA01 strain production is significant with the following linear terms: temperature, substrate concentration, Glucose concentration and there squared.


Subject(s)
Actinobacteria/enzymology , Actinobacteria/isolation & purification , Asparaginase/biosynthesis , Dietary Fiber/microbiology , Extracellular Space/enzymology , Analysis of Variance , Carbon/pharmacology , Kinetics , Nitrogen/pharmacology , Reference Standards , Time Factors
18.
Biosci Biotechnol Biochem ; 82(12): 2180-2190, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30122147

ABSTRACT

A glucoamylase from the ectomycorrhizal fungus Tricholoma matsutake (TmGLA) was purified 33.2-fold to homogeneity as a single monomeric glycoprotein with a molecular mass of 63.9 kDa. Maximum activity was observed at 60°C and pH 5.0. The enzyme is active down to 50°C and in the pH range of 4.0-6.0, and its activity is strongly inhibited by Ag+. It degrades α-1,4- and α-1,6-glycosidic linkages in various polysaccharides. Its gene (TmGlu1) was cloned using information from the enzyme's internal amino acid sequences and the whole genome sequence of T. matsutake NBRC 30605. The deduced amino acid sequence showed clear homology with those of GH family 15 proteins. Pichia pastoris transformed with TmGlu1 secreted the active enzyme in a glycosylated form, and its characteristics were the same as the native enzyme.


Subject(s)
Extracellular Space/enzymology , Fungal Proteins/chemistry , Glucan 1,4-alpha-Glucosidase/chemistry , Pichia/genetics , Tricholoma/enzymology , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Enzyme Stability , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Glucan 1,4-alpha-Glucosidase/genetics , Glucan 1,4-alpha-Glucosidase/isolation & purification , Hydrogen-Ion Concentration , Molecular Weight , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
19.
Prep Biochem Biotechnol ; 48(6): 549-555, 2018.
Article in English | MEDLINE | ID: mdl-29889602

ABSTRACT

Truffles are symbiotic hypogeous edible fungi (form of mushroom) that form filamentous mycelia in their initial phase of the growth cycle as well as a symbiotic association with host plant roots. In the present study, Tuber maculatum mycelia were isolated and tested for extracellular amylase production at different pH on solid agar medium. Furthermore, the mycelium was subjected to submerged fermentation for amylase production under different culture conditions such as variable carbon sources and their concentrations, initial medium pH, and incubation time. The optimized conditions after the experiments included soluble starch (0.5% w/v), initial medium pH of 7.0, and incubation time of 7 days, at room temperature (22 ± 2 °C) under static conditions which resulted in 1.41 U/mL of amylase. The amylase thus obtained was further characterized for its biocatalytic properties and found to have an optimum activity at pH 5.0 and a temperature of 50 °C. The enzyme showed good thermostability at 50 °C by retaining 98% of the maximal activity after 100 min of incubation. The amylase activity was marginally enhanced in presence of Cu2+ and Na+ and slightly reduced by K+, Ca2+, Fe2+, Mg2+, Co2+, Zn2+, and Mn2+ ions at 1 mM concentration.


Subject(s)
Amylases/biosynthesis , Extracellular Space/enzymology , Fermentation , Mycelium/enzymology , Saccharomycetales/enzymology , Amylases/metabolism , Biocatalysis , Biomass , Cations , Culture Media , Enzyme Stability , Hot Temperature , Hydrogen-Ion Concentration
20.
Angiogenesis ; 20(1): 125-137, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27921229

ABSTRACT

Endostatin is a potent anti-angiogenic and anti-tumor protein capable of regressing tumors without inducing acquired resistance. Since it is a fragment of the parental molecule, collagen XVIII, its endogenous production depends on the activity of a specific proteolytic enzyme. While such an enzyme has been described in mice, a human counterpart has not been identified so far. Here, we searched for this enzyme by using a fluorescence resonance energy transfer peptide containing the cleavage site of human collagen XVIII. We found that the cleavage activity was present in various murine and human tumor cells but not in untransformed cells. It was ascribed to a large protein complex identified as an extracellular form of proteasome 20S. Since circulating proteasome 20S has recently emerged as an important marker of tumor progression, the possibility of proteasomes controlling the production of angiostatic endostatin may inspire the development of new anticancer therapies.


Subject(s)
Collagen Type XVIII/metabolism , Endostatins/metabolism , Proteasome Endopeptidase Complex/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Collagen Type XVIII/chemistry , Extracellular Space/enzymology , Fluorescence Resonance Energy Transfer , Hemangioendothelioma/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice , Peptides/metabolism , Protein Subunits/metabolism , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL