Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 803
Filter
1.
Nature ; 610(7933): 783-790, 2022 10.
Article in English | MEDLINE | ID: mdl-36224385

ABSTRACT

Around birth, globin expression in human red blood cells (RBCs) shifts from γ-globin to ß-globin, which results in fetal haemoglobin (HbF, α2γ2) being gradually replaced by adult haemoglobin (HbA, α2ß2)1. This process has motivated the development of innovative approaches to treat sickle cell disease and ß-thalassaemia by increasing HbF levels in postnatal RBCs2. Here we provide therapeutically relevant insights into globin gene switching obtained through a CRISPR-Cas9 screen for ubiquitin-proteasome components that regulate HbF expression. In RBC precursors, depletion of the von Hippel-Lindau (VHL) E3 ubiquitin ligase stabilized its ubiquitination target, hypoxia-inducible factor 1α (HIF1α)3,4, to induce γ-globin gene transcription. Mechanistically, HIF1α-HIF1ß heterodimers bound cognate DNA elements in BGLT3, a long noncoding RNA gene located 2.7 kb downstream of the tandem γ-globin genes HBG1 and HBG2. This was followed by the recruitment of transcriptional activators, chromatin opening and increased long-range interactions between the γ-globin genes and their upstream enhancer. Similar induction of HbF occurred with hypoxia or with inhibition of prolyl hydroxylase domain enzymes that target HIF1α for ubiquitination by the VHL E3 ubiquitin ligase. Our findings link globin gene regulation with canonical hypoxia adaptation, provide a mechanism for HbF induction during stress erythropoiesis and suggest a new therapeutic approach for ß-haemoglobinopathies.


Subject(s)
gamma-Globins , Humans , Chromatin , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , gamma-Globins/biosynthesis , gamma-Globins/genetics , Hypoxia/genetics , Prolyl Hydroxylases/metabolism , Proteasome Endopeptidase Complex/metabolism , RNA, Long Noncoding , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Erythropoiesis
2.
N Engl J Med ; 390(18): 1663-1676, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38657265

ABSTRACT

BACKGROUND: Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis through ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of the erythroid-specific enhancer region of BCL11A in autologous CD34+ hematopoietic stem and progenitor cells (HSPCs). METHODS: We conducted an open-label, single-group, phase 3 study of exa-cel in patients 12 to 35 years of age with transfusion-dependent ß-thalassemia and a ß0/ß0, ß0/ß0-like, or non-ß0/ß0-like genotype. CD34+ HSPCs were edited by means of CRISPR-Cas9 with a guide mRNA. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was transfusion independence, defined as a weighted average hemoglobin level of 9 g per deciliter or higher without red-cell transfusion for at least 12 consecutive months. Total and fetal hemoglobin concentrations and safety were also assessed. RESULTS: A total of 52 patients with transfusion-dependent ß-thalassemia received exa-cel and were included in this prespecified interim analysis; the median follow-up was 20.4 months (range, 2.1 to 48.1). Neutrophils and platelets engrafted in each patient. Among the 35 patients with sufficient follow-up data for evaluation, transfusion independence occurred in 32 (91%; 95% confidence interval, 77 to 98; P<0.001 against the null hypothesis of a 50% response). During transfusion independence, the mean total hemoglobin level was 13.1 g per deciliter and the mean fetal hemoglobin level was 11.9 g per deciliter, and fetal hemoglobin had a pancellular distribution (≥94% of red cells). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No deaths or cancers occurred. CONCLUSIONS: Treatment with exa-cel, preceded by myeloablation, resulted in transfusion independence in 91% of patients with transfusion-dependent ß-thalassemia. (Supported by Vertex Pharmaceuticals and CRISPR Therapeutics; CLIMB THAL-111 ClinicalTrials.gov number, NCT03655678.).


Subject(s)
Fetal Hemoglobin , Gene Editing , Hematopoietic Stem Cell Transplantation , beta-Thalassemia , Adolescent , Adult , Child , Female , Humans , Male , Young Adult , Antigens, CD34 , beta-Thalassemia/therapy , beta-Thalassemia/genetics , Blood Transfusion , Busulfan/therapeutic use , CRISPR-Cas Systems , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , Gene Editing/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells , Repressor Proteins/genetics , Transplantation Conditioning , Transplantation, Autologous , Myeloablative Agonists/therapeutic use , North America , Europe
3.
N Engl J Med ; 390(18): 1649-1662, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38661449

ABSTRACT

BACKGROUND: Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis by means of ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of autologous CD34+ hematopoietic stem and progenitor cells (HSPCs) at the erythroid-specific enhancer region of BCL11A. METHODS: We conducted a phase 3, single-group, open-label study of exa-cel in patients 12 to 35 years of age with sickle cell disease who had had at least two severe vaso-occlusive crises in each of the 2 years before screening. CD34+ HSPCs were edited with the use of CRISPR-Cas9. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was freedom from severe vaso-occlusive crises for at least 12 consecutive months. A key secondary end point was freedom from inpatient hospitalization for severe vaso-occlusive crises for at least 12 consecutive months. The safety of exa-cel was also assessed. RESULTS: A total of 44 patients received exa-cel, and the median follow-up was 19.3 months (range, 0.8 to 48.1). Neutrophils and platelets engrafted in each patient. Of the 30 patients who had sufficient follow-up to be evaluated, 29 (97%; 95% confidence interval [CI], 83 to 100) were free from vaso-occlusive crises for at least 12 consecutive months, and all 30 (100%; 95% CI, 88 to 100) were free from hospitalizations for vaso-occlusive crises for at least 12 consecutive months (P<0.001 for both comparisons against the null hypothesis of a 50% response). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No cancers occurred. CONCLUSIONS: Treatment with exa-cel eliminated vaso-occlusive crises in 97% of patients with sickle cell disease for a period of 12 months or more. (CLIMB SCD-121; ClinicalTrials.gov number, NCT03745287.).


Subject(s)
Anemia, Sickle Cell , Fetal Hemoglobin , Hematopoietic Stem Cell Transplantation , Adolescent , Adult , Child , Female , Humans , Male , Young Adult , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Antigens, CD34 , Busulfan/therapeutic use , CRISPR-Cas Systems , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , Gene Editing , Hematopoietic Stem Cells , Repressor Proteins , Transplantation Conditioning , Cell- and Tissue-Based Therapy/methods , Myeloablative Agonists/therapeutic use , Europe , North America
4.
N Engl J Med ; 389(9): 820-832, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37646679

ABSTRACT

BACKGROUND: Sickle cell disease is caused by a defect in the ß-globin subunit of adult hemoglobin. Sickle hemoglobin polymerizes under hypoxic conditions, producing deformed red cells that hemolyze and cause vaso-occlusion that results in progressive organ damage and early death. Elevated fetal hemoglobin levels in red cells protect against complications of sickle cell disease. OTQ923, a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-edited CD34+ hematopoietic stem- and progenitor-cell (HSPC) product, has a targeted disruption of the HBG1 and HBG2 (γ-globin) gene promoters that increases fetal hemoglobin expression in red-cell progeny. METHODS: We performed a tiling CRISPR-Cas9 screen of the HBG1 and HBG2 promoters by electroporating CD34+ cells obtained from healthy donors with Cas9 complexed with one of 72 guide RNAs, and we assessed the fraction of fetal hemoglobin-immunostaining erythroblasts (F cells) in erythroid-differentiated progeny. The gRNA resulting in the highest level of F cells (gRNA-68) was selected for clinical development. We enrolled participants with severe sickle cell disease in a multicenter, phase 1-2 clinical study to assess the safety and adverse-effect profile of OTQ923. RESULTS: In preclinical experiments, CD34+ HSPCs (obtained from healthy donors and persons with sickle cell disease) edited with CRISPR-Cas9 and gRNA-68 had sustained on-target editing with no off-target mutations and produced high levels of fetal hemoglobin after in vitro differentiation or xenotransplantation into immunodeficient mice. In the study, three participants received autologous OTQ923 after myeloablative conditioning and were followed for 6 to 18 months. At the end of the follow-up period, all the participants had engraftment and stable induction of fetal hemoglobin (fetal hemoglobin as a percentage of total hemoglobin, 19.0 to 26.8%), with fetal hemoglobin broadly distributed in red cells (F cells as a percentage of red cells, 69.7 to 87.8%). Manifestations of sickle cell disease decreased during the follow-up period. CONCLUSIONS: CRISPR-Cas9 disruption of the HBG1 and HBG2 gene promoters was an effective strategy for induction of fetal hemoglobin. Infusion of autologous OTQ923 into three participants with severe sickle cell disease resulted in sustained induction of red-cell fetal hemoglobin and clinical improvement in disease severity. (Funded by Novartis Pharmaceuticals; ClinicalTrials.gov number, NCT04443907.).


Subject(s)
Anemia, Sickle Cell , CRISPR-Cas Systems , Erythrocytes , Fetal Hemoglobin , Hematopoietic Stem Cell Transplantation , Animals , Mice , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Antigens, CD34 , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , Fetal Hemoglobin/metabolism , Hemoglobin, Sickle , Promoter Regions, Genetic
5.
N Engl J Med ; 384(3): 252-260, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33283989

ABSTRACT

Transfusion-dependent ß-thalassemia (TDT) and sickle cell disease (SCD) are severe monogenic diseases with severe and potentially life-threatening manifestations. BCL11A is a transcription factor that represses γ-globin expression and fetal hemoglobin in erythroid cells. We performed electroporation of CD34+ hematopoietic stem and progenitor cells obtained from healthy donors, with CRISPR-Cas9 targeting the BCL11A erythroid-specific enhancer. Approximately 80% of the alleles at this locus were modified, with no evidence of off-target editing. After undergoing myeloablation, two patients - one with TDT and the other with SCD - received autologous CD34+ cells edited with CRISPR-Cas9 targeting the same BCL11A enhancer. More than a year later, both patients had high levels of allelic editing in bone marrow and blood, increases in fetal hemoglobin that were distributed pancellularly, transfusion independence, and (in the patient with SCD) elimination of vaso-occlusive episodes. (Funded by CRISPR Therapeutics and Vertex Pharmaceuticals; ClinicalTrials.gov numbers, NCT03655678 for CLIMB THAL-111 and NCT03745287 for CLIMB SCD-121.).


Subject(s)
Anemia, Sickle Cell/therapy , CRISPR-Cas Systems , Fetal Hemoglobin/biosynthesis , Gene Editing/methods , Genetic Therapy , Repressor Proteins/genetics , beta-Thalassemia/therapy , Adult , Anemia, Sickle Cell/genetics , Female , Fetal Hemoglobin/genetics , Humans , Repressor Proteins/metabolism , Young Adult , beta-Thalassemia/genetics
6.
N Engl J Med ; 384(3): 205-215, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33283990

ABSTRACT

BACKGROUND: Sickle cell disease is characterized by hemolytic anemia, pain, and progressive organ damage. A high level of erythrocyte fetal hemoglobin (HbF) comprising α- and γ-globins may ameliorate these manifestations by mitigating sickle hemoglobin polymerization and erythrocyte sickling. BCL11A is a repressor of γ-globin expression and HbF production in adult erythrocytes. Its down-regulation is a promising therapeutic strategy for induction of HbF. METHODS: We enrolled patients with sickle cell disease in a single-center, open-label pilot study. The investigational therapy involved infusion of autologous CD34+ cells transduced with the BCH-BB694 lentiviral vector, which encodes a short hairpin RNA (shRNA) targeting BCL11A mRNA embedded in a microRNA (shmiR), allowing erythroid lineage-specific knockdown. Patients were assessed for primary end points of engraftment and safety and for hematologic and clinical responses to treatment. RESULTS: As of October 2020, six patients had been followed for at least 6 months after receiving BCH-BB694 gene therapy; median follow-up was 18 months (range, 7 to 29). All patients had engraftment, and adverse events were consistent with effects of the preparative chemotherapy. All the patients who could be fully evaluated achieved robust and stable HbF induction (percentage HbF/(F+S) at most recent follow-up, 20.4 to 41.3%), with HbF broadly distributed in red cells (F-cells 58.9 to 93.6% of untransfused red cells) and HbF per F-cell of 9.0 to 18.6 pg per cell. Clinical manifestations of sickle cell disease were reduced or absent during the follow-up period. CONCLUSIONS: This study validates BCL11A inhibition as an effective target for HbF induction and provides preliminary evidence that shmiR-based gene knockdown offers a favorable risk-benefit profile in sickle cell disease. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT03282656).


Subject(s)
Anemia, Sickle Cell/therapy , Fetal Hemoglobin/biosynthesis , Genetic Therapy , RNA Interference , Repressor Proteins/genetics , gamma-Globins/metabolism , Adolescent , Adult , Anemia, Sickle Cell/genetics , Child , Down-Regulation , Female , Fetal Hemoglobin/genetics , Gene Knockdown Techniques , Genetic Vectors , Humans , Male , Pilot Projects , RNA, Small Interfering , Repressor Proteins/metabolism , Transplantation, Autologous , Young Adult , gamma-Globins/genetics
7.
Nucleic Acids Res ; 49(17): 9711-9723, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34379783

ABSTRACT

Human fetal globin (γ-globin) genes are developmentally silenced after birth, and reactivation of γ-globin expression in adulthood ameliorates symptoms of hemoglobin disorders, such as sickle cell disease (SCD) and ß-thalassemia. However, the mechanisms by which γ-globin expression is precisely regulated are still incompletely understood. Here, we found that NonO (non-POU domain-containing octamer-binding protein) interacted directly with SOX6, and repressed the expression of γ-globin gene in human erythroid cells. We showed that NonO bound to the octamer binding motif, ATGCAAAT, of the γ-globin proximal promoter, resulting in inhibition of γ-globin transcription. Depletion of NonO resulted in significant activation of γ-globin expression in K562, HUDEP-2, and primary human erythroid progenitor cells. To confirm the role of NonO in vivo, we further generated a conditional knockout of NonO by using IFN-inducible Mx1-Cre transgenic mice. We found that induced NonO deletion reactivated murine embryonic globin and human γ-globin gene expression in adult ß-YAC mice, suggesting a conserved role for NonO during mammalian evolution. Thus, our data indicate that NonO acts as a novel transcriptional repressor of γ-globin gene expression through direct promoter binding, and is essential for γ-globin gene silencing.


Subject(s)
DNA-Binding Proteins/metabolism , Fetal Hemoglobin/genetics , Gene Silencing , RNA-Binding Proteins/metabolism , gamma-Globins/genetics , Animals , Cells, Cultured , Erythroid Precursor Cells/metabolism , Fetal Hemoglobin/biosynthesis , Humans , K562 Cells , Mice, Knockout , Mice, Transgenic , Promoter Regions, Genetic , SOXD Transcription Factors/metabolism , gamma-Globins/biosynthesis
8.
J Biol Chem ; 296: 100417, 2021.
Article in English | MEDLINE | ID: mdl-33587951

ABSTRACT

Induction of fetal hemoglobin to overcome adult ß-globin gene deficiency is an effective therapeutic strategy to ameliorate human ß-hemoglobinopathies. Previous work has revealed that fetal γ-globin can be translationally induced via integrated stress signaling, but other studies have indicated that activating stress may eventually suppress γ-globin expression transcriptionally. The mechanism by which γ-globin expression is regulated at the translational level remains largely unknown, limiting our ability to determine whether activating stress is a realistic therapeutic option for these disorders. In this study, we performed a functional CRISPR screen targeting protein arginine methyltransferases (PRMTs) to look for changes in γ-globin expression in K562 cells. We not only discovered that several specific PRMTs may block γ-globin transcription, but also revealed PRMT1 as a unique family member that is able to suppress γ-globin synthesis specifically at the translational level. We further identified that a non-AUG uORF within the 5' untranslated region of γ-globin serves as a barrier for translation, which is bypassed upon PRMT1 deficiency. Finally, we found that this novel mechanism of γ-globin suppression could be pharmacologically targeted by the PRMT1 inhibitor, furamidine dihydrochloride. These data raise new questions regarding methyltransferase function and may offer a new therapeutic direction for ß-hemoglobinopathies.


Subject(s)
Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , gamma-Globins/metabolism , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , Fetal Hemoglobin/pharmacology , Gene Expression/genetics , Gene Expression Regulation/genetics , HEK293 Cells , Humans , K562 Cells , Methyltransferases/metabolism , Protein Biosynthesis/genetics , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/physiology , Repressor Proteins/genetics , Repressor Proteins/physiology , beta-Globins/metabolism , gamma-Globins/genetics
10.
Blood ; 136(21): 2392-2400, 2020 11 19.
Article in English | MEDLINE | ID: mdl-32808012

ABSTRACT

Fetal hemoglobin (HbF) can blunt the pathophysiology, temper the clinical course, and offer prospects for curative therapy of sickle cell disease. This review focuses on (1) HbF quantitative trait loci and the geography of ß-globin gene haplotypes, especially those found in the Middle East; (2) how HbF might differentially impact the pathophysiology and many subphenotypes of sickle cell disease; (3) clinical implications of person-to-person variation in the distribution of HbF among HbF-containing erythrocytes; and (4) reactivation of HbF gene expression using both pharmacologic and cell-based therapeutic approaches. A confluence of detailed understanding of the molecular basis of HbF gene expression, coupled with the ability to precisely target by genomic editing most areas of the genome, is producing important preliminary therapeutic results that could provide new options for cell-based therapeutics with curative intent.


Subject(s)
Anemia, Sickle Cell/blood , Fetal Hemoglobin/genetics , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/physiopathology , Fetal Hemoglobin/biosynthesis , Gene Editing , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Genetic Therapy , Genetic Vectors/therapeutic use , Haplotypes , Humans , Hydroxyurea/pharmacology , Hydroxyurea/therapeutic use , Lentivirus/genetics , Microfilament Proteins/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-myb/genetics , Quantitative Trait Loci , RNA Interference , RNA, Small Interfering/administration & dosage , Receptors, Cell Surface/genetics , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Stroke/etiology , beta-Globins/genetics , gamma-Globins/genetics
11.
Blood ; 135(22): 1957-1968, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32268371

ABSTRACT

Reversing the developmental switch from fetal hemoglobin (HbF, α2γ2) to adult hemoglobin (HbA, α2ß2) is an important therapeutic approach in sickle cell disease (SCD) and ß-thalassemia. In healthy individuals, SCD patients, and patients treated with pharmacologic HbF inducers, HbF is present only in a subset of red blood cells known as F cells. Despite more than 50 years of observations, the cause for this heterocellular HbF expression pattern, even among genetically identical cells, remains unknown. Adult F cells might represent a reversion of a given cell to a fetal-like epigenetic and transcriptional state. Alternatively, isolated transcriptional or posttranscriptional events at the γ-globin genes might underlie heterocellularity. Here, we set out to understand the heterogeneity of HbF activation by developing techniques to purify and profile differentiation stage-matched late erythroblast F cells and non-F cells (A cells) from the human HUDEP2 erythroid cell line and primary human erythroid cultures. Transcriptional and proteomic profiling of these cells demonstrated very few differences between F and A cells at the RNA level either under baseline conditions or after treatment with HbF inducers hydroxyurea or pomalidomide. Surprisingly, we did not find differences in expression of any known HbF regulators, including BCL11A or LRF, that would account for HbF activation. Our analysis shows that F erythroblasts are not significantly different from non-HbF-expressing cells and that the primary differences likely occur at the transcriptional level at the ß-globin locus.


Subject(s)
Erythroblasts/metabolism , Fetal Hemoglobin/biosynthesis , Hemoglobin A/metabolism , Adult , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/genetics , Cell Line , Cell Separation/methods , Cells, Cultured , Erythroblasts/classification , Erythroblasts/drug effects , Erythroid Cells/classification , Erythroid Cells/metabolism , Fetal Hemoglobin/genetics , Gene Expression Profiling , Hemoglobin A/genetics , Humans , Hydroxyurea/pharmacology , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thalidomide/analogs & derivatives , Thalidomide/pharmacology
12.
Curr Opin Hematol ; 28(3): 164-170, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33631783

ABSTRACT

PURPOSE OF REVIEW: Small amounts of fetal hemoglobin can be expressed in a subset of adult red blood cells called F-cells. This review examines the potential mechanisms and clinical implications of the heterogeneity of fetal hemoglobin expression. RECENT FINDINGS: Although the heterocellular nature of fetal hemoglobin expression in adult red blood cells has been noted for over 70 years, the molecular basis of this phenomenon has been unclear. Recent discoveries of novel regulators of fetal hemoglobin as well as technological advances have shed new light on these cells. SUMMARY: Fetal hemoglobin reactivation in adult red blood cells through genetic or pharmacological approaches can involve both increasing the number of F-cells and cellular fetal hemoglobin content. New technologies enable the study and eventually the improvement of these parameters in patients with sickle cell disease and ß-thalassemia.


Subject(s)
Erythrocytes/metabolism , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , Gene Expression Regulation , Genetic Heterogeneity , Adult , Age Factors , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/genetics , Animals , Disease Management , Disease Susceptibility , Erythrocytes/drug effects , Gene Expression Regulation/drug effects , Humans , beta-Thalassemia/blood , beta-Thalassemia/diagnosis , beta-Thalassemia/genetics , beta-Thalassemia/therapy
13.
Blood ; 133(8): 852-856, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30617196

ABSTRACT

ß-hemoglobinopathies, such as sickle cell disease and ß-thalassemia, result from mutations in the adult ß-globin gene. Reactivating the developmentally silenced fetal γ-globin gene elevates fetal hemoglobin levels and ameliorates symptoms of ß-hemoglobinopathies. The continued expression of fetal γ-globin into adulthood occurs naturally in a genetic condition termed hereditary persistence of fetal hemoglobin (HPFH). Point mutations in the fetal γ-globin proximal promoter can cause HPFH. The -113A>G HPFH mutation falls within the -115 cluster of HPFH mutations, a binding site for the fetal globin repressor BCL11A. We demonstrate that the -113A>G HPFH mutation, unlike other mutations in the cluster, does not disrupt BCL11A binding but rather creates a de novo binding site for the transcriptional activator GATA1. Introduction of the -113A>G HPFH mutation into erythroid cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system increases GATA1 binding and elevates fetal globin levels. These results reveal the mechanism by which the -113A>G HPFH mutation elevates fetal globin and demonstrate the sensitivity of the fetal globin promoter to point mutations that often disrupt repressor binding sites but here create a de novo site for an erythroid activator.


Subject(s)
Anemia, Sickle Cell , Fetal Hemoglobin , GATA1 Transcription Factor/metabolism , Gene Expression Regulation , Point Mutation , Response Elements , beta-Thalassemia , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/metabolism , Cell Line , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , GATA1 Transcription Factor/genetics , beta-Globins/genetics , beta-Globins/metabolism , beta-Thalassemia/genetics , beta-Thalassemia/metabolism
14.
Exp Cell Res ; 394(2): 112168, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32653411

ABSTRACT

Pharmacologic induction of fetal hemoglobin (HbF) is an effective strategy for treating ß-hemoglobinopathies like ß-thalassemia and sickle cell anemia by ameliorating disease severity. Hydroxyurea is the only FDA-approved agent that induces HbF, but significant nonresponders and toxicity limit its clinical usefulness. This study relates preclinical investigation of Tenofovir disoproxil fumarate (TDF) as a potential HbF inducing agent, using human erythroleukemia cell line and a ß-YAC mouse model. Erythroid induction of K562 cells was studied by the benzidine/H2O2 reaction, total hemoglobin production was estimated by plasma hemoglobin assay kit, and γ-globin gene expression by RT-qPCR, whereas, fetal hemoglobin production was estimated by flow cytometry and immunofluorescence microscopy. We observed significantly increased γ- globin gene transcription and HbF expression mediated by TDF in K562 cells. Subsequent treatment of ß-YAC transgenic mice with TDF confirmed HbF induction in vivo through an increase in γ-globin gene expression and in the percentage of HbF positive red blood cells. Moreover, TDF showed no cytotoxic effect at HbF inducing concentrations. These data support the potential development of TDF for the treatment of hematological disorders, including ß-thalassemia and sickle cell anemia.


Subject(s)
Fetal Hemoglobin/biosynthesis , Tenofovir/pharmacology , gamma-Globins/biosynthesis , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Erythroid Cells/cytology , Erythroid Cells/drug effects , Erythroid Cells/metabolism , Gene Expression Regulation/drug effects , Humans , K562 Cells , Mice, Transgenic , Tenofovir/chemistry , Transcription, Genetic/drug effects , gamma-Globins/genetics
15.
Int J Mol Sci ; 22(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34948226

ABSTRACT

ß-thalassemias are among the most common inherited hemoglobinopathies worldwide and are the result of autosomal mutations in the gene encoding ß-globin, causing an absence or low-level production of adult hemoglobin (HbA). Induction of fetal hemoglobin (HbF) is considered to be of key importance for the development of therapeutic protocols for ß-thalassemia and novel HbF inducers need to be proposed for pre-clinical development. The main purpose on this study was to analyze Cinchona alkaloids (cinchonidine, quinidine and cinchonine) as natural HbF-inducing agents in human erythroid cells. The analytical methods employed were Reverse Transcription quantitative real-time PCR (RT-qPCR) (for quantification of γ-globin mRNA) and High Performance Liquid Chromatography (HPLC) (for analysis of the hemoglobin pattern). After an initial analysis using the K562 cell line as an experimental model system, showing induction of hemoglobin and γ-globin mRNA, we verified whether the two more active compounds, cinchonidine and quinidine, were able to induce HbF in erythroid progenitor cells isolated from ß-thalassemia patients. The data obtained demonstrate that cinchonidine and quinidine are potent inducers of γ-globin mRNA and HbF in erythroid progenitor cells isolated from nine ß-thalassemia patients. In addition, both compounds were found to synergize with the HbF inducer sirolimus for maximal production of HbF. The data obtained strongly indicate that these compounds deserve consideration in the development of pre-clinical approaches for therapeutic protocols of ß-thalassemia.


Subject(s)
Cinchona Alkaloids/pharmacology , Erythroid Precursor Cells/metabolism , Fetal Hemoglobin/biosynthesis , beta-Thalassemia/metabolism , Erythroid Precursor Cells/pathology , Humans , K562 Cells , beta-Thalassemia/drug therapy
16.
Curr Opin Hematol ; 27(3): 141-148, 2020 05.
Article in English | MEDLINE | ID: mdl-32167946

ABSTRACT

PURPOSE OF REVIEW: ß-hemoglobinopathies, such as ß-Thalassemias (ß-Thal) and sickle cell disease (SCD) are among the most common inherited genetic disorders in humans worldwide. These disorders are characterized by a quantitative (ß-Thal) or qualitative (SCD) defects in adult hemoglobin production, leading to anemia, ineffective erythropoiesis and severe secondary complications. Reactivation of the fetal globin genes (γ-globin), making-up fetal hemoglobin (HbF), which are normally silenced in adults, represents a major strategy to ameliorate anemia and disease severity. RECENT FINDINGS: Following the identification of the first 'switching factors' for the reactivation of fetal globin gene expression more than 10 years ago, a multitude of novel leads have recently been uncovered. SUMMARY: Recent findings provided invaluable functional insights into the genetic and molecular networks controlling globin genes expression, revealing that complex repression systems evolved in erythroid cells to maintain HbF silencing in adults. This review summarizes these unique and exciting discoveries of the regulatory factors controlling the globin switch. New insights and novel leads for therapeutic strategies based on the pharmacological induction of HbF are discussed. This represents a major breakthrough for rational drug design in the treatment of ß-Thal and SCD.


Subject(s)
Anemia, Sickle Cell , Drug Design , Fetal Hemoglobin , Gene Expression Regulation , beta-Thalassemia , gamma-Globins , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/metabolism , Anemia, Sickle Cell/pathology , Erythroid Cells/metabolism , Erythroid Cells/pathology , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , Humans , beta-Thalassemia/drug therapy , beta-Thalassemia/genetics , beta-Thalassemia/metabolism , beta-Thalassemia/pathology , gamma-Globins/biosynthesis , gamma-Globins/genetics
17.
Curr Opin Hematol ; 27(3): 129-140, 2020 05.
Article in English | MEDLINE | ID: mdl-32167945

ABSTRACT

PURPOSE OF REVIEW: The current review focuses on recent insights into the development of small molecule therapeutics to treat the ß-globinopathies. RECENT FINDINGS: Recent studies of fetal γ-globin gene regulation reveal multiple insights into how γ-globin gene reactivation may lead to novel treatment for ß-globinopathies. SUMMARY: We summarize current information regarding the binding of transcription factors that appear to be impeded or augmented by different hereditary persistence of fetal hemoglobin (HPFH) mutations. As transcription factors have historically proven to be difficult to target for therapeutic purposes, we next address the contributions of protein complexes associated with these HPFH mutation-affected transcription factors with the aim of defining proteins that might provide additional targets for chemical molecules to inactivate the corepressors. Among the enzymes associated with the transcription factor complexes, a group of corepressors with currently available inhibitors were initially thought to be good candidates for potential therapeutic purposes. We discuss possibilities for pharmacological inhibition of these corepressor enzymes that might significantly reactivate fetal γ-globin gene expression. Finally, we summarize the current clinical trial data regarding the inhibition of select corepressor proteins for the treatment of sickle cell disease and ß-thalassemia.


Subject(s)
Anemia, Sickle Cell , Mutation , Transcription Factors , beta-Thalassemia , gamma-Globins , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/metabolism , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , Humans , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism , beta-Thalassemia/drug therapy , beta-Thalassemia/genetics , beta-Thalassemia/metabolism , gamma-Globins/biosynthesis , gamma-Globins/genetics
18.
Blood ; 131(17): 1960-1973, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29519807

ABSTRACT

Naturally occurring, large deletions in the ß-globin locus result in hereditary persistence of fetal hemoglobin, a condition that mitigates the clinical severity of sickle cell disease (SCD) and ß-thalassemia. We designed a clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) strategy to disrupt a 13.6-kb genomic region encompassing the δ- and ß-globin genes and a putative γ-δ intergenic fetal hemoglobin (HbF) silencer. Disruption of just the putative HbF silencer results in a mild increase in γ-globin expression, whereas deletion or inversion of a 13.6-kb region causes a robust reactivation of HbF synthesis in adult erythroblasts that is associated with epigenetic modifications and changes in chromatin contacts within the ß-globin locus. In primary SCD patient-derived hematopoietic stem/progenitor cells, targeting the 13.6-kb region results in a high proportion of γ-globin expression in erythroblasts, increased HbF synthesis, and amelioration of the sickling cell phenotype. Overall, this study provides clues for a potential CRISPR/Cas9 genome editing approach to the therapy of ß-hemoglobinopathies.


Subject(s)
Anemia, Sickle Cell , CRISPR-Cas Systems , Fetal Hemoglobin , Gene Editing , Genetic Loci , Hematopoietic Stem Cells/metabolism , beta-Globins/genetics , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/metabolism , Anemia, Sickle Cell/pathology , Anemia, Sickle Cell/therapy , Cell Line , Fetal Hemoglobin/biosynthesis , Fetal Hemoglobin/genetics , Hematopoietic Stem Cells/pathology , Humans , beta-Globins/metabolism
19.
Blood ; 132(3): 321-333, 2018 07 19.
Article in English | MEDLINE | ID: mdl-29884740

ABSTRACT

Induction of red blood cell (RBC) fetal hemoglobin (HbF; α2γ2) ameliorates the pathophysiology of sickle cell disease (SCD) by reducing the concentration of sickle hemoglobin (HbS; α2ßS2) to inhibit its polymerization. Hydroxyurea (HU), the only US Food and Drug Administration (FDA)-approved drug for SCD, acts in part by inducing HbF; however, it is not fully effective, reflecting the need for new therapies. Whole-exome sequence analysis of rare genetic variants in SCD patients identified FOXO3 as a candidate regulator of RBC HbF. We validated these genomic findings through loss- and gain-of-function studies in normal human CD34+ hematopoietic stem and progenitor cells induced to undergo erythroid differentiation. FOXO3 gene silencing reduced γ-globin RNA levels and HbF levels in erythroblasts, whereas overexpression of FOXO3 produced the opposite effect. Moreover, treatment of primary CD34+ cell-derived erythroid cultures with metformin, an FDA-approved drug known to enhance FOXO3 activity in nonerythroid cells, caused dose-related FOXO3-dependent increases in the percentage of HbF protein and the fraction of HbF-immunostaining cells (F cells). Combined HU and metformin treatment induced HbF additively and reversed the arrest in erythroid maturation caused by HU treatment alone. HbF induction by metformin in erythroid precursors was dependent on FOXO3 expression and did not alter expression of BCL11A, MYB, or KLF1. Collectively, our data implicate FOXO3 as a positive regulator of γ-globin expression and identify metformin as a potential therapeutic agent for SCD.


Subject(s)
Erythroid Cells/drug effects , Erythroid Cells/metabolism , Fetal Hemoglobin/biosynthesis , Forkhead Box Protein O3/genetics , Gene Expression Regulation/drug effects , Metformin/pharmacology , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/genetics , Biomarkers , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Child , Child, Preschool , Erythroid Cells/cytology , Female , Fetal Hemoglobin/genetics , Forkhead Box Protein O3/metabolism , Gene Expression , Gene Expression Profiling , Gene Knockdown Techniques , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Male , Models, Biological , Transduction, Genetic , gamma-Globins/genetics , gamma-Globins/metabolism
20.
Ann Hematol ; 99(1): 23-29, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31776727

ABSTRACT

Hemoglobin (Hb) F has a modulatory effect on the clinical phenotype of ß-thalassemia disease. High expression of Hb F in Hb E-related disorders has been noted, but the mechanism is not well understood. We have examined the association of a novel SNP rs11759328 on ARHGAP 18 gene and other known modulators with a variability of Hb F in Hb E-related disorders. Genotyping of SNP rs11759328 (G/A) was performed based on high-resolution melting analysis. The rs11759328 (A allele) was shown to be significantly associated with Hb F levels (p < 0.05) in heterozygous and homozygous Hb E. High levels of Hb F in both heterozygous and homozygous Hb E were also found to be associated with SNPs in the study of other modifying genes including KLF 1 mutation, rs7482144 (Gγ-XmnI), rs4895441, rs9399137 of (HBS1L-MYB), and rs4671393 (BCL11A). Multivariate analysis showed that KLF1 mutation and SNP rs11759328 (GA) (ARHGAP18) modulated Hb F expression in heterozygous Hb E. For homozygous Hb E, this was found to be related to five modifying factors, i.e., KLF1 mutation, rs4895441 (GG), rs9399137 (CC), rs4671393 (AA), and rs4671393 (GA). These results indicate that a novel SNP rs11759328 is a genetically modifying factor associated with increased Hb F in Hb E disorder.


Subject(s)
Fetal Hemoglobin/biosynthesis , GTPase-Activating Proteins/genetics , Gene Expression Regulation , Hemoglobinuria/genetics , Mutation , Polymorphism, Single Nucleotide , Fetal Hemoglobin/genetics , GTPase-Activating Proteins/metabolism , Hemoglobin E/genetics , Hemoglobin E/metabolism , Hemoglobinuria/blood , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL