Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 420
Filter
1.
Microb Cell Fact ; 23(1): 162, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824548

ABSTRACT

BACKGROUND: Syringic acid (SA) is a high-value natural compound with diverse biological activities and wide applications, commonly found in fruits, vegetables, and herbs. SA is primarily produced through chemical synthesis, nonetheless, these chemical methods have many drawbacks, such as considerable equipment requirements, harsh reaction conditions, expensive catalysts, and numerous by-products. Therefore, in this study, a novel biotransformation route for SA production was designed and developed by using engineered whole cells. RESULTS: An O-methyltransferase from Desulfuromonas acetoxidans (DesAOMT), which preferentially catalyzes a methyl transfer reaction on the meta-hydroxyl group of catechol analogues, was identified. The whole cells expressing DesAOMT can transform gallic acid (GA) into SA when S-adenosyl methionine (SAM) is used as a methyl donor. We constructed a multi-enzyme cascade reaction in Escherichia coli, containing an endogenous shikimate kinase (AroL) and a chorismate lyase (UbiC), along with a p-hydroxybenzoate hydroxylase mutant (PobA**) from Pseudomonas fluorescens, and DesAOMT; SA was biosynthesized from shikimic acid (SHA) by using whole cells catalysis. The metabolic system of chassis cells also affected the efficiency of SA biosynthesis, blocking the chorismate metabolism pathway improved SA production. When the supply of the cofactor NADPH was optimized, the titer of SA reached 133 µM (26.2 mg/L). CONCLUSION: Overall, we designed a multi-enzyme cascade in E. coli for SA biosynthesis by using resting or growing whole cells. This work identified an O-methyltransferase (DesAOMT), which can catalyze the methylation of GA to produce SA. The multi-enzyme cascade containing four enzymes expressed in an engineered E. coli for synthesizing of SA from SHA. The metabolic system of the strain and biotransformation conditions influenced catalytic efficiency. This study provides a new green route for SA biosynthesis.


Subject(s)
Biocatalysis , Escherichia coli , Gallic Acid , Metabolic Engineering , Gallic Acid/metabolism , Gallic Acid/analogs & derivatives , Escherichia coli/metabolism , Escherichia coli/genetics , Metabolic Engineering/methods , Methyltransferases/metabolism , Methyltransferases/genetics , Shikimic Acid/metabolism , Pseudomonas fluorescens/metabolism , Pseudomonas fluorescens/enzymology , Pseudomonas fluorescens/genetics , Biotransformation
2.
J Periodontal Res ; 59(1): 204-219, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37957813

ABSTRACT

BACKGROUND AND OBJECTIVE: Gallic acid (GA) possesses various beneficial functions including antioxidant, anticancer, anti-inflammatory as well as inhibiting osteoclastogeneis. However, effects on osteogenic differentiation, especially in human ligament periodontal (hPDL) cells, remain unclear. Thus, the aim of this study was to evaluate the function of GA on osteogenesis and anti-inflammation in hPDL cells and to explore the involved underlying mechanism. METHODS: Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) treatment was used as a model for periodontitis. ROS production was determined by H2DCFDA staining. Trans-well and wound healing assays were performed for checking the migration effect of GA. Alizarin red and alkaline phosphatase activity (ALP) assays were performed to evaluate osteogenic differentiation. Osteogenesis and inflammatory-related genes and proteins were measured by real-time PCR and western blot. RESULTS: Our results showed that GA-treated hPDL cells had higher proliferation and migration effect. GA inhibited ROS production-induced by Pg-LPS. Besides, GA abolished Pg-LPS-induced inflammation cytokines (il-6, il-1ß) and inflammasome targets (Caspase-1, NLRP3). In addition, GA promoted ALP activity and mineralization in hPDL cells, lead to enhance osteoblast differentiation process. The effect of GA is related to G-protein-coupled receptor 35 (GPR35)/GSK3ß/ß-catenin signaling pathway. CONCLUSION: GA attenuated Pg-LPS-induced inflammatory responses and periodontitis in hPDL cells. Taken together, GA may be targeted for therapeutic interventions in periodontal diseases.


Subject(s)
Osteogenesis , Periodontitis , Humans , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Periodontal Ligament , beta Catenin/metabolism , Gallic Acid/pharmacology , Gallic Acid/metabolism , Lipopolysaccharides/pharmacology , Reactive Oxygen Species/metabolism , Cells, Cultured , Signal Transduction , Cell Differentiation , Periodontitis/drug therapy , Periodontitis/metabolism , Anti-Inflammatory Agents/pharmacology , Receptors, G-Protein-Coupled/metabolism , Osteoblasts
3.
Int J Mol Sci ; 25(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38396979

ABSTRACT

Gallic acid (GA), a phenolic compound naturally found in many plants, exhibits potential preventive and therapeutic roles. However, the underlying molecular mechanisms of its diverse biological activities remain unclear. Here, we investigated possible mechanisms of GA function through a transcriptome-based analysis using LINCS L1000, a publicly available data resource. We compared the changes in the gene expression profiles induced by GA with those induced by FDA-approved drugs in three cancer cell lines (A549, PC3, and MCF7). The top 10 drugs exhibiting high similarity with GA in their expression patterns were identified by calculating the connectivity score in the three cell lines. We specified the known target proteins of these drugs, which could be potential targets of GA, and identified 19 potential targets. Next, we retrieved evidence in the literature that GA likely binds directly to DNA polymerase ß and ribonucleoside-diphosphate reductase. Although our results align with previous studies suggesting a direct and/or indirect connection between GA and the target proteins, further experimental investigations are required to fully understand the exact molecular mechanisms of GA. Our study provides insights into the therapeutic mechanisms of GA, introducing a new approach to characterizing therapeutic natural compounds using transcriptome-based analyses.


Subject(s)
Neoplasms , Transcriptome , Humans , Gallic Acid/pharmacology , Gallic Acid/metabolism , Gene Expression Profiling
4.
Int Microbiol ; 26(2): 243-255, 2023 May.
Article in English | MEDLINE | ID: mdl-36357545

ABSTRACT

Gallic acid is a powerful antioxidant with multiple therapeutic applications, usually obtained from the acidic hydrolysis of tannins produced by many plants. As this process generates a considerable amount of toxic waste, the use of tannases or tannase-producing microorganisms has become a greener alternative over the last years. However, their high costs still impose some barriers for industrial scalability, requiring solutions that could be both greener and cost-effective. Since Pseudomonas putida KT2440 is a powerful degrader of gallic acid, its metabolism offers pathways that can be engineered to produce it from cheap and renewable carbon sources, such as the crude glycerol generated in biodiesel units. In this study, a synthetic operon with the heterologous genes aroG4, quiC and pobA* was developed and expressed in P. putida, based on an in silico analysis of possible metabolic routes, resulting in no production. Then, the sequences pcaHG and galTAPR were deleted from the genome of this strain to avoid the degradation of gallic acid and its main intermediate, the protocatechuic acid. This mutant was transformed with the vector containing the synthetic operon and was finally able to convert glycerol into gallic acid. Production assays in shaker showed a final concentration of 346.7 ± 0.004 mg L-1 gallic acid after 72 h.


Subject(s)
Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Glycerol/metabolism , Gallic Acid/metabolism
5.
Scand J Gastroenterol ; 58(12): 1474-1483, 2023.
Article in English | MEDLINE | ID: mdl-37452479

ABSTRACT

Disturbance in the production and excretion of bile acid causes cholestatic liver disease. Liver cirrhosis is a disease that occurs if cholestasis continues. This study evaluated the protective effect of gallic acid (GA) on liver damage caused by biliary cirrhosis. Rats were randomly divided into 4 groups, each with 8 subjects: 1) control, 2) BDL, 3) BDL + GA 20, and 4) BDL + GA 30. The rats were anesthetized 28 days after the BDL, followed by collecting their blood and excising their liver. Their serum was used to measure liver enzymes, and the liver was used for biochemical analysis, gene expression, and histopathological analysis. Serum levels of liver enzymes, total bilirubin, liver Malondialdehyde level (MDA), expression of inflammatory cytokines and caspase-3, necrosis of hepatocytes, bile duct proliferation, lymphocytic infiltration, and liver fibrosis showed an increase in the BDL group compared to the control group (p < 0.05). In addition, BDL decreased the activity of liver antioxidant enzymes and glutathione (GSH) levels compared to the control group (p < 0.05). The groups receiving GA indicated a decrease in liver enzymes, total bilirubin, MDA, the expression of inflammatory cytokines and caspase-3, and a reduction in liver tissue damage compared to the BDL group (p < 0.05). The level of GSH in the BDL + GA 20 group showed a significant increase compared to the BDL group (p < 0.05). Moreover, it was found that GA, with its anti-fibrotic and anti-inflammatory properties, reduces liver damage caused by biliary cirrhosis.


Subject(s)
Cholestasis , Liver Cirrhosis, Biliary , Liver Diseases , Humans , Rats , Animals , Caspase 3/metabolism , Caspase 3/pharmacology , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Gallic Acid/metabolism , Liver Cirrhosis, Biliary/etiology , Liver/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/pathology , Cholestasis/pathology , Bile Ducts/surgery , Bile Ducts/pathology , Oxidative Stress , Liver Diseases/pathology , Glutathione/metabolism , Glutathione/pharmacology , Bilirubin , Cytokines/metabolism , Ligation
6.
Cell Mol Biol (Noisy-le-grand) ; 69(1): 1-6, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-37213165

ABSTRACT

Psoriasis and atopic dermatitis (AD) are characterized by enhanced skin inflammation, which results in hyperproliferation and the recruitment of immune cells into the skin. For that reason, it is needed a chemical capable to reduce cell proliferation and the recruitment of cells. The search for new molecules for therapeutic skin treatment mainly focuses on the antioxidant and anti-inflammatory properties, highlighting the rheological properties of polymeric polypeptides. We studied L-arginine (L-Arg) grafted (-g-) to enzymatic poly(gallic acid) (PGAL). The latter is a multiradical antioxidant with greater properties and thermal stability. The derivative was enzymatically polymerized in an innocuous procedure. The poly(gallic acid)-g-L-Arg molecule (PGAL-g-L-Arg) inhibits bacterial strains which also have been involved in the progression of psoriasis and AD. However, it is important to analyze their biological effect on skin cells. The cell viability was analyzed by calcein/ethidium homodimer assays and crystal violet. The proliferation and cell attachment were determined by a curve of time and quantitation of the optical density of crystal violet. To analyze the cell migration a wound-healing assay was performed. This synthesis demonstrates that it is not cytotoxic at high concentrations (250 µg/mL). We observed a decrease in the proliferation, migration, and adhesion of dermal fibroblasts in vitro but the compound could not avoid the increase of reactive oxygen species in the cell. Based on our findings, PGAL-g-L-Arg is a promising candidate for treating skin diseases such as psoriasis and AD where decreasing the proliferation and cell migration could help to avoid inflammation.


Subject(s)
Dermatitis, Atopic , Psoriasis , Humans , Gallic Acid/metabolism , Gallic Acid/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Gentian Violet/metabolism , Gentian Violet/pharmacology , Skin/metabolism , Dermatitis, Atopic/metabolism , Cell Proliferation , Inflammation/metabolism , Fibroblasts/metabolism , Arginine/pharmacology
7.
Biofouling ; 39(9-10): 948-961, 2023.
Article in English | MEDLINE | ID: mdl-37975308

ABSTRACT

Biofilm refers to a community of microorganisms that adhere to a substrate and play a crucial role in microbial pathogenesis and developing infections associated with medical devices. Enterobacter hormaechei and Klebsiella pneumoniae are classified as significant nosocomial pathogens within the ESKAPE category and cause diverse infections. In addition to their reputation as prolific biofilm formers, these pathogens are increasingly becoming drug-resistant and pose a substantial threat to the healthcare setting. Due to the inherent resistance of biofilms to conventional therapies, novel strategies are imperative for effectively controlling E. hormaechei and K. pneumoniae biofilms. This study aimed to assess the anti-biofilm activity of gallic acid (GA) against E. hormaechei and K. pneumoniae. The results of biofilm quantification assays demonstrated that GA exhibited significant antibiofilm activity against E. hormaechei and K. pneumoniae at concentrations of 4 mg mL-1, 2 mg mL-1, 1 mg mL-1, and 0.5 mg mL-1. Similarly, GA exhibited a dose-dependent reduction in violacein production, a QS-regulated purple pigment, indicating its ability to suppress violacein production and disrupt QS mechanisms in Chromobacterium violaceum. Additionally, computational tools were utilized to identify the potential target involved in the biofilm formation pathway. The computational analysis further indicated the strong binding affinity of GA to essential biofilm regulators, MrkH and LuxS, suggesting its potential in targeting the c-di-GMP and quorum sensing (QS) pathways to hinder biofilm formation in K. pneumoniae. These compelling findings strongly advocate GA as a promising drug candidate against biofilm-associated infections caused by E. hormaechei and K. pneumoniae.


Subject(s)
Biofilms , Enterobacter , Klebsiella pneumoniae , Gallic Acid/pharmacology , Gallic Acid/metabolism , Quorum Sensing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
8.
J Plant Res ; 136(6): 891-905, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37526750

ABSTRACT

Aluminum toxicity is the main factor limiting the elongation of plant roots in acidic soil. The tree species Eucalyptus camaldulensis is considerably more resistant to aluminum than herbaceous model plants and crops. Hydrolyzable tannins (HTs) accumulating in E. camaldulensis roots can bind and detoxify the aluminum taken up by the roots. However, in herbaceous model plants, HTs do not accumulate and the genes involved in the HT biosynthetic pathway are largely unknown. The aim of this study was to establish a method for reconstituting the HT biosynthetic pathway in the HT non-accumulating model plant Nicotiana benthamiana. Four E. camaldulensis enzymes were transiently expressed in N. benthamiana leaves via Agrobacterium tumefaciens-mediated transformation. These enzymes included dehydroquinate dehydratase/shikimate dehydrogenases (EcDQD/SDH2 and EcDQD/SDH3), which catalyze the synthesis of gallic acid, the first intermediate of the HT biosynthetic pathway that branches off from the shikimate pathway. The others were UDP-glycosyltransferases (UGT84A25 and UGT84A26), which catalyze the conversion of gallic acid to ß-glucogallin, the second intermediate. The co-expression of the EcDQD/SDHs in transgenic N. benthamiana leaf regions promoted the synthesis of gallic acid. Moreover, the co-expression of the UGT84As in addition to the EcDQD/SDHs resulted in the biosynthesis of ß-glucogallin, the universal metabolic precursor of HTs. Thus, we successfully reconstituted a portion of the HT biosynthetic pathway in HT non-accumulating N. benthamiana plants. This heterologous gene expression system will be useful for co-expressing candidate genes involved in downstream reactions in the HT biosynthetic pathway and for clarifying their in planta functions.


Subject(s)
Aluminum , Hydrolyzable Tannins , Hydrolyzable Tannins/metabolism , Gallic Acid/metabolism , Trees , Gene Expression
9.
Int J Mol Sci ; 24(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37047259

ABSTRACT

The fermentation process has been widely used to improve plant-based foods' nutritional and nutraceutical properties. This study aimed to investigate and compare the impact of sourdough fermentation on the bioactive content and profile, antioxidant and antihypertensive activities, as well as the anti-inflammatory properties of fermented (FS) and non-fermented (NFS) flour from Tuscan Triticum dicoccum wheat (spelt) on tumor necrosis factor-alpha (TNF-α)-inflamed human intestinal epithelial cells (HT-29). FS showed significantly higher total phenolic and flavonoid content, in vitro and ex vivo antioxidant activities, and ACE-inhibitory activities than NFS. Gallic acid was identified by HPLC-DAD as the most representative polyphenol, followed by rutin, trans-ferulic acid, iso-quercitrin, and quercetin, in the fermented spelt sample. Instead, rutin and gallic acid were identified as the predominant compounds in the non-fermented ones. Moreover, FS exhibited a better protective effect on inflamed HT-29 cells by significantly counteracting the TNFα-induced alterations, lowering the expression of IL-8, COX-2, and ICAM-1 inflammatory mediator while enhancing antioxidant enzyme HO-1 gene expression. In conclusion, sourdough fermentation positively affected the nutraceutical and functional properties of spelt, which may represent a valuable ingredient for the formulation of functional foods and a key product for managing hypertension and inflammatory intestinal diseases.


Subject(s)
Antioxidants , Fermented Foods , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Fermentation , Triticum/metabolism , Antihypertensive Agents/metabolism , Gallic Acid/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Rutin/pharmacology , Rutin/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Fermented Foods/analysis , Bread/analysis , Flour/analysis
10.
Arch Microbiol ; 204(9): 584, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048277

ABSTRACT

A tannase-positive Bacillus gottheilii M2S2 and Bacillus cereus M1GT were co-cultivated for the production of gallic acid using tannic acid as the sole carbon source through submerged fermentation. Taguchi orthogonal array of design of experimental methodology was used to estimate the influence and significance of tannic acid concentration, glucose concentration, agitation speed, and inoculum size on the gallic acid production in a shake flask. Among all the factors, agitation speed contributed the highest for gallic acid production (28.28%), followed by glucose concentration (21.59%), inoculum size (19.6%), tannic acid concentration (19.54%), and pH (11.09%). Validation experiments were executed at the found optimized conditions which resulted in a 6.36-fold increase in gallic acid yield compared to unoptimized conditions. Further, the kinetics of growth, tannic acid degradation, and gallic acid yield were evaluated at the optimized conditions. The kinetic parameters Y x/s, Y p/s, and Y p/x were determined as 0.292 mg of cells/mg of tannic acid, 22.2 µg of gallic acid/mg of tannic acid, and 70.76 µg of gallic acid/mg of cells with a growth rate of 0.273 h -1 after 24 h of fermentation. Finally, the antimicrobial activity of the product gallic acid was investigated against food-borne pathogenic E. coli, S. aureus, and Serriatia marcescens and showed a zone of inhibition of 2 cm, 1.6 cm, and 1.3 cm, respectively, using the agar disc diffusion technique. Thus, the cost-effective bioproduct gallic acid proved to be potentially effective to control food poisoning diseases and preserve foodstuff.


Subject(s)
Anti-Infective Agents , Gallic Acid , Anti-Infective Agents/pharmacology , Coculture Techniques , Escherichia coli/metabolism , Fermentation , Gallic Acid/metabolism , Gallic Acid/pharmacology , Glucose , Kinetics , Staphylococcus aureus/metabolism , Tannins/metabolism , Tannins/pharmacology
11.
Purinergic Signal ; 18(3): 307-315, 2022 09.
Article in English | MEDLINE | ID: mdl-35687211

ABSTRACT

Gallic acid (GA) is a secondary metabolite found in plants. It has the ability to cross the blood-brain barrier and, through scavenging properties, has a protective effect in a brain insult model. Alcohol metabolism generates reactive oxygen species (ROS); thus, alcohol abuse has a deleterious effect on the brain. The zebrafish is a vertebrate often used for screening toxic substances and in acute ethanol exposure models. The aim of this study was to evaluate whether GA pretreatment (24 h) prevents the changes induced by acute ethanol exposure (1 h) in the purinergic signaling pathway in the zebrafish brain via degradation of extracellular nucleotides and oxidative stress. The nucleotide cascade promoted by the nucleoside triphosphate diphosphohydrolase (NTPDase) and 5'-nucleotidase was assessed by quantifying nucleotide metabolism. The effect of GA alone at 5 and 10 mg L-1 did not change the nucleotide levels. Pretreatment with 10 mg L-1 GA prevented an ethanol-induced increase in ATP and ADP levels. No significant difference was found between the AMP levels of the two pretreatment groups. Pretreatment with 10 mg L-1 GA prevented ethanol-enhanced lipid peroxidation and dichlorodihydrofluorescein (DCFH) levels. The higher GA concentration was also shown to positively modulate against ethanol-induced effects on superoxide dismutase (SOD), but not on catalase (CAT). This study demonstrated that GA prevents the inhibitory effect of ethanol on NTPDase activity and oxidative stress parameters, thus consequently modulating nucleotide levels that may contribute to the possible protective effects induced by alcohol and purinergic signaling.


Subject(s)
Ethanol , Zebrafish , Animals , Brain/metabolism , Ethanol/metabolism , Ethanol/toxicity , Gallic Acid/metabolism , Gallic Acid/pharmacology , Nucleotides/metabolism , Oxidative Stress , Purines/metabolism , Zebrafish/metabolism
12.
Mol Biol Rep ; 49(2): 1593-1599, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34783987

ABSTRACT

BACKGROUND: Inflammation is a complex mechanism with an objective to destroy and eliminate the invading microorganisms. During acute inflammation, the neutrophils are the major cells involved in this process and, although they defend the organism, must die to not generate damage. The two major mechanisms that drive neutrophils to death are: apoptosis and a novel mechanism recently discovered denominated NETosis. This process is a "suicidal mechanism", in which the cells release "neutrophil extracellular traps" (NETs) during the inflammatory response. Octyl gallate (OG) is one of the gallic acid derivates, with several protective effects, such as antioxidant and anti-inflammatory in cancer models. Thus, this study aimed to investigate the action of OG on the proliferation of lymphocytes, neutrophils activation, and its effectiveness in an experimental sepsis model. METHODS: Lymphocytes and neutrophils were obtained from healthy donors. Cell viability, apoptosis, NETs release and antioxidant capacity of OG were observed. In addition, survival was evaluated in an experimental model of sepsis in C57BL/6 mice. RESULTS: Our study demonstrated, for the first time, that the OG can act as an inhibitor of reactive oxygen species (ROS) release, NETs formation in primary human neutrophils and, modulates the lipopolysaccharide (LPS) effect in neutrophil apoptosis. The OG also inhibited peripheral blood mononuclear cells (PBMCs) proliferation in vitro. Despite the positive results, we did not observe an increase in the survival of septic animals. CONCLUSIONS: The pharmacological potential of OG, modulating activation of neutrophils and lymphocytes, suggests the use as an adjuvant therapeutic strategy in inflammatory diseases.


Subject(s)
Extracellular Traps/metabolism , Gallic Acid/analogs & derivatives , Lymphocyte Activation/physiology , Animals , Apoptosis/drug effects , Extracellular Traps/drug effects , Gallic Acid/metabolism , Gallic Acid/pharmacology , Healthy Volunteers , Humans , Inflammation , Leukocytes, Mononuclear/drug effects , Lipopolysaccharides/pharmacology , Lymphocyte Activation/drug effects , Mice , Mice, Inbred C57BL , Neutrophils/drug effects , Reactive Oxygen Species/pharmacology , Sepsis
13.
Int J Clin Pract ; 2022: 6541026, 2022.
Article in English | MEDLINE | ID: mdl-35685593

ABSTRACT

Objective: This study aimed to investigate the effects of gallic acid and silymarin against nephrotoxicity and hepatotoxicity caused by cisplatin. Materials and Methods: In the study, 56 Wistar Albino rats were equally divided into eight groups. Group 1 was the control group; group 2 was the group receiving cisplatin; group 3 was the group receiving cisplatin + gallic acid; group 4 was the group receiving cisplatin + silymarin; group 5 was the group receiving cisplatin + silymarin + gallic acid; group 6 was the group receiving silymarin; group 7 was the group receiving gallic acid; group 8 was the group receiving gallic acid + silymarin. AST, ALT, urea, creatinine, albumin, globulin, and total protein levels were measured at the end of the study. Superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), glutathione (GSH), and 8-hydroxy-2'-deoxyguanosine (8OH-dG) levels were measured in kidney and liver tissues. Additionally, histopathological evaluations of the tissues were also performed. Results: In kidney and liver tissues, cisplatin significantly increased MDA and 8-OHdG levels compared with treatment groups (p < 0.05). Silymarin-treated group significantly increased the SOD activity and GSH amount in the liver tissue compared with the cisplatin-treated group (p < 0.05). Gallic acid significantly increased CAT activity compared with the cisplatin-treated group (p < 0.05). It was determined that the cisplatin-treated group significantly decreased CAT and SOD activity compared with the control group (p > 0.05). Gallic acid showed a significant increase in CAT and SOD activity in kidney tissue compared with the cisplatin-treated group (p < 0.05). Conclusion: As a result, it was observed that gallic acid silymarin had a protective effect on cisplatin-induced nephrotoxic and hepatotoxic effects.


Subject(s)
Chemical and Drug Induced Liver Injury , Silymarin , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/prevention & control , Cisplatin/metabolism , Cisplatin/toxicity , Gallic Acid/metabolism , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , Glutathione/metabolism , Glutathione/pharmacology , Humans , Kidney , Oxidative Stress , Rats , Rats, Wistar , Silymarin/metabolism , Silymarin/pharmacology , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology
14.
Mar Drugs ; 20(9)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36135741

ABSTRACT

Nannochloropsis oculata is a marine microalgal species with a great potential as food or feed due to its high pigment, protein and eicosapentaenoic acid contents. However, for such an application to be realized on a large scale, a biorefinery approach is necessary due to the high cost of microalgal biomass production. For example, techno economic analyses have suggested the co-production of food or feed with antioxidants, which can be extracted and supplied separately to the market. The aim of this study was to investigate the effect of cultivation conditions on the antioxidant capacity of Nannochlosopsis oculata extracts, derived with ultrasound-assisted extraction at room temperature, as well as the proximate composition and fatty acid profile of the biomass. A fractional factorial approach was applied to examine the effects of temperature (20-35 °C), pH (6.5-9.5) and light period (24:0, 12:12). At the end of each run, biomass was collected, washed with 0.5M ammonium bicarbonate and freeze-dried. Antioxidant capacity as gallic acid equivalents as well as pigment content were measured in the ethanolic extracts. Optimal conditions were different for productivity and biomass composition. Interesting results regarding the effect of light period (LP) and pH require further investigation, whereas the effect of moisture on the extraction process was confounded with biomass composition. Finally, further data is provided regarding the relation between chlorophyll content and apparent phenolic content using the Folin-Ciocalteu assay, in agreement with our previous work.


Subject(s)
Microalgae , Stramenopiles , Antioxidants/metabolism , Biomass , Chlorophyll/metabolism , Eicosapentaenoic Acid/metabolism , Fatty Acids/metabolism , Gallic Acid/metabolism , Hydrogen-Ion Concentration , Microalgae/metabolism , Photobioreactors , Stramenopiles/metabolism , Temperature
15.
Anim Biotechnol ; 33(4): 657-663, 2022 Aug.
Article in English | MEDLINE | ID: mdl-32945731

ABSTRACT

Gallic acid (GA) is a widespread naturally occurring phenolic acid and one of the main active monomers that forms polyphenols such as tannins. In recent years, GA has been found as a potential regulator in lipid metabolism. However, effects and possible mechanisms of GA on cell growth and lipid metabolism of bovine subcutaneous adipocytes remain unknown. In this study, we investigated whether GA could affect proliferation and adipogenesis of subcutaneous adipocyte in beef cattle. We found that GA possesses inhibitive effects on proliferation and adipogenesis of bovine subcutaneous adipocyte via activating the metabolic master factor AMP-activated protein kinase alpha (AMPKα) to promote programmed cell death and lipolysis. The findings prove GA is a key substance to inhibit proliferation and adipogenesis of bovine subcutaneous adipocyte in vitro. Further in vivo study needs conducted to verify the reductive effects of GA on subcutaneous fat in beef cattle.


Subject(s)
Adipogenesis , Gallic Acid , Adipocytes/metabolism , Adipogenesis/physiology , Animals , Cattle , Cell Differentiation , Cell Proliferation , Gallic Acid/metabolism , Gallic Acid/pharmacology , Lipid Metabolism
16.
J Dairy Sci ; 105(4): 3078-3089, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35086717

ABSTRACT

The objective of this study was to evaluate the effects of feeding gallic acid on the growth, nutrient digestibility, plasma metabolites, rumen fermentation, and bacterial community in the rumen fluid and feces of preweaning calves. Thirty-six female Holstein calves with similar ages (means ± SD; 3.1 ± 1.39 d) and body weights (40.8 ± 2.87 kg) were randomly assigned to receive 3 treatments. Calves were fed 1 of 3 treatments as follows: basal diet with no gallic acid (control), 0.5 g/kg gallic acid in starter diet (low), and 1 g/kg gallic acid in starter diet (high). The results showed that feeding gallic acid increased growth by improving the starter intake and average daily gain of the calves. The fecal score tended to decrease in a linear manner with the addition of gallic acid. Total-tract apparent protein digestibility tended to increase linearly with feeding gallic acid. Feeding gallic acid led to a linear increase in the plasma total protein and ß-hydroxybutyrate levels. In addition, feeding gallic acid linearly increased catalase and total antioxidant capacity levels and decreased malondialdehyde and tumor necrosis factor-α concentrations. The concentrations of total volatile fatty acids, propionate, butyrate, and valerate in the rumen fluid increased linearly with the addition of gallic acid, resulting in a linear pH reduction. Feeding gallic acid linearly increased the relative abundances of Prevotella_1, Saccharofermentans, and Prevotellaceae_UCG-001 and linearly decreased the relative abundance of Prevotella_7 in the rumen fluid. The Shannon index of ruminal bacterial communities linearly increased by feeding gallic acid. Feeding gallic acid linearly increased the relative abundances of Ruminococcaceae_UCG-005, Bacteroides, and Christensenellaceae_R-7_group in the feces. In summary, feeding gallic acid improved growth, antioxidant function, and rumen fermentation and altered the bacterial community in the rumen fluid and feces of preweaning dairy calves.


Subject(s)
Animal Feed , Rumen , Animal Feed/analysis , Animals , Body Weight , Cattle , Diet/veterinary , Female , Fermentation , Gallic Acid/metabolism , Rumen/metabolism , Weaning
17.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430942

ABSTRACT

The overexpression of efflux pumps is one of the strategies used by bacteria to resist antibiotics and could be targeted to circumvent the antibiotic crisis. In this work, a series of trimethoxybenzoic acid derivatives previously described as antifouling compounds was explored for potential antimicrobial activity and efflux pump (EP) inhibition. First, docking studies on the acridine resistance proteins A and B coupled to the outer membrane channel TolC (AcrAB-TolC) efflux system and a homology model of the quinolone resistance protein NorA EP were performed on 11 potential bioactive trimethoxybenzoic acid and gallic acid derivatives. The synthesis of one new trimethoxybenzoic acid derivative (derivative 13) was accomplished. To investigate the potential of this series of 11 derivatives as antimicrobial agents, and in reverting drug resistance, the minimum inhibitory concentration was determined on several strains (bacteria and fungi), and synergy with antibiotics and EP inhibition were investigated. Derivative 10 showed antibacterial activity against the studied strains, derivatives 5 and 6 showed the ability to inhibit EPs in the acrA gene inactivated mutant Salmonella enterica serovar Typhimurium SL1344, and 6 also inhibited EPs in Staphylococcus aureus 272123. Structure-activity relationships highlighted trimethoxybenzoic acid as important for EP inhibitory activity. Although further studies are necessary, these results show the potential of simple trimethoxybenzoic acid derivatives as a source of feasible EP inhibitors.


Subject(s)
Bacterial Proteins , Gallic Acid , Gallic Acid/pharmacology , Gallic Acid/metabolism , Bacterial Proteins/metabolism , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Staphylococcus aureus/metabolism
18.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36232290

ABSTRACT

The cases of Lyme disease caused by Borrelia burgdorferi infection have been increasing throughout Northern America and Europe. This pathogen, if not treated in a timely manner with antibiotics, can cause persisting and debilitating health outcomes. In the search for novel agents against B. burgdorferi, we investigated a phenolic compound-gallic acid-for its anti-Borrelia and anti-inflammatory effects. Our results showed its biocidal effect starting from 100 µg/mL against active spirochetes, persisters/round-shaped bodies, and biofilm like aggregates of B. burgdorferi sensu stricto. Activation of macrophages by live B. burgdorferi also resulted in a robust NFκB-dependent proinflammatory responses seen in increased production of cytokines. Using human CD14+ macrophages in vitro, we showed that CD14+ adaptor and phosphorylated p65 molecule are impeded at nonbiocidal and noncytotoxic concentrations of gallic acid, resulting in the inhibition of both expression and secretion of cytokines IL1ß, IL6, and TNFα. Our findings demonstrate efficacy of gallic acid against B. burgdorferi and provide potential mechanistic insight into its TLR2/CD14+-NFκB mediated mode of action. Further studies on the potential of gallic acid as a safe and effective compound against Borrelia-caused infection are warranted.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/metabolism , Cytokines/metabolism , Gallic Acid/metabolism , Gallic Acid/pharmacology , Humans , Interleukin-6/metabolism , Lipopolysaccharide Receptors/immunology , Lyme Disease/drug therapy , NF-kappa B/metabolism , Toll-Like Receptor 2/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
Molecules ; 27(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36431942

ABSTRACT

HPLC-UV was used to compare the major constituents of two Pelargonium × hortorum cultivars and Pelargonium sidoides root extract. It revealed the presence of catechin and gallic acid in high concentrations and the absence of umckalin in P. × hortorum root extracts. The antibacterial activity of these extracts was screened against 19 Pseudomonas aeruginosa clinical isolates. P. × hortorum root extracts showed the lowest MIC values (512-1024 µg/mL). This activity was concluded to be attributable to the high concentrations of catechin and gallic acid. The anti-biofilm activity of catechin, gallic acid, and their combination was examined by a crystal violet assay. The combination reduced the percentage of strong and moderate biofilm-forming isolates from 52.63% to 5.26%. The impact on lasI and lasR genes expression using qRT-PCR and simultaneous docking against LasR protein was explored. The combination downregulated lasI and lasR gene expression in eight and six P. aeruginosa isolates, respectively, and showed the greatest docking score. Additionally, the in vivo protection capability of this combination in infected mice showed enhancement in the survival rate. Our study revealed the potential biofilm and quorum-sensing-inhibitory activity of the catechin and gallic acid combination as a novel alternative to inhibit bacterial pathogenicity.


Subject(s)
Catechin , Pelargonium , Mice , Animals , Pseudomonas aeruginosa , Catechin/pharmacology , Catechin/metabolism , Gallic Acid/pharmacology , Gallic Acid/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism
20.
J Anim Physiol Anim Nutr (Berl) ; 106(5): 1000-1008, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34288130

ABSTRACT

Gallic acid is a phenolic compound that exhibits antibacterial, antioxidative and anti-inflammatory functions. In a previous study, we found that dietary supplementation with gallic acid decreased incidence of diarrhoea and protected intestinal integrity in weaning piglets. However, the underlying mechanism remains unclear. Here, a pig intestinal epithelial cell line (IPEC-J2) was used as an in vitro model to explore the antioxidant and anti-inflammatory capacity of gallic acid. IPEC-J2 cells were stimulated with hydrogen peroxide (H2 O2 ) and lipopolysaccharide (LPS) to establish oxidative and inflammatory models, respectively. Results showed that H2 O2 significantly decreased catalase (CAT) secretion and CAT mRNA abundance in the cells (p < 0.05), while pretreatment with gallic acid did not prevent the decrease in CAT expression induced by H2 O2 . However, gallic acid pretreatment mitigated the increased expression of the tumour necrosis factor-α and interleukin-8 genes caused by LPS in IPEC-J2 cells (p < 0.05). In addition, pretreatment with gallic acid significantly suppressed phosphorylation of NF-κB and IκBα in LPS-stimulated IPEC-J2 cells. Moreover, LPS stimulation decreased the protein abundance of zona occludens 1 (ZO-1) and occludin, while pretreatment with gallic acid preserved expression level of tight junction proteins ZO-1 and occludin in LPS-stimulated IPEC-J2 cells (p < 0.05). In conclusion, gallic acid may mitigate LPS-induced inflammatory responses by inhibiting the NF-κB signalling pathway, exerting positive effects on the barrier function of IPEC-J2 cells.


Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Epithelial Cells , Gallic Acid/metabolism , Gallic Acid/pharmacology , Intestinal Mucosa , Lipopolysaccharides/toxicity , NF-kappa B/genetics , NF-kappa B/metabolism , Occludin/genetics , Swine , Tight Junction Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL