Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Mov Disord ; 39(5): 778-787, 2024 May.
Article in English | MEDLINE | ID: mdl-38532269

ABSTRACT

BACKGROUND: Re-emergent tremor is characterized as a continuation of resting tremor and is often highly therapy refractory. This study examines variations in brain activity and oscillatory responses between resting and re-emergent tremors in Parkinson's disease. METHODS: Forty patients with Parkinson's disease (25 males, mean age, 66.78 ± 5.03 years) and 40 age- and sex-matched healthy controls were included in the study. Electroencephalogram and electromyography signals were simultaneously recorded during resting and re-emergent tremors in levodopa on and off states for patients and mimicked by healthy controls. Brain activity was localized using the beamforming technique, and information flow between sources was estimated using effective connectivity. Cross-frequency coupling was used to assess neuronal oscillations between tremor frequency and canonical frequency oscillations. RESULTS: During levodopa on, differences in brain activity were observed in the premotor cortex and cerebellum in both the patient and control groups. However, Parkinson's disease patients also exhibited additional activity in the primary sensorimotor cortex. On withdrawal of levodopa, different source patterns were observed in the supplementary motor area and basal ganglia area. Additionally, levodopa was found to suppress the strength of connectivity (P < 0.001) between the identified sources and influence the tremor frequency-related coupling, leading to a decrease in ß (P < 0.001) and an increase in γ frequency coupling (P < 0.001). CONCLUSIONS: Distinct variations in cortical-subcortical brain activity are evident in tremor phenotypes. The primary sensorimotor cortex plays a crucial role in the generation of re-emergent tremor. Moreover, oscillatory neuronal responses in pathological ß and prokinetic γ activity are specific to tremor phenotypes. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Electromyography , Levodopa , Parkinson Disease , Tremor , Humans , Parkinson Disease/physiopathology , Parkinson Disease/complications , Parkinson Disease/drug therapy , Male , Female , Tremor/physiopathology , Tremor/etiology , Middle Aged , Aged , Levodopa/therapeutic use , Levodopa/pharmacology , Gamma Rhythm/physiology , Gamma Rhythm/drug effects , Beta Rhythm/physiology , Beta Rhythm/drug effects , Electroencephalography/methods , Antiparkinson Agents/therapeutic use
2.
Exp Brain Res ; 242(5): 1149-1160, 2024 May.
Article in English | MEDLINE | ID: mdl-38489023

ABSTRACT

Hypofunctioning of NMDA receptors, and the resulting shift in the balance between excitation and inhibition, is considered a key process in the pathophysiology of schizophrenia. One important manifestation of this phenomenon is changes in neural oscillations, those above 30 Hz (i.e., gamma-band oscillations), in particular. Although both preclinical and clinical studies observed increased gamma activity following acute administration of NMDA receptor antagonists, the relevance of this phenomenon has been recently questioned given the reduced gamma oscillations typically observed during sensory and cognitive tasks in schizophrenia. However, there is emerging, yet contradictory, evidence for increased spontaneous gamma-band activity (i.e., at rest or under baseline conditions). Here, we use the sub-chronic phencyclidine (PCP) rat model for schizophrenia, which has been argued to model the pathophysiology of schizophrenia more closely than acute NMDA antagonism, to investigate gamma oscillations (30-100 Hz) in the medial prefrontal cortex of anesthetized animals. While baseline gamma oscillations were not affected, oscillations induced by train stimulation of the posterior dorsal CA1 (pdCA1) field of the hippocampus were enhanced in PCP-treated animals (5 mg/kg, twice daily for 7 days, followed by a 7-day washout period). This effect was reversed by pharmacological enhancement of endocannabinoid levels via systemic administration of URB597 (0.3 mg/kg), an inhibitor of the catabolic enzyme of the endocannabinoid anandamide. Intriguingly, the pharmacological blockade of CB1 receptors by AM251 unmasked a reduced gamma oscillatory activity in PCP-treated animals. The findings are consistent with the observed effects of URB597 and AM251 on behavioral deficits reminiscent of the symptoms of schizophrenia and further validate the potential for cannabinoid-based drugs as a treatment for schizophrenia.


Subject(s)
Amidohydrolases , Benzamides , Carbamates , Phencyclidine , Piperidines , Schizophrenia , Animals , Male , Rats , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Benzamides/pharmacology , Carbamates/pharmacology , Disease Models, Animal , Endocannabinoids/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/administration & dosage , Gamma Rhythm/physiology , Gamma Rhythm/drug effects , Phencyclidine/pharmacology , Piperidines/pharmacology , Polyunsaturated Alkamides/metabolism , Polyunsaturated Alkamides/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Pyrazoles/pharmacology , Rats, Sprague-Dawley , Schizophrenia/physiopathology , Schizophrenia/metabolism , Schizophrenia/drug therapy
3.
J Neurophysiol ; 127(2): 586-595, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35080449

ABSTRACT

General anesthesia induces a profound but reversible unconscious state, which is accompanied by changes in various neurotransmitters in the cortex. Unlike the "brain silencing" effect of γ-aminobutyric acid (GABA) receptor potentiator anesthesia, ketamine anesthesia leads the brain to a paradoxical active state with higher cortical activity, which is manifested as dissociative anesthesia. However, how the overall neurotransmitter network evolves across conscious states after ketamine administration remains unclear. Using in vivo microdialysis, high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis, and electroencephalogram (EEG) recording technique, we continuously measured the concentrations of six neurotransmitters and the EEG signals during anesthesia with esketamine, an S-enantiomer of ketamine racemate. We found that there was an increase in the release of five cortical neurotransmitters after the administration of esketamine. The correlation of cortical neurotransmitters was dynamically simplified along with behavioral changes until full recovery after anesthesia. The esketamine-increased gamma oscillation power was positively correlated only with the concentration of 5-hydroxytryptamine (5-HT) in the medial prefrontal cortex. This study suggests that the transformation of the neurotransmitter network rather than the concentrations of neurotransmitters could be more indicative of the consciousness shift during esketamine anesthesia.NEW & NOTEWORTHY In this study, we found that esketamine significantly increased the cortical concentration of multiple neurotransmitters in mice. However, esketamine dynamically simplified the overall network of cortical neurotransmitters at different behavioral states during the perianesthesia period. The concentration of 5-HT in the medial prefrontal cortex (mPFC) was highly correlated with the esketamine-increased gamma oscillation. These findings suggested that the transformation of the neurotransmitter network rather than the concentrations of neurotransmitters could be more indicative of the consciousness shift during esketamine anesthesia.


Subject(s)
Anesthetics/pharmacology , Gamma Rhythm/drug effects , Ketamine/pharmacology , Nerve Net/drug effects , Nerve Net/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Serotonin/metabolism , Anesthesia , Animals , Mice , Prefrontal Cortex/metabolism
4.
PLoS Comput Biol ; 17(7): e1009235, 2021 07.
Article in English | MEDLINE | ID: mdl-34329297

ABSTRACT

Theta and gamma rhythms and their cross-frequency coupling play critical roles in perception, attention, learning, and memory. Available data suggest that forebrain acetylcholine (ACh) signaling promotes theta-gamma coupling, although the mechanism has not been identified. Recent evidence suggests that cholinergic signaling is both temporally and spatially constrained, in contrast to the traditional notion of slow, spatially homogeneous, and diffuse neuromodulation. Here, we find that spatially constrained cholinergic stimulation can generate theta-modulated gamma rhythms. Using biophysically-based excitatory-inhibitory (E-I) neural network models, we simulate the effects of ACh on neural excitability by varying the conductance of a muscarinic receptor-regulated K+ current. In E-I networks with local excitatory connectivity and global inhibitory connectivity, we demonstrate that theta-gamma-coupled firing patterns emerge in ACh modulated network regions. Stable gamma-modulated firing arises within regions with high ACh signaling, while theta or mixed theta-gamma activity occurs at the peripheries of these regions. High gamma activity also alternates between different high-ACh regions, at theta frequency. Our results are the first to indicate a causal role for spatially heterogenous ACh signaling in the emergence of localized theta-gamma rhythmicity. Our findings also provide novel insights into mechanisms by which ACh signaling supports the brain region-specific attentional processing of sensory information.


Subject(s)
Cholinergic Neurons/physiology , Gamma Rhythm/physiology , Models, Neurological , Theta Rhythm/physiology , Acetylcholine/pharmacology , Acetylcholine/physiology , Animals , Cholinergic Agents/pharmacology , Cholinergic Neurons/drug effects , Computational Biology , Computer Simulation , Gamma Rhythm/drug effects , Learning/drug effects , Learning/physiology , Nerve Net/drug effects , Nerve Net/physiology , Neural Networks, Computer , Prosencephalon/drug effects , Prosencephalon/physiology , Receptors, Cholinergic/drug effects , Receptors, Cholinergic/physiology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Theta Rhythm/drug effects
5.
J Neurosci ; 40(3): 605-618, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31776211

ABSTRACT

Leading neuroscientific theories posit a central role for the functional integration of cortical areas in conscious states. Considerable evidence supporting this hypothesis is based on network changes during anesthesia, but it is unclear whether these changes represent state-related (conscious vs unconscious) or drug-related (anesthetic vs no anesthetic) effects. We recently demonstrated that carbachol delivery to prefrontal cortex (PFC) restored wakefulness despite continuous administration of the general anesthetic sevoflurane. By contrast, carbachol delivery to parietal cortex, or noradrenaline delivery to either prefrontal or parietal cortices, failed to restore wakefulness. Thus, carbachol-induced reversal of sevoflurane anesthesia represents a unique state that combines wakefulness with clinically relevant anesthetic concentrations in the brain. To differentiate the state-related and drug-related associations of cortical connectivity and dynamics, we analyzed the electroencephalographic data gathered from adult male Sprague Dawley rats during the aforementioned experiments for changes in functional cortical gamma connectivity (25-155 Hz), slow oscillations (0.5-1 Hz), and complexity (<175 Hz). We show that higher gamma (85-155 Hz) connectivity is decreased (p ≤ 0.02) during sevoflurane anesthesia, an expected finding, but was not restored during wakefulness induced by carbachol delivery to PFC. Conversely, for rats in which wakefulness was not restored, the functional gamma connectivity remained reduced, but there was a significant decrease (p < 0.001) in the power of slow oscillations and increase (p < 0.001) in cortical complexity, which was similar to that observed during wakefulness induced after carbachol delivery to PFC. We conclude that the level of consciousness can be dissociated from cortical connectivity, oscillations, and dynamics.SIGNIFICANCE STATEMENT Numerous theories of consciousness suggest that functional connectivity across the cortex is characteristic of the conscious state and is reduced during anesthesia. However, it is unknown whether the observed changes are state-related (conscious vs unconscious) or drug-related (drug vs no drug). We used a novel rat model in which cholinergic stimulation of PFC produced wakefulness despite continuous exposure to a general anesthetic. We demonstrate that, as expected, general anesthesia reduces connectivity. Surprisingly, the connectivity remains suppressed despite pharmacologically induced wakefulness in the presence of anesthetic, with restoration occurring only after the anesthetic is discontinued. Thus, whether an animal exhibits wakefulness or not can be dissociated from cortical connectivity, prompting a reevaluation of the role of connectivity in level of consciousness.


Subject(s)
Cerebral Cortex/physiopathology , Consciousness Disorders/physiopathology , Electroencephalography/drug effects , Anesthesia , Anesthetics, Inhalation/pharmacology , Animals , Carbachol/administration & dosage , Carbachol/pharmacology , Cerebral Cortex/drug effects , Consciousness Disorders/chemically induced , Gamma Rhythm/drug effects , Male , Muscarinic Agonists/pharmacology , Norepinephrine/pharmacology , Parietal Lobe/drug effects , Parietal Lobe/physiopathology , Prefrontal Cortex/physiology , Rats , Rats, Sprague-Dawley , Sevoflurane/pharmacology , Wakefulness/drug effects
6.
Neurobiol Dis ; 149: 105226, 2021 02.
Article in English | MEDLINE | ID: mdl-33347975

ABSTRACT

Abnormal excitability in cortical networks has been reported in patients and animal models of Alzheimer's disease (AD), and other neurodegenerative conditions. Whether hyperexcitability is a core feature of alpha(α)-synucleinopathies, including dementia with Lewy bodies (DLB) is unclear. To assess this, we used two murine models of DLB that express either human mutant α-synuclein (α-syn) the hA30P, or human wild-type α-syn (hWT-α-syn) mice. We observed network hyperexcitability in vitro in young (2-5 months), pre-symptomatic transgenic α-syn mice. Interictal discharges (IIDs) were seen in the extracellular local field potential (LFP) in the hippocampus in hA30P and hWT-α-syn mice following kainate application, while only gamma frequency oscillations occurred in control mice. In addition, the concentration of the GABAA receptor antagonist (gabazine) needed to evoke IIDs was lower in slices from hA30P mice compared to control mice. hA30P mice also showed increased locomotor activity in the open field test compared to control mice. Intracellular recordings from CA3 pyramidal cells showed a more depolarised resting membrane potential in hA30P mice. Quadruple immunohistochemistry for human α-syn, and the mitochondrial markers, porin and the complex IV enzyme cytochrome c oxidase subunit 1 (COX1) in parvalbumin (PV+)-expressing interneurons showed that 25% of PV+ cells contained human α-syn in hA30P mice. While there was no change in PV expression, COX1 expression was significantly increased in PV+ cells in hA30P mice, perhaps reflecting a compensatory change to support PV+ interneuron activity. Our findings suggest that hippocampal network hyperexcitability may be an important early consequence of α-syn-mediated impairment of neuronal/synaptic function, which occurs without any overt loss of PV interneurons. The therapeutic benefit of targeting network excitability early in the disease stage should be explored with respect to α-synucleinopathies such as DLB.


Subject(s)
Gamma Rhythm/physiology , Hippocampus/metabolism , Mutation/physiology , Nerve Net/metabolism , alpha-Synuclein/biosynthesis , Age Factors , Animals , Dose-Response Relationship, Drug , Female , Gamma Rhythm/drug effects , Gene Expression , Hippocampus/drug effects , Hippocampus/physiopathology , Humans , Kainic Acid/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/drug effects , Nerve Net/physiopathology , Organ Culture Techniques , alpha-Synuclein/genetics
7.
Neurobiol Dis ; 155: 105393, 2021 07.
Article in English | MEDLINE | ID: mdl-34000417

ABSTRACT

Evidence suggests that exaggerated beta range local field potentials (LFP) in basal ganglia-thalamocortical circuits constitute an important biomarker for feedback for deep brain stimulation in Parkinson's disease patients, although the role of this phenomenon in triggering parkinsonian motor symptoms remains unclear. A useful model for probing the causal role of motor circuit LFP synchronization in motor dysfunction is the unilateral dopamine cell-lesioned rat, which shows dramatic motor deficits walking contralaterally to the lesion but can walk steadily ipsilaterally on a circular treadmill. Within hours after 6-OHDA injection, rats show marked deficits in ipsilateral walking with early loss of significant motor cortex (MCx) LFP peaks in the mid-gamma 41-45 Hz range in the lesioned hemisphere; both effects were reversed by dopamine agonist administration. Increases in MCx and substantia nigra pars reticulata (SNpr) coherence and LFP power in the 29-40 Hz range emerged more gradually over 7 days, although without further progression of walking deficits. Twice-daily chronic dopamine antagonist treatment induced rapid onset of catalepsy and also reduced MCx 41-45 Hz LFP activity at 1 h, with increases in MCx and SNpr 29-40 Hz power/coherence emerging over 7 days, as assessed during periods of walking before the morning treatments. Thus, increases in high beta power in these parkinsonian models emerge gradually and are not linearly correlated with motor deficits. Earlier changes in cortical circuits, reflected in the rapid decreases in MCx LFP mid-gamma LFP activity, may contribute to evolving plasticity supporting increased beta range synchronized activity in basal ganglia-thalamocortical circuits after loss of dopamine receptor stimulation.


Subject(s)
Beta Rhythm/physiology , Gamma Rhythm/physiology , Motor Cortex/physiopathology , Motor Disorders/physiopathology , Oxidopamine/toxicity , Parkinsonian Disorders/physiopathology , Animals , Beta Rhythm/drug effects , Dopamine D2 Receptor Antagonists/administration & dosage , Exercise Test/methods , Gamma Rhythm/drug effects , Male , Motor Cortex/drug effects , Motor Disorders/chemically induced , Parkinsonian Disorders/chemically induced , Rats , Rats, Long-Evans , Receptors, Dopamine D1/antagonists & inhibitors
8.
J Pharmacol Sci ; 145(1): 97-104, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33357785

ABSTRACT

Sleep disorders adversely affect daily activities and cause physiological and psychiatric problems. The shortcomings of benzodiazepine hypnotics have led to the development of ramelteon, a melatonin MT1 and MT2 agonist. Although the sleep-promoting effects of ramelteon have been documented, few studies have precisely investigated the structure of sleep and neural oscillatory activities. In this study, we recorded electrocorticograms in the primary motor cortex, the primary somatosensory cortex and the olfactory bulb as well as electromyograms in unrestrained rats treated with either ramelteon or vehicle. A neural-oscillation-based algorithm was used to classify the behavior of the rats into three vigilance states (e.g., awake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep). Moreover, we investigated the region-, frequency- and state-specific modulation of extracellular oscillations in the ramelteon-treated rats. We demonstrated that in contrast to benzodiazepine treatment, ramelteon treatment promoted NREM sleep and enhanced fast gamma power in the primary motor cortex during NREM sleep, while REM sleep was unaffected. Gamma oscillations locally coordinate neuronal firing, and thus, ramelteon modulates neural oscillations in sleep states in a unique manner and may contribute to off-line information processing during sleep.


Subject(s)
Gamma Rhythm/drug effects , Indenes/pharmacology , Motor Cortex/physiology , Sleep, REM/drug effects , Sleep, REM/physiology , Animals , Electrocorticography , Male , Rats, Wistar , Receptor, Melatonin, MT1/agonists , Receptor, Melatonin, MT2/agonists
9.
Neurobiol Dis ; 134: 104625, 2020 02.
Article in English | MEDLINE | ID: mdl-31786371

ABSTRACT

BACKGROUND: NMDAr antagonists induce disturbances to gamma frequency oscillations, including increasing ongoing gamma activity and reducing evoked gamma oscillations. We sought to investigate the role parvalbumin (PV+) neurons and CaMKIIα+ pyramidal cells in NMDAr antagonist-induced disturbances in gamma oscillatory activity and relate these to common behavioural consequences of these drugs by selectively deleting the obligatory GluN1 subunit from these cells in mice. METHODS: Adult mice (total n = 99) with GluN1 deleted from PV interneurons (PV:GluN1 KO) or CaMKIIα+ pyramidal cells (CaMKIIα:GluN1 KO), and WT littermates, were used. We assessed effects of the NMDAr antagonist MK-801 on prepulse inhibition (PPI) and locomotor behaviour. Then, mice were implanted with electrodes in the prefrontal cortex (mPFC) and hippocampus (dHPC), and the effects of MK-801 on gamma oscillations assessed. RESULTS: In WT mice, MK-801 increased ongoing gamma power, reduced evoked gamma power and increased gamma coherence. These changes were accompanied by hyperlocomotion and deficient PPI. The consequences of NMDAr antagonism were differentially regulated in the transgenic mice. The MK-801-induced increase in ongoing gamma power was significantly attenuated in both transgenic strains, but deficits to evoked gamma activity were unaffected by genotype. Deficient PPI was not affected by genotype, and only in PV:GluN1 KO mice was the hyperlocomotor phenotype of MK-801 attenuated. The emergence of abnormal gamma band hyperconnectivity between the mPFC and dHPC was absent in CaMKIIα:GluN1 KO mice. CONCLUSION: This study suggests that the effects of NMDAr antagonism on gamma band responses and behaviour have complex relationships, and rely on different populations of neurons.


Subject(s)
Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Gamma Rhythm/drug effects , Interneurons/drug effects , Pyramidal Cells/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Interneurons/metabolism , Mice , Mice, Knockout , Parvalbumins/metabolism , Pyramidal Cells/metabolism , Schizophrenia/metabolism , Schizophrenia/physiopathology
10.
Hippocampus ; 30(2): 101-113, 2020 02.
Article in English | MEDLINE | ID: mdl-31313871

ABSTRACT

Gamma oscillations (30-80 Hz) are fast network activity patterns frequently linked to cognition. They are commonly studied in hippocampal brain slices in vitro, where they can be evoked via pharmacological activation of various receptor families. One limitation of this approach is that neuronal activity is studied in a highly artificial extracellular fluid environment, as provided by artificial cerebrospinal fluid (aCSF). Here, we examine the influence of human cerebrospinal fluid (hCSF) on kainate-evoked and spontaneous gamma oscillations in mouse hippocampus. We show that hCSF, as compared to aCSF of matched electrolyte and glucose composition, increases the power of kainate-evoked gamma oscillations and induces spontaneous gamma activity in areas CA3 and CA1 that is reversed by washout. Bath application of atropine entirely abolished hCSF-induced gamma oscillations, indicating critical contribution from muscarinic acetylcholine receptor-mediated signaling. In separate whole-cell patch clamp recordings from rat hippocampus, hCSF increased theta resonance frequency and strength in pyramidal cells along with enhancement of h-current (Ih ) amplitude. We found no evidence of intrinsic gamma frequency resonance at baseline (aCSF) among fast-spiking interneurons, and this was not altered by hCSF. However, hCSF increased the excitability of fast-spiking interneurons, which likely contributed to gamma rhythmogenesis. Our findings show that hCSF promotes network gamma oscillations in the hippocampus in vitro and suggest that neuromodulators distributed in CSF could have significant influence on neuronal network activity in vivo.


Subject(s)
Cerebrospinal Fluid , Gamma Rhythm/drug effects , Hippocampus/drug effects , Interneurons/drug effects , Pyramidal Cells/drug effects , Animals , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Gamma Rhythm/physiology , Hippocampus/physiology , Humans , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Interneurons/physiology , Kainic Acid/pharmacology , Mice , Patch-Clamp Techniques , Pyramidal Cells/physiology
11.
Cell Physiol Biochem ; 54(3): 493-507, 2020 May 16.
Article in English | MEDLINE | ID: mdl-32415763

ABSTRACT

BACKGROUND/AIMS: Status epilepticus (SE) might be followed by temporal lobe epilepsy (TLE), a common neurologic disorder characterized by spontaneous recurrent seizures (SRSs). However, the relationship between SE and TLE is still incompletely characterized. For this reason, in a model of TLE we evaluated the lesion extent and the onset of SRSs to determine if they were influenced by the SE dynamics. METHODS: Sixty-two adult male Sprague-Dawley rats were implanted for video-electrocorticographic (v-ECoG) monitoring and intraperitoneally treated with saline or kainic acid (KA, 15 mg/kg) at 8 weeks of age. v-ECoG recordings were obtained during SE, in the following 9 weeks, and assessed by amplitude or power band spectrum. Rats were euthanized 3 or 64 days after SE to evaluate the lesion. RESULTS: SE lasted about 10 h during which the mean duration of convulsive seizures (CSs) increased from 39 s, at 30 min, to 603 s at 4 h. The gamma power peaked 30 min after the SE onset and its peak was correlated (r²=0.13, p=0.042) with the overall SE duration. Subsequently, the gamma power was reduced under the baseline until the end of SE. The theta power increased at approximately 150% of basal levels 3 h after KA injection, but it went back to basal levels with the full development of CSs. Interestingly, the timing of the first SRS in chronic epilepsy was correlated with the latency to develop the first CS with loss of posture during SE (r²=0.60, p<0.001). Additionally, the overall duration of CSs observed during SE was related to the number of damaged brain regions (r²=0.60, p=0.005), but it did not influence the timing of the first SRS in chronic epilepsy. CONCLUSION: Overall, our results show that the onset of chronic epilepsy is modulated by SE dynamics, whereas brain damage is related to prolonged convulsions in SE.


Subject(s)
Brain/pathology , Epilepsy, Temporal Lobe/pathology , Seizures/pathology , Status Epilepticus/pathology , Animals , Brain/cytology , Brain/drug effects , Cell Death , Cell Survival/drug effects , Disease Models, Animal , Electroencephalography , Epilepsy, Temporal Lobe/chemically induced , Gamma Rhythm/drug effects , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/pathology , Kainic Acid , Male , Neurons/cytology , Neurons/drug effects , Neurons/pathology , Rats , Rats, Sprague-Dawley , Status Epilepticus/chemically induced , Theta Rhythm/drug effects
12.
Cell Mol Neurobiol ; 40(2): 203-213, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31385135

ABSTRACT

Cortical gamma rhythm is involved in transmission of information (communication) between brain areas that are believed to be involved in the pathogenesis of cognitive dysfunctions. Trace amines represent a group of endogenous biogenic amines that are known to be involved in modulation of function of classical monoamines, such as dopamine. To evaluate potential modulatory influence of a specific receptor for trace amines Trace Amine-Associated Receptor 5 (TAAR5) on the dopamine system, we used HPLC measurements of dopamine and its metabolites in the mouse striatum following administration of the putative TAAR5 agonist α-NETA. Administration of α-NETA caused significant modulation of dopaminergic system as evidenced by an altered dopamine turnover rate in the striatum. Then, to evaluate potential modulatory influence of TAAR5 on the rat brain gamma rhythm, we investigated the changes of electrocorticogram (ECoG) spectral power in the gamma-frequency range (40-50 Hz) following administration of the putative TAAR5 agonist α-NETA. In addition, we analyzed the changes of spatial synchronization of gamma oscillations of rat ECoG by multichannel recording. Significant complex changes were observed in the ECoG spectrum, including an increase in the spectral power in the ranges of delta (1 Hz), theta (7 Hz), and gamma rhythms (40-50 Hz) after the introduction of α-NETA. Furthermore, a decrease in the spatial synchronization of gamma oscillations of 40-50 Hz and its increase for theta oscillations of 7 Hz were detected after the introduction of α-NETA. In conclusion, putative TAAR5 agonist α-NETA can modulate striatal dopamine transmission and cause significant alterations of gamma rhythm of brain activity in a manner consistent with schizophrenia-related deficits described in humans and experimental animals. These observations suggest a role of TAAR5 in the modulation of cognitive functions affected in brain pathologies.


Subject(s)
Electrocorticography/methods , Gamma Rhythm/physiology , Locomotion/physiology , Naphthalenes/pharmacology , Quaternary Ammonium Compounds/pharmacology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/physiology , Animals , Gamma Rhythm/drug effects , Locomotion/drug effects , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar , Sensorimotor Cortex/drug effects , Sensorimotor Cortex/physiology
13.
J Neurosci ; 38(10): 2482-2494, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29437929

ABSTRACT

Acute administration of N-methyl-D-aspartate receptor (NMDAR) antagonists in healthy humans and animals produces working memory deficits similar to those observed in schizophrenia. However, it is unclear whether they also lead to altered low-frequency (≤60 Hz) neural oscillatory activities similar to those associated with schizophrenia during working memory processes. Here, we recorded local field potentials (LFPs) and single-unit activity from the lateral prefrontal cortex (LPFC) of three male rhesus macaque monkeys while they performed a rule-based prosaccade and antisaccade working memory task both before and after systemic injections of a subanesthetic dose (≤0.7 mg/kg) of ketamine. Accompanying working-memory impairment, ketamine enhanced the low-gamma-band (30-60 Hz) and dampened the beta-band (13-30 Hz) oscillatory activities in the LPFC during both delay periods and intertrial intervals. It also increased task-related alpha-band activities, likely reflecting compromised attention. Beta-band oscillations may be especially relevant to working memory processes because stronger beta power weakly but significantly predicted shorter saccadic reaction time. Also in beta band, ketamine reduced the performance-related oscillation as well as the rule information encoded in the spectral power. Ketamine also reduced rule information in the spike field phase consistency in almost all frequencies up to 60 Hz. Our findings support NMDAR antagonists in nonhuman primates as a meaningful model for altered neural oscillations and synchrony, which reflect a disorganized network underlying the working memory deficits in schizophrenia.SIGNIFICANCE STATEMENT Low doses of ketamine, an NMDAR blocker, produce working memory deficits similar to those observed in schizophrenia. In the lateral prefrontal cortex, a key brain region for working memory, we found that ketamine altered neural oscillatory activities in similar ways that differentiate schizophrenic patients and healthy subjects during both task and nontask periods. Ketamine induced stronger gamma (30-60 Hz) and weaker beta (13-30 Hz) oscillations, reflecting local hyperactivity and reduced long-range communications. Furthermore, ketamine reduced performance-related oscillatory activities, as well as the rule information encoded in the oscillations and in the synchrony between single-cell activities and oscillations. The ketamine model helps link the molecular and cellular basis of neural oscillatory changes to the working memory deficit in schizophrenia.


Subject(s)
Electroencephalography/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Ketamine/pharmacology , Memory, Short-Term/drug effects , Prefrontal Cortex/drug effects , Psychomotor Performance/drug effects , Alpha Rhythm/drug effects , Animals , Beta Rhythm/drug effects , Gamma Rhythm/drug effects , Macaca mulatta , Male , Reaction Time/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Saccades/drug effects
14.
J Neurosci ; 38(38): 8110-8127, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30076213

ABSTRACT

Gamma oscillations are thought to play a role in learning and memory. Two distinct bands, slow (25-50 Hz) and fast (65-100 Hz) gamma, have been identified in area CA1 of the rodent hippocampus. Slow gamma is phase locked to activity in area CA3 and presumably driven by the Schaffer collaterals (SCs). We used a combination of computational modeling and in vitro electrophysiology in hippocampal slices of male rats to test whether CA1 neurons responded to SC stimulation selectively at slow gamma frequencies and to identify the mechanisms involved. Both approaches demonstrated that, in response to temporally precise input at SCs, CA1 pyramidal neurons fire preferentially in the slow gamma range regardless of whether the input is at fast or slow gamma frequencies, suggesting frequency selectivity in CA1 output with respect to CA3 input. In addition, phase locking, assessed by the vector strength, was more precise for slow gamma than fast gamma input. This frequency selectivity was greatly attenuated when the slow Ca2+-dependent K+ (SK) current was removed from the model or blocked in vitro with apamin. Perfusion of slices with BaCl2 to block A-type K+ channels tightened this frequency selectivity. Both the broad-spectrum cholinergic agonist carbachol and the muscarinic agonist oxotremorine-M greatly attenuated the selectivity. The more precise firing at slower frequencies persisted throughout all of the pharmacological manipulations conducted. We propose that these intrinsic mechanisms provide a means by which CA1 phase locks to CA3 at different gamma frequencies preferentially in vivo as physiological conditions change with behavioral demands.SIGNIFICANCE STATEMENT Gamma frequency activity, one of multiple bands of synchronous activity, has been suggested to underlie various aspects of hippocampal function. Multisite recordings within the rat hippocampal formation indicate that different behavioral tasks are associated with synchronized activity between areas CA3 and CA1 at two different gamma bands: slow and fast gamma. In this study, we examine the intrinsic mechanisms that may allow CA1 to selectively "listen" to CA3 at slow compared with fast gamma and suggest mechanisms that gate this selectivity. Identifying the intrinsic mechanisms underlying differential gamma preference may help to explain the distinct types of CA3-CA1 synchronization observed in vivo under different behavioral conditions.


Subject(s)
Action Potentials/physiology , CA1 Region, Hippocampal/physiology , Dendrites/physiology , Gamma Rhythm/physiology , Models, Neurological , Pyramidal Cells/physiology , Action Potentials/drug effects , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/drug effects , Carbachol/pharmacology , Cholinergic Agonists/pharmacology , Dendrites/drug effects , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Gamma Rhythm/drug effects , Male , Potassium Channel Blockers/pharmacology , Pyramidal Cells/cytology , Pyramidal Cells/drug effects , Rats , Synapses/drug effects , Synapses/physiology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
15.
J Neurochem ; 148(6): 810-821, 2019 03.
Article in English | MEDLINE | ID: mdl-30697747

ABSTRACT

Drugs that target monoaminergic transmission represent a first-line treatment for major depression. Though a full understanding of the mechanisms that underlie antidepressant efficacy is lacking, evidence supports a role for enhanced excitatory transmission. This can occur through two non-mutually exclusive mechanisms. The first involves increased function of excitatory neurons through relatively direct mechanisms such as enhanced dendritic arborization. Another mechanism involves reduced inhibitory function, which occurs with the rapid antidepressant ketamine. Consistent with this, GABAergic interneuron-mediated cortical inhibition is linked to reduced gamma oscillatory power, a rhythm also diminished in depression. Remission of depressive symptoms correlates with restoration of gamma power. As a result of strong excitatory input, reliable GABA release, and fast firing, PV-expressing neurons (PV neurons) represent critical pacemakers for synchronous oscillations. PV neurons also represent the predominant GABAergic population enveloped by perineuronal nets (PNNs), lattice-like structures that localize glutamatergic input. Disruption of PNNs reduces PV excitability and enhances gamma activity. Studies suggest that monoamine reuptake inhibitors reduce integrity of the PNN. Mechanisms by which these inhibitors reduce PNN integrity, however, remain largely unexplored. A better understanding of these issues might encourage development of therapeutics that best up-regulate PNN-modulating proteases. We observe that the serotonin/norepinephrine reuptake inhibitor venlafaxine increases hippocampal matrix metalloproteinase (MMP)-9 levels as determined by ELISA and concomitantly reduces PNN integrity in murine hippocampus as determined by analysis of sections following their staining with a fluorescent PNN-binding lectin. Moreover, venlafaxine-treated mice (30 mg/kg/day) show an increase in carbachol-induced gamma power in ex vivo hippocampal slices as determined by local field potential recording and Matlab analyses. Studies with mice deficient in matrix metalloproteinase 9 (MMP-9), a protease linked to PNN disruption in other settings, suggest that MMP-9 contributes to venlafaxine-enhanced gamma power. In conclusion, our results support the possibility that MMP-9 activity contributes to antidepressant efficacy through effects on the PNN that may in turn enhance neuronal population dynamics involved in mood and/or memory. Cover Image for this issue: doi: 10.1111/jnc.14498.


Subject(s)
Antidepressive Agents, Second-Generation/pharmacology , Gamma Rhythm/drug effects , Matrix Metalloproteinase 9/metabolism , Nerve Net/drug effects , Venlafaxine Hydrochloride/pharmacology , Animals , Female , Gamma Rhythm/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Proteolysis/drug effects
16.
Int J Neuropsychopharmacol ; 22(1): 10-18, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30184133

ABSTRACT

Background: This randomized, placebo-controlled, crossover trial examined the antidepressant efficacy of the muscarinic antagonist scopolamine in major depressive disorder subjects with more severe and refractory forms of major depressive disorder relative to previous reports. Methods: Participants included 23 medication-free major depressive disorder subjects (12 F/11 M, 20-55 years) currently experiencing a major depressive episode. Subjects had scored ≥20 on the Montgomery-Asberg Depression Rating Scale. Following a single-blind, placebo lead-in, participants were randomized to receive 2 counterbalanced blocks of 3 i.v. infusions of scopolamine (4 µg/kg) and placebo in a double-blind manner. The primary and secondary outcomes were the Montgomery-Asberg Depression Rating Scale and the Hamilton Anxiety Rating Scale, respectively. Magnetoencephalography and plasma brain-derived neurotrophic factor concentrations were obtained prior to and after each treatment phase. Results: As assessed by both the Montgomery-Asberg Depression Rating Scale and Hamilton Anxiety Rating Scale, scopolamine had no significant antidepressant or anxiolytic effects relative to placebo. No significant drug vs placebo effects were seen in magnetoencephalography gamma power or brain-derived neurotrophic factor plasma concentrations, and brain-derived neurotrophic factor changes did not correlate with change in Montgomery-Asberg Depression Rating Scale score in response to scopolamine. Conclusions: These results do not support the efficacy of scopolamine for more severe or refractory forms of depression. No pre- to post-infusion changes in plasma brain-derived neurotrophic factor were detected, and magnetoencephalography gamma power changed only in the placebo lead-in, suggesting that these biomarker measures were not affected by scopolamine in this cohort. While difficult to interpret given the lack of antidepressant response, the findings suggest that the neurobiological effects of ketamine and scopolamine are at least partly distinct.


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/physiopathology , Ketamine/therapeutic use , Scopolamine/therapeutic use , Adult , Antidepressive Agents/adverse effects , Biomarkers/blood , Brain/drug effects , Brain/physiopathology , Brain-Derived Neurotrophic Factor/blood , Cross-Over Studies , Double-Blind Method , Female , Gamma Rhythm/drug effects , Humans , Ketamine/adverse effects , Male , Middle Aged , Psychiatric Status Rating Scales , Scopolamine/adverse effects , Single-Blind Method , Treatment Outcome , Young Adult
17.
Brain Behav Immun ; 81: 161-171, 2019 10.
Article in English | MEDLINE | ID: mdl-31175998

ABSTRACT

A hallmark feature of schizophrenia is altered high frequency neural oscillations, including reduced auditory-evoked gamma oscillatory power, which is underpinned by parvalbumin (PV) interneuron dysfunction. Maternal immune activation (MIA) in rodents models an environmental risk factor for schizophrenia and recapitulates these PV interneuron changes. This study sought to link reduced PV expression in the MIA model with alterations to auditory-evoked gamma oscillations and transcript expression. We further aligned transcriptional findings from the animal model with human genome sequencing data. We show that MIA, induced by the viral mimetic, poly-I:C in C57Bl/6 mice, caused in adult offspring reduced auditory-evoked gamma and theta oscillatory power paralleled by reduced PV protein levels. We then showed the Arx gene, critical to healthy neurodevelopment of PV interneurons, is reduced in the forebrain of MIA exposed mice. Finally, in a whole-genome sequenced patient cohort, we identified a novel missense mutation of ARX in a patient with schizophrenia and in the Psychiatric Genomics Consortium 2 cohort, a nominal association of proximal ARX SNPs with the disorder. This suggests MIA, as a risk factor for schizophrenia, may be influencing Arx expression to induce the GABAergic dysfunction seen in schizophrenia and that the ARX gene may play a role in the prenatal origins of schizophrenia pathophysiology.


Subject(s)
Homeodomain Proteins/genetics , Immunity, Maternally-Acquired/immunology , Schizophrenia/genetics , Schizophrenia/immunology , Transcription Factors/genetics , gamma-Aminobutyric Acid/immunology , Adult , Animals , Brain/metabolism , Disease Models, Animal , Female , GABA Agents/metabolism , Gamma Rhythm/drug effects , Hippocampus/metabolism , Homeodomain Proteins/immunology , Homeodomain Proteins/metabolism , Humans , Interneurons/metabolism , Interneurons/pathology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neurons/metabolism , Neurons/pathology , Parvalbumins/metabolism , Poly I-C/pharmacology , Prefrontal Cortex/metabolism , Pregnancy , Schizophrenia/pathology , Theta Rhythm/drug effects , Transcription Factors/immunology , Transcription Factors/metabolism , gamma-Aminobutyric Acid/metabolism
18.
Exp Brain Res ; 237(7): 1593-1614, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31079238

ABSTRACT

Antidepressant drugs are a standard biological treatment for various neuropsychiatric disorders, yet relatively little is known about their electrophysiologic and synaptic effects on mood systems that set moment-to-moment emotional tone. In vivo electrical recording of local field potentials (LFPs) and single neuron spiking has been crucial for elucidating important details of neural processing and control in many other systems, and yet electrical approaches have not been broadly applied to the actions of antidepressants on mood-related circuits. Here we review the literature encompassing electrophysiologic effects of antidepressants in animals, including studies that examine older drugs, and extending to more recently synthesized novel compounds, as well as rapidly acting antidepressants. The existing studies on neuromodulator-based drugs have focused on recording in the brainstem nuclei, with much less known about their effects on prefrontal or sensory cortex. Studies on neuromodulatory drugs have moreover focused on single unit firing patterns with less emphasis on LFPs, whereas the rapidly acting antidepressant literature shows the opposite trend. In a synthesis of this information, we hypothesize that all classes of antidepressants could have common final effects on limbic circuitry. Whereas NMDA receptor blockade may induce a high powered gamma oscillatory state via direct and fast alteration of glutamatergic systems in mood-related circuits, neuromodulatory antidepressants may induce similar effects over slower timescales, corresponding with the timecourse of response in patients, while resetting synaptic excitatory versus inhibitory signaling to a normal level. Thus, gamma signaling may provide a biomarker (or "neural readout") of the therapeutic effects of all classes of antidepressants.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/drug therapy , Gamma Rhythm/drug effects , Prefrontal Cortex/drug effects , Action Potentials/drug effects , Action Potentials/physiology , Animals , Antidepressive Agents/pharmacology , Depression/physiopathology , Electrophysiological Phenomena/drug effects , Electrophysiological Phenomena/physiology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/therapeutic use , Gamma Rhythm/physiology , Humans , Prefrontal Cortex/physiopathology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/physiology
19.
Cereb Cortex ; 28(7): 2439-2457, 2018 07 01.
Article in English | MEDLINE | ID: mdl-28591796

ABSTRACT

Encoding of spatial information in the superficial layers of the medial entorhinal cortex (sMEC) involves theta-modulated spiking and gamma oscillations, as well as spatially tuned grid cells and border cells. Little is known about the role of the arousal-promoting histaminergic system in the modification of information encoded in the sMEC in vivo, and how such histamine-regulated information correlates with behavioral functions. Here, we show that histamine upregulates the neural excitability of a significant proportion of neurons (16.32%, 39.18%, and 52.94% at 30 µM, 300 µM, and 3 mM, respectively) and increases local theta (4-12 Hz) and gamma power (low: 25-48 Hz; high: 60-120 Hz) in the sMEC, through activation of histamine receptor types 1 and 3. During spatial exploration, the strength of theta-modulated firing of putative principal neurons and high gamma oscillations is enhanced about 2-fold by histamine. The histamine-mediated increase of theta phase-locking of spikes and high gamma power is consistent with successful spatial recognition. These results, for the first time, reveal possible mechanisms involving the arousal-promoting histaminergic system in the modulation of spatial cognition.


Subject(s)
Entorhinal Cortex/drug effects , Gamma Rhythm/drug effects , Histamine/pharmacology , Pattern Recognition, Visual/drug effects , Space Perception/drug effects , Theta Rhythm/drug effects , Animals , Biophysics , Dose-Response Relationship, Drug , Electric Stimulation , Entorhinal Cortex/cytology , Entorhinal Cortex/physiology , Histamine Agents/pharmacology , Male , Neurons/drug effects , Neurons/physiology , Photic Stimulation , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Synaptic Potentials/drug effects , Wakefulness , gamma-Aminobutyric Acid/metabolism
20.
Eur J Neurosci ; 48(8): 2807-2815, 2018 10.
Article in English | MEDLINE | ID: mdl-29120510

ABSTRACT

Avian and mammalian brains have evolved independently from each other for about 300 million years. During that time, the hippocampal formation (HF) has diverged in morphology and cytoarchitecture, but seems to have conserved much of its function. It is therefore an open question how seemingly different neural organizations can generate the same function. A prominent feature of the mammalian hippocampus is that it generates different neural oscillations, including the gamma rhythm, which plays an important role in memory processing. In this study, we investigate whether the avian hippocampus also generates gamma oscillations, and whether similar pharmacological mechanisms are involved in this function. We investigated the existence of gamma oscillations in avian HF using in vitro electrophysiology in P0-P12 domestic chick (Gallus gallus domesticus) HF brain slices. Persistent gamma frequency oscillations were induced by the bath application of the cholinergic agonist carbachol, but not by kainate, a glutamate receptor agonist. Similar to other species, carbachol-evoked gamma oscillations were sensitive to GABAA , AMPA/kainate and muscarinic (M1) receptor antagonism. Therefore, similar to mammalian species, muscarinic receptor-activated avian HF gamma oscillations may arise via a pyramidal-interneuron gamma (PING)-based mechanism. Gamma oscillations are most prominent in the ventromedial area of the hippocampal slices, and gamma power is reduced more laterally and dorsally in the HF. We conclude that similar micro-circuitry may exist in the avian and mammalian hippocampal formation, and this is likely to relate to the shared function of the two structures.


Subject(s)
Gamma Rhythm/physiology , Hippocampus/physiology , Animals , Animals, Newborn , Carbachol/pharmacology , Chickens , Cholinergic Agonists/pharmacology , Female , Gamma Rhythm/drug effects , Hippocampus/drug effects , Male , Muscarinic Antagonists/pharmacology , Organ Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL