Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Metabolomics ; 20(5): 89, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095669

ABSTRACT

INTRODUCTION: Breeding for oil palm resistance against basal stem rot caused by Ganoderma boninense is challenging and time-consuming. Advanced oil palm gene pools are very limited, hence it is assumed that parental palms have experienced genetic drift and lost their resistance genes against Ganoderma. High-throughput selection criteria should be developed. Metabolomic analysis using 1H nuclear magnetic resonance (NMR) spectroscopy is easy, and the resulting metabolite can be used as a diagnostic tool for detecting disease in various host-pathogen combinations. OBJECTIVES: The objective of this study was to identify metabolite variations in Dura (D) and Pisifera (P) parental palms with different resistance levels against Ganoderma and moderately resistant DxP using 1H NMR analysis. METHODS: Leaf tissues of seven different oil palm categories consisting of: resistant, moderate, and susceptible Dura (D); moderate and susceptible Pisifera (P); resistant Tenera/Pisifera (T/P) parental palms; and moderately resistant DxP variety progenies, were sampled and their metabolites were determined using NMR spectroscopy. RESULTS: Twenty-nine types of metabolites were identified, and most of the metabolites fall in the monosaccharides, amino acids, and fatty acids compound classes. The PCA, PLS-DA, and heatmap multivariate analysis indicated two identified groups of resistance based on their metabolites. The first group consisted of resistant T/P, moderate P, resistant D, and moderately resistant DxP. In contrast, the second group consisted of susceptible P, moderate D, and susceptible D. Glycerol and ascorbic acid were detected as biomarker candidates by OPLS-DA to differentiate moderately resistant DxP from susceptible D and P. The pathway analysis suggested that glycine, serine, and threonine metabolism and taurine and hypotaurine metabolism were involved in the oil palm defense mechanism against Ganoderma. CONCLUSION: A metabolomic study with 1H NMR was able to describe the metabolite composition that could differentiate the characteristics of oil palm resistance against basal stem rot (BSR) caused by G. boninense. These metabolites revealed in this study have enormous potential to become support tools for breeding new oil palm varieties with higher resistance against BSR.


Subject(s)
Arecaceae , Disease Resistance , Ganoderma , Metabolomics , Plant Diseases , Plant Leaves , Ganoderma/metabolism , Plant Leaves/metabolism , Plant Leaves/chemistry , Plant Diseases/microbiology , Arecaceae/metabolism , Arecaceae/chemistry , Metabolomics/methods , Proton Magnetic Resonance Spectroscopy/methods , Metabolome
2.
Plant Foods Hum Nutr ; 79(2): 308-315, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38639852

ABSTRACT

In food industry, the characteristics of food substrate could be improved through its bidirectional solid-state fermentation (BSF) by fungi, because the functional components were produced during BSF. Six edible fungi were selected for BSF to study their effects on highland barley properties, such as functional components, antioxidant activity, and texture characteristics. After BSF, the triterpenes content in Ganoderma lucidum and Ganoderma leucocontextum samples increased by 76.57 and 205.98%, respectively, and the flavonoids content increased by 62.40% (Phellinus igniarius). Protein content in all tests increased significantly, with a maximal increase of 406.11% (P. igniarius). Proportion of indispensable amino acids increased significantly, with the maximum increase of 28.22%. Lysine content increased largest by 437.34% to 3.310 mg/g (Flammulina velutipes). For antioxidant activity, ABTS radical scavenging activity showed the maximal improvement, with an increase of 1268.95%. Low-field NMR results indicated a changed water status of highland barley after fermentation, which could result in changes in texture characteristics of highland barley. Texture analysis showed that the hardness and chewiness of the fermented product decreased markedly especially in Ganoderma lucidum sample with a decrease of 77.96% and 58.60%, respectively. The decrease indicated a significant improvement in the taste of highland barley. The results showed that BSF is an effective technology to increase the quality of highland barley and provide a new direction for the production of functional foods.


Subject(s)
Antioxidants , Fermentation , Ganoderma , Hordeum , Hordeum/chemistry , Antioxidants/analysis , Antioxidants/metabolism , Ganoderma/chemistry , Ganoderma/metabolism , Flavonoids/analysis , Amino Acids/analysis , Amino Acids/metabolism , Flammulina/chemistry , Flammulina/metabolism , Reishi/metabolism , Reishi/chemistry , Food Handling/methods
3.
Mol Cell Neurosci ; 120: 103735, 2022 05.
Article in English | MEDLINE | ID: mdl-35562037

ABSTRACT

A traumatic brain injury (TBI) causes abnormal proliferation of neuroglial cells, and over-release of glutamate induces oxidative stress and inflammation and leads to neuronal death, memory deficits, and even death if the condition is severe. There is currently no effective treatment for TBI. Recent interests have focused on the benefits of supplements or natural products like Ganoderma. Studies have indicated that immunomodulatory protein from Ganoderma microsporum (GMI) inhibits oxidative stress in lung cancer cells A549 and induces cancer cell death by causing intracellular autophagy. However, no evidence has shown the application of GMI on TBI. Thus, this study addressed whether GMI could be used to prevent or treat TBI through its anti-inflammation and antioxidative effects. We used glutamate-induced excitotoxicity as in vitro model and penetrating brain injury as in vivo model of TBI. We found that GMI inhibits the generation of intracellular reactive oxygen species and reduces neuronal death in cortical neurons against glutamate excitotoxicity. In neurite injury assay, GMI promotes neurite regeneration, the length of the regenerated neurite was even longer than that of the control group. The animal data show that GMI alleviates TBI-induced spatial memory deficits, expedites the restoration of the injured areas, induces the secretion of brain-derived neurotrophic factors, increases the superoxide dismutase 1 (SOD-1) and lowers the astroglial proliferation. It is the first paper to apply GMI to brain-injured diseases and confirms that GMI reduces oxidative stress caused by TBI and improves neurocognitive function. Moreover, the effects show that prevention is better than treatment. Thus, this study provides a potential treatment in naturopathy against TBI.


Subject(s)
Brain Injuries, Traumatic , Cognitive Dysfunction , Ganoderma , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Fungal Proteins/metabolism , Fungal Proteins/pharmacology , Ganoderma/metabolism , Glutamates/metabolism , Immunologic Factors/metabolism , Immunologic Factors/pharmacology , Memory Disorders , Oxidative Stress
4.
Molecules ; 28(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050035

ABSTRACT

The aim of this study was to evaluate the application potential of a recombinant fungal immunomodulatory protein from Ganoderma lucidum (rFIP-glu). First, a recombinant plasmid pPIC9K::FIP-glu-His was transferred into Pichia pastoris for the production of protein. The protein was then to assess its free radical scavenging abilities and the effect on the viability of both human immortalized keratinocytes (HaCaT cells) and mouse B16-F10 melanoma cells (B16 cells) in vitro, followed by the effect on the melanin synthesis of B16 cells. The results of SDS-PAGE and western blot showed that rFIP-glu was successfully expressed. Furtherly, a bioactivity assay in vitro indicated that the scavenging rate of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals reached 84.5% at 6.0 mg/mL (p ≤ 0.0001) of rFIP-glu, showing strong antioxidant activity. Subsequently, a safety evaluation demonstrated that rFIP-glu promoted the proliferation of HaCaT cells, with the cell viability reaching 124.3% at 48 µg/mL (p ≤ 0.01), regarding the cell viability of B16 cells after exposure to rFIP-glu (48 µg/mL) significantly inhibited, to 80.7% (p ≤ 0.01). Besides, rFIP-glu inhibited the melanin synthesis of B16 cells in a dose-dependent manner from 100-1000 µg/mL, and rFIP-glu at 500 µg/mL (p ≤ 0.01) exhibited the highest intracellular melanin amount reduction of 16.8%. Furthermore, a mechanism analysis showed that rFIP-glu inhibited tyrosinase (TYR) activity by up-regulating the expression of the microphthalmia-associated transcription factor (MITF) and down-regulating the gene expression of TYR and tyrosinase-related protein-1 (TYRP-1), thus inhibiting melanin synthesis. The data implied that rFIP-glu had significant antioxidant activity and whitening potency. It should be used as raw materials for cosmeceutical applications.


Subject(s)
Ganoderma , Melanoma, Experimental , Reishi , Animals , Mice , Humans , Ganoderma/metabolism , Melanins/metabolism , Antioxidants/metabolism , Recombinant Proteins/metabolism , Reishi/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Melanoma, Experimental/drug therapy , Cell Line, Tumor
5.
Appl Microbiol Biotechnol ; 106(7): 2367-2380, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35348851

ABSTRACT

Fungal immunomodulatory protein (FIP) is a novel functional protein family with specific immunomodulatory activity identified from several macro-fungi. A variety of biological activities of FIPs have been reported, such as anti-allergy, anti-tumor, mitogenic activity, and immunomodulation. Among all known FIPs, the firstly discovered FIP was isolated from Ganoderma lucidum, and most FIP members were from Ganoderma genus. Compared with other FIPs, Ganoderma FIPs possess some advantageous bioactivities, like stronger anti-tumor activity. Therein, gene sequences, protein structural features, biofunctions, and recombinant expression of Ganoderma FIPs were summarized and addressed, focusing on elucidating their anti-tumor activity and molecular mechanisms. Combined with current advances, development potential and application of Ganoderma FIPs were also prospected. KEY POINTS: • More than a dozen of reported FIPs are identified from Ganoderma species. • Ganoderma immunomodulatory proteins have superior anti-tumor activity with promising prospects and application. • Current review comprehensively addresses characterization, biofunctions, and anti-tumor mechanisms of Ganoderma FIPs.


Subject(s)
Agaricales , Ganoderma , Agaricales/metabolism , Fungal Proteins/metabolism , Ganoderma/metabolism , Immunologic Factors/genetics , Immunologic Factors/pharmacology , Immunomodulation , Recombinant Proteins/genetics
6.
Molecules ; 27(13)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35807510

ABSTRACT

The use of substances or conditions as elicitors can significantly increase the production of secondary metabolites. In this research, the effects of different elicitors on the production of antioxidant secondary metabolites were evaluated in a strain of Ganoderma sp. The elicitors tested were pH changes in different growth phases of the fungus (pH 3, 5.5 and 8), different concentrations of peptone as a nitrogen source (1 g/L and 10 g/L), and the addition of chemical agents to the culture medium (ethanol, growth regulators, and salts). The alkaline pH during the stationary phase and the high availability of nitrogen were effective elicitors, producing cultures with higher antioxidant activity (37.87 g/L and 43.13 g/L dry biomass) although there were no significant differences with other treatments.


Subject(s)
Antioxidants , Ganoderma , Antioxidants/metabolism , Antioxidants/pharmacology , Costa Rica , Ganoderma/metabolism , Nitrogen
7.
Genomics ; 112(1): 930-933, 2020 01.
Article in English | MEDLINE | ID: mdl-31175979

ABSTRACT

The Ganoderma genus represents clear biotechnological potential, due to the large quantity of molecules with biological activity that could be explored. However, available information regarding the biotechnological importance of species within Ganoderma, other than G. lucidum, is quite limited. Genomic studies of little-known species can contribute to the knowledge thereof, as well as the search for metabolic pathways and the identification of genes which code for proteins that may be of biotechnological relevance. Therefore, the objective of the present study was to obtain the G. australe genome, through the use of new sequencing technologies. Genomic DNA from G. australe was sequenced with the PacBio Sequel system, to a depth of 100×. The genome was assembled de novo with the Canu assembly tool, and gene prediction and annotation were performed with a funannotate pipeline. An assembled 84 Mb genome was obtained, and 22,756 putative protein-coding sequences were predicted in the G. australe genome. Ganoderic acid pathways were annotated and listed in the funannotate pipeline, and were recognized using Pfam and Antismash signals. Thus, the G. australe genome shows great potential, mainly, due to the annotation of putative sequences that could be employed in biotechnological approaches.


Subject(s)
Ganoderma/genetics , Genome, Fungal , Fungal Proteins/genetics , Ganoderma/classification , Ganoderma/metabolism , Genomics , Molecular Sequence Annotation , Phylogeny , Triterpenes/metabolism
8.
Int J Mol Sci ; 22(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34681911

ABSTRACT

Ganoderma formosanum (GF) is a medicinal mushroom endemic to Taiwan. Previous research established the optimal culture conditions to produce exopolysaccharide rich in ß-glucan (GF-EPS) from submerged fermentation of GF. The present study investigated the antitumor effects of GF-EPS in a Lewis lung carcinoma cell (LLC1) tumor-bearing mice model. In the preventive model, GF-EPS was orally administered to mice before LLC1 injection. In the therapeutic model, GF-EPS oral administration was initiated five days after tumor cell injection. The tumor size and body weight of the mice were recorded. After sacrifice, the lymphocyte subpopulation was analyzed using flow cytometry. Spleen tissues were used to analyze cytokine mRNA expression. The results showed that GF-EPS (80 mg/kg) effectively suppressed LLC1 tumor growth in both the preventive and therapeutic models. GF-EPS administration increased the proportion of natural killer cells in the spleen and activated gene expression of several cytokines. Our results provide evidence that GF-EPS promotes tumor inhibition through immunomodulation in tumor-bearing mice.


Subject(s)
Carcinoma, Lewis Lung/drug therapy , Cytokines/genetics , Fungal Polysaccharides/administration & dosage , Ganoderma/growth & development , Killer Cells, Natural/metabolism , Administration, Oral , Animals , Body Weight/drug effects , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Fermentation , Fungal Polysaccharides/immunology , Fungal Polysaccharides/pharmacology , Ganoderma/immunology , Ganoderma/metabolism , Gene Expression Regulation, Neoplastic , Immunomodulation , Killer Cells, Natural/drug effects , Mice , Spleen/immunology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
9.
J Environ Manage ; 299: 113619, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34467865

ABSTRACT

By virtue of screening, purification, and properties characterization, this study captures a new pH- and temperature-stable laccase, designated Galacc-F, from Ganoderma australe for dye bioremediating applications. The enzyme was purified to homogeneity by salt precipitation, ionic exchange, and size exclusion chromatography with a final specific activity of 22.214 U mg-1, yielding a purification fold of 23.989 and recovery of 38.44%. Its molecular weight was estimated to be 48.0 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, zymography, Sephadex G-100 column, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, which confirmed its monomeric nature. Galacc-F exhibited high levels of activity and stability over wide ranges of pH (5.0-8.0) and temperature (10-60 °C), which are highly valuable properties in industrial processes. Broad substrate specificity was observed, wherein a better affinity was found for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) with a low value of Km (164.137 µM) and higher kcat/Km ratio (1.663 s-1 µM-1). Activity was stimulated by Cu2+ and ß-mercaptoethanol but inhibited by ethylenediaminetetraacetic acid, diethylpyrocarbonate, iodoacetic acid, phenylmethylsulfonyl fluoride, and Hg2+, indicating that Galacc-F is a metalloprotease containing a typical histidine-cysteine-serine catalytic triad. It had high tolerance to surfactants, oxidants, and salts. Additionally, a fabricated protocol for native Galacc-F immobilization onto Fe3O4@Chitosan composite nanoparticles using glutaraldehyde as a crosslinker was developed. Most importantly, the enzyme was determined to be ideal for use in efficient treatment of dye effluents as compared with the laccases requiring redox mediators.


Subject(s)
Ganoderma , Laccase , Biodegradation, Environmental , Coloring Agents , Enzyme Stability , Ganoderma/metabolism , Hydrogen-Ion Concentration , Kinetics , Laccase/metabolism , Temperature , Textiles
10.
Br J Cancer ; 123(3): 449-458, 2020 08.
Article in English | MEDLINE | ID: mdl-32448867

ABSTRACT

BACKGROUND: Adaptive drug resistance is an unfavourable prognostic factor in cancer therapy. Pemetrexed-resistant lung cancer cells possess high-metastatic ability via ERK-ZEB1 pathway-activated epithelial-mesenchymal transition. GMI is a fungal immunomodulatory protein that suppresses the survival of several cancer cells. METHODS: Cell viability was analysed by MTT, clonogenic, tumour spheroid, and cancer stem cell sphere assays. Western blot assay was performed to detect the protein expression. Chemical inhibitors and ATG5 shRNA were used to inhibit autophagy. Tumour growth was investigated using xenograft mouse model. RESULTS: GMI decreased the viability with short- and long-term effects and induced autophagy but not apoptosis in A549/A400 cells. GMI downregulated the expression levels of CD133, CD44, NANOG and OCT4. GMI induces the protein degradation of CD133 via autophagy. CD133 silencing decreased the survival and proliferation of A549/A400 cells. GMI suppressed the growth and CD133 expression of A549/A400 xenograft tumour. CONCLUSIONS: This study is the first to reveal the novel function of GMI in eliciting cytotoxic effect and inhibiting CD133 expression in pemetrexed-resistant lung cancer cells via autophagy. Our finding provides evidence that CD133 is a potential target for cancer therapy.


Subject(s)
AC133 Antigen/metabolism , Drug Resistance, Neoplasm/drug effects , Ganoderma/metabolism , Immunologic Factors/administration & dosage , Lung Neoplasms/drug therapy , A549 Cells , AC133 Antigen/genetics , Animals , Autophagy , Autophagy-Related Protein 5/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Fungal Proteins/administration & dosage , Fungal Proteins/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunologic Factors/pharmacology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Mice , Pemetrexed/administration & dosage , Pemetrexed/pharmacology , Proteolysis , Xenograft Model Antitumor Assays
11.
Bioorg Chem ; 100: 103930, 2020 07.
Article in English | MEDLINE | ID: mdl-32450386

ABSTRACT

Two structurally novel meroterpenoids, ganodermaones A (1) and B (2), were isolated from Ganoderma fungi (G. cochlear and G. lucidum). The structures of 1 and 2 were assigned by spectroscopic, computational, and X-ray diffraction methods. Compounds 1 and 2 represent the first examples of meroterpenoids in Ganoderma fungal species featuring with carbon migration. The plausible biosynthetic pathway for 1 was proposed. Biological evaluation showed that both 1 and 2 could inhibit renal fibrosis in TGF-ß1-induced kidney proximal tubular cells.


Subject(s)
Ganoderma/chemistry , Terpenes/chemistry , Animals , Carbon/chemistry , Carbon/metabolism , Cell Line , Cell Survival/drug effects , Collagen Type I/metabolism , Fibronectins/metabolism , Ganoderma/metabolism , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Magnetic Resonance Spectroscopy , Molecular Conformation , Rats , Terpenes/isolation & purification , Terpenes/pharmacology , Transforming Growth Factor beta1/pharmacology
12.
Biotechnol Appl Biochem ; 67(2): 180-185, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31710143

ABSTRACT

Liposoluble molecules are a group of compounds that display potent biological and therapeutic properties. The present study aimed to identify liposoluble molecules produced by Ganoderma lipsiense grown in red rice medium using solid-state fermentation (SSF) techniques, and to investigate the antigiardial and antibacterial activities potential of extracts in vitro. Eighteen fatty acids and derivatives were identified by gas chromatograph-mass spectrometry (GC-MS) analysis in G. lipsense extract. Qualitative (Fourier transform infrared spectroscopy and nuclear magnetic resonance) characterizations identified the steroid ergosta-6,22-diene-3ß,5α,8α-triol in purified hexane subfraction (HEXsf) F19 isolated from hexane fraction (HEXf) of crude extract (CE). Ergosta-6,22-diene-3ß,5α,8α-triol exhibited significant inhibitory activity against Giardia duodenalis throphozoites (93.6%) in in vitro assays. CE and HEXf inhibited 95.38% and 92.74% of the G. duodenalis throphozoites in 100 µg mL-1 , whereas CE and their fractions dichloromethane (DCMf) and ethyl acetate (EAf) showed antibacterial activities against Pseudomonas aeruginosa and Staphylococcus aureus at 500 µg mL-1 . Importantly, some liposoluble compounds produced and identified in G. lipsiense are unpublished for this species. This is first report for the production of ergosta-6,22-diene-3ß,5α,8α-triol by G. lipsiense and its antiparasitic activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiparasitic Agents/pharmacology , Fatty Acids/pharmacology , Ganoderma/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antiparasitic Agents/chemistry , Antiparasitic Agents/isolation & purification , Dose-Response Relationship, Drug , Fatty Acids/biosynthesis , Fatty Acids/chemistry , Fermentation , Ganoderma/growth & development , Ganoderma/metabolism , Giardia lamblia/drug effects , Microbial Sensitivity Tests , Molecular Conformation , Parasitic Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
13.
Molecules ; 25(20)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076396

ABSTRACT

Wood residues from forestry industries can be potential raw materials for specialty and edible mushroom production. The aim of this study was to evaluate the suitability of wood residues for the cultivation of Ganoderma lucidum originating from boreal forests. The substrates tested included sawdust and wood chips of Betula spp., Populus tremula, Picea abies, Pinus sylvestris and Larix sp. The suitability of the substrates and the ability of the strains to develop fruiting bodies and produce ß-glucan were evaluated. Fruiting body formation was supported by applying two different cold shock treatments to substrate bags. The highest yields were observed with MUS192 strain and Betula spp. and P. tremula wood-based substrates. ß-Glucan content in the fruiting bodies was highest with the MUS75 and P. tremula wood-based substrate. Based on these findings, the combination of P. tremula wood residues and the MUS192 strain is proposed to enhance the yield and ß-glucan content of the fruiting bodies. A cold treatment of 5 °C is suggested to induce primordia formation and to increase fruiting probability. This is the first time that strains of G. lucidum originating from boreal forests have been compared and successfully cultivated simulating commercial indoor cultivation.


Subject(s)
Fruiting Bodies, Fungal/metabolism , Ganoderma/metabolism , Wood/chemistry , beta-Glucans/metabolism , Cold Temperature , Culture Media , Fruiting Bodies, Fungal/chemistry , Ganoderma/growth & development , Pinus/chemistry , Populus/chemistry , beta-Glucans/chemistry
14.
Molecules ; 25(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339375

ABSTRACT

In solving the issue of basal stem rot diseases caused by Ganoderma, an investigation of Scytalidium parasiticum as a biological control agent that suppresses Ganoderma infection has gained our interest, as it is more environmentally friendly. Recently, the fungal co-cultivation has emerged as a promising method to discover novel antimicrobial metabolites. In this study, an established technique of co-culturing Scytalidium parasiticum and Ganoderma boninense was applied to produce and induce metabolites that have antifungal activity against G. boninense. The crude extract from the co-culture media was applied to a High Performance Liquid Chromatography (HPLC) preparative column to isolate the bioactive compounds, which were tested against G. boninense. The fractions that showed inhibition against G. boninense were sent for a Liquid Chromatography-Time of Flight-Mass Spectrometry (LC-TOF-MS) analysis to further identify the compounds that were responsible for the microbicidal activity. Interestingly, we found that eudistomin I, naringenin 7-O-beta-D-glucoside and penipanoid A, which were present in different abundances in all the active fractions, except in the control, could be the antimicrobial metabolites. In addition, the abundance of fatty acids, such as oleic acid and stearamide in the active fraction, also enhanced the antimicrobial activity. This comprehensive metabolomics study could be used as the basis for isolating biocontrol compounds to be applied in oil palm fields to combat a Ganoderma infection.


Subject(s)
Alkaloids/chemistry , Antifungal Agents/chemistry , Ascomycota/chemistry , Fatty Acids/chemistry , Flavonoids/chemistry , Ganoderma/chemistry , Alkaloids/isolation & purification , Alkaloids/pharmacology , Antifungal Agents/analysis , Antifungal Agents/pharmacology , Ascomycota/metabolism , Batch Cell Culture Techniques , Chromatography, High Pressure Liquid , Discriminant Analysis , Fatty Acids/isolation & purification , Fatty Acids/pharmacology , Flavonoids/isolation & purification , Flavonoids/pharmacology , Ganoderma/drug effects , Ganoderma/metabolism , Least-Squares Analysis , Principal Component Analysis , Spectrometry, Mass, Electrospray Ionization
17.
Appl Microbiol Biotechnol ; 103(17): 7203-7215, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31256229

ABSTRACT

Since polycyclic aromatic hydrocarbons (PAHs) are mutagenic, teratogenic, and carcinogenic, they are of considerable environmental concern. A biotechnological approach to remove such compounds from polluted ecosystems could be based on the use of white-rot fungi (WRF). The potential of well-adapted indigenous Ganoderma strains to degrade PAHs remains underexplored. Seven native Ganoderma sp. strains with capacity to produce high levels of laccase enzymes and to degrade synthetic dyes were investigated for their degradation potential of PAHs. The crude enzymatic extracts produced by Ganoderma strains differentially degraded the PAHs assayed (naphthalene 34-73%, phenanthrene 9-67%, fluorene 11-64%). Ganoderma sp. UH-M was the most promising strain for the degradation of PAHs without the addition of redox mediators. The PAH oxidation performed by the extracellular enzymes produced more polar and soluble metabolites such as benzoic acid, catechol, phthalic and protocatechuic acids, allowing us to propose degradation pathways of these PAHs. This is the first study in which breakdown intermediates and degradation pathways of PAHs by a native strain of Ganoderma genus were determined. The treatment of PAHs with the biomass of this fungal strain enhanced the degradation of the three PAHs. The laccase enzymes played an important role in the degradation of these compounds; however, the role of peroxidases cannot be excluded. Ganoderma sp. UH-M is a promising candidate for the bioremediation of ecosystems polluted with PAHs.


Subject(s)
Environmental Pollutants/metabolism , Ganoderma/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Biodegradation, Environmental , Fluorenes/metabolism , Ganoderma/enzymology , Laccase/metabolism , Naphthalenes/metabolism , Oxidation-Reduction , Peroxidases/metabolism , Phenanthrenes/metabolism
18.
Lett Appl Microbiol ; 68(2): 182-187, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30516831

ABSTRACT

The application of solid-state fermentation offers an alternative to conventional, submerged approaches for a variety of bioconversion processes, including animal feeds, biofuels and fungal bioproducts. Optimizing solid-state fermentation under low moisture conditions could significantly impact the proportion of dry biomass that could be processed and improve the commercial viability of this approach, because of reduced input costs and higher yields of final products. Pleurotus erygnii that appeared to show tolerance to low moisture conditions was grown on saturated and desaturated wheat straw. Pleurotus erygnii showed insignificant fibre degradation although showed significantly lower biomass decomposition on desaturated wheat straw. Fibre decomposition by the fungus on wheat straw containing wheat bran showed marginally higher decomposition when saturated although there was no difference in biomass decomposition. The levels of delignification achieved were similar under different saturation conditions. It would appear that the fungus effectively decomposed fibre under low moisture conditions often resulting in lower biomass losses. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, a white rot fungus, Pleurotus erygnii, effectively decomposed fibre under low moisture conditions when grown on wheat straw at similar levels under higher moisture conditions. However, the addition of wheat bran to wheat straw created a heterogeneous system that appeared to allow P. erygnii to thrive under much lower moisture conditions although lower levels of fibre decomposition was obtained. These factors could influence the preparation of solid-state fermentation.


Subject(s)
Dietary Fiber/metabolism , Lignin/metabolism , Pleurotus/metabolism , Triticum/metabolism , Triticum/microbiology , Animal Feed/microbiology , Animals , Biomass , Carbohydrate Metabolism , Carbohydrates , Coriolaceae/metabolism , Fermentation , Ganoderma/metabolism , Lentinula/metabolism
19.
Prep Biochem Biotechnol ; 49(3): 286-297, 2019.
Article in English | MEDLINE | ID: mdl-30821564

ABSTRACT

Co-v-culture (co-cultivations of physically separated microbes that only interact through the air) systems were designed to investigate the effects of microbial volatile organic compounds (mVOCs) from about 20 different microbes, on a medicinal fungus, Ganoderma lucidum. For more accuracy in co-cultivations, a novel synchronized cultivation approach was tested for culturing G. lucidum. The hyphal growth of G. lucidum and the content of its ganoderic acids (GAs) were measured. In almost all of the co-v-cultures, there was an inhibiting effect on hyphal growth and a promoting effect on GAs contents. In inducing GAs production, Bacillus cereus PTCC 1247 and Pseudomonas aeruginosa UTMC 1404 were the most effective ones, as, compared to control cultures, GAs content increased 2.8 fold. Comparing different co-v-cultivations demonstrated that the concentrations of mVOCs, oxygen, and carbon dioxide were the main players in co-v-cultures. No correlation was found between hyphal growth and GAs production. Strains of the same species imposed totally different effects on hyphal growth or GAs production. This study has investigated the effects of mVOCs on G. lucidum for the first time. Moreover, it suggests that co-v-cultivation may be a promising biotechnological approach to improve the production in G. lucidum.


Subject(s)
Ganoderma/drug effects , Ganoderma/growth & development , Triterpenes/metabolism , Volatile Organic Compounds/pharmacology , Bacteria/metabolism , Coculture Techniques/methods , Ganoderma/metabolism , Hyphae/drug effects , Hyphae/growth & development , Hyphae/metabolism
20.
BMC Biotechnol ; 18(1): 80, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30547780

ABSTRACT

BACKGROUND: More than a dozen of fungal immunomodulatory proteins (FIPs) have been identified to date, most of which are from Ganoderma species. However, little is known about the similarities and differences between different Ganoderma FIPs' bioactivities. In the current study, two FIP genes termed FIP-gap1 and FIP-gap2 from G. applanatum, along with LZ-8 and FIP-gsi, another two representative Ganoderma FIP genes from G. lucidum and G. sinense were functionally expressed in Pichia. Subsequently, bioactivities of four recombinant Ganoderma FIPs were demonstrated and compared. RESULTS: All the four Ganoderma FIP genes could be effectively expressed in P. pastoris GS115 at expression levels ranging from 197.5 to 264.3 mg L- 1 and simply purified by one step chromatography using HisTrap™ FF prepack columns. Amino acid sequence analysis showed that they all possessed the FIP conserved fragments. The homologies of different Ganoderma FIPs were from 72.6 to 86.4%. In vitro haemagglutination exhibited that FIP-gap1, FIP-gsi and LZ-8 could agglutinate human, sheep and mouse red blood cells but FIP-gap2 agglutinated none. Besides, the immunomodulation activities of these Ganoderma FIPs were as: rFIP-gap2 > rFIP-gap1 > rLZ-8 and rFIP-gsi in terms of proliferation stimulation and cytokine induction on murine splenocytes. Additionally, the cytotoxic activity of different FIPs was: rFIP-gap1 > rLZ-8 > rFIP-gsi > rFIP-gap2, examined by their inhibition of three human carcinomas A549, Hela and MCF-7. CONCLUSIONS: Taken together, four typical Ganoderma FIP genes could be functionally expressed in P. pastoris, which might supply as feasible efficient resources for further study and application. Both similarities and differences were indeed observed between Ganoderma FIPs in their amino acid sequences and bioactivities. Comprehensively, rFIP-gaps from G. applanatum proved to be more effective in immunomodulation and cytotoxic assays in vitro than rLZ-8 (G. lucidum) and rFIP-gsi (G. sinense).


Subject(s)
Fungal Proteins/genetics , Fungal Proteins/pharmacology , Ganoderma/genetics , Gene Expression , Immunologic Factors/genetics , Immunologic Factors/pharmacology , Amino Acid Motifs , Animals , Cell Line , Cytokines/genetics , Cytokines/immunology , Erythrocytes/drug effects , Erythrocytes/physiology , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Ganoderma/chemistry , Ganoderma/metabolism , Hemagglutination Tests , Humans , Immunologic Factors/isolation & purification , Immunologic Factors/metabolism , Mice , Pichia/genetics , Pichia/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL