Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Nature ; 611(7935): 405-412, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36323780

ABSTRACT

Solid tumours are innervated by nerve fibres that arise from the autonomic and sensory peripheral nervous systems1-5. Whether the neo-innervation of tumours by pain-initiating sensory neurons affects cancer immunosurveillance remains unclear. Here we show that melanoma cells interact with nociceptor neurons, leading to increases in their neurite outgrowth, responsiveness to noxious ligands and neuropeptide release. Calcitonin gene-related peptide (CGRP)-one such nociceptor-produced neuropeptide-directly increases the exhaustion of cytotoxic CD8+ T cells, which limits their capacity to eliminate melanoma. Genetic ablation of the TRPV1 lineage, local pharmacological silencing of nociceptors and antagonism of the CGRP receptor RAMP1 all reduced the exhaustion of tumour-infiltrating leukocytes and decreased the growth of tumours, nearly tripling the survival rate of mice that were inoculated with B16F10 melanoma cells. Conversely, CD8+ T cell exhaustion was rescued in sensory-neuron-depleted mice that were treated with local recombinant CGRP. As compared with wild-type CD8+ T cells, Ramp1-/- CD8+ T cells were protected against exhaustion when co-transplanted into tumour-bearing Rag1-deficient mice. Single-cell RNA sequencing of biopsies from patients with melanoma revealed that intratumoral RAMP1-expressing CD8+ T cells were more exhausted than their RAMP1-negative counterparts, whereas overexpression of RAMP1 correlated with a poorer clinical prognosis. Overall, our results suggest that reducing the release of CGRP from tumour-innervating nociceptors could be a strategy to improve anti-tumour immunity by eliminating the immunomodulatory effects of CGRP on cytotoxic CD8+ T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Nociceptors , Animals , Mice , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Melanoma/immunology , Melanoma/pathology , Nociceptors/physiology , Sensory Receptor Cells/metabolism , Neurites/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Survival Rate , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Genes, RAG-1/genetics , Humans , Biopsy , Prognosis
2.
Trends Immunol ; 41(7): 561-571, 2020 07.
Article in English | MEDLINE | ID: mdl-32467030

ABSTRACT

How innate immunity gave rise to adaptive immunity in vertebrates remains unknown. We propose an evolutionary scenario beginning with pathogen-associated molecular pattern(s) (PAMPs) being presented by molecule(s) on one cell to specific receptor(s) on other cells, much like MHC molecules and T cell receptors (TCRs). In this model, mutations in MHC-like molecule(s) that bound new PAMP(s) would not be recognized by original TCR-like molecule(s), and new MHC-like gene(s) would be lost by neutral drift. Integrating recombination activating gene (RAG) transposon(s) in a TCR-like gene would result in greater recognition diversity, with new MHC-like variants recognized and selected, along with a new RAG/TCR-like system. MHC genes would be selected to present many peptides, through multigene families, allelic polymorphism, and peptide-binding promiscuity.


Subject(s)
DNA Transposable Elements , Genes, RAG-1 , Major Histocompatibility Complex , Receptors, Antigen, T-Cell , Adaptive Immunity/genetics , Animals , DNA Transposable Elements/genetics , Evolution, Molecular , Genes, RAG-1/genetics , Immunity, Innate/genetics , Major Histocompatibility Complex/genetics , Receptors, Antigen, T-Cell/genetics
3.
Immunol Rev ; 287(1): 73-90, 2019 01.
Article in English | MEDLINE | ID: mdl-30565244

ABSTRACT

Mutations of the recombinase activating genes (RAG) in humans underlie a broad spectrum of clinical and immunological phenotypes that reflect different degrees of impairment of T- and B-cell development and alterations of mechanisms of central and peripheral tolerance. Recent studies have shown that this phenotypic heterogeneity correlates, albeit imperfectly, with different levels of recombination activity of the mutant RAG proteins. Furthermore, studies in patients and in newly developed animal models carrying hypomorphic RAG mutations have disclosed various mechanisms underlying immune dysregulation in this condition. Careful annotation of clinical outcome and immune reconstitution in RAG-deficient patients who have received hematopoietic stem cell transplantation has shown that progress has been made in the treatment of this disease, but new approaches remain to be tested to improve stem cell engraftment and durable immune reconstitution. Finally, initial attempts have been made to treat RAG deficiency with gene therapy.


Subject(s)
B-Lymphocytes/immunology , DNA-Binding Proteins/genetics , Genes, RAG-1/genetics , Immunologic Deficiency Syndromes/immunology , T-Lymphocytes/immunology , Animals , Cell Differentiation/genetics , Genetic Therapy , Hematopoietic Stem Cell Transplantation , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/therapy , Mutation/genetics , Phenotype
4.
J Fish Biol ; 96(2): 337-349, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31721192

ABSTRACT

We examine genetic structuring in three commercially important species of the teleost family Carangidae from Malaysian waters: yellowtail scad Atule mate, bigeye scad Selar crumenophthalmus and yellowstripe scad Selaroides leptolepis, from the Indo-Malay Archipelago. In view of their distribution across contrasting habitats, we tested the hypothesis that pelagic species display less genetic divergence compared with demersal species, due to their potential to undertake long-distance migrations in oceanic waters. To evaluate population genetic structure, we sequenced two mitochondrial (mt)DNA [650 bp of cytochrome oxidase I (coI), 450 bp of control region (CR)] and one nuclear gene (910 bp of rag1) in each species. One hundred and eighty samples from four geographical regions within the Indo-Malay Archipelago including a population of yellowtail from Kuwait were examined. Findings revealed that the extent of genetic structuring among populations in the semi-pelagic and pelagic, yellowtail and bigeye were lower than demersal yellowstripe, consistent with the hypothesis that pelagic species display less genetic divergence compared with demersal species. The yellowtail phylogeny identified three distinct clades with bootstrap values of 86%-99% in mtDNA and 63%-67% in rag1. However, in bigeye, three clades were also observed from mtDNA data while only one clade was identified in rag1 dataset. In yellowstripe, the mtDNA tree was split into three closely related clades and two clades in rag1 tree with bootstraps value of 73%-99% and 56% respectively. However, no geographic structure appears in both mtDNA and rag1 datasets. Hierarchical molecular variance analysis (AMOVA), pair wise FST comparisons and the nearest-neighbour statistic (Snn ) showed significant genetic differences among Kuwait and Indo-Malay yellowtail. Within the Indo-Malay Archipelago itself, two distinct mitochondrial lineages were detected in yellowtail suggesting potential cryptic species. Findings suggests varying degrees of genetic structuring, key information relevant to management of exploited stocks, though more rapidly evolving genetic markers should be used in future to better delimit the nature and dynamics of putative stock boundaries.


Subject(s)
Genetic Markers/genetics , Genetics, Population , Perciformes/genetics , Animals , DNA, Mitochondrial/genetics , Ecology/methods , Ecosystem , Fishes/genetics , Genes, RAG-1/genetics , Genetic Variation , Indonesia , Malaysia , Oceans and Seas , Phylogeny , Population Dynamics
5.
Nature ; 476(7361): 467-71, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21832993

ABSTRACT

Cohesin enables post-replicative DNA repair and chromosome segregation by holding sister chromatids together from the time of DNA replication in S phase until mitosis. There is growing evidence that cohesin also forms long-range chromosomal cis-interactions and may regulate gene expression in association with CTCF, mediator or tissue-specific transcription factors. Human cohesinopathies such as Cornelia de Lange syndrome are thought to result from impaired non-canonical cohesin functions, but a clear distinction between the cell-division-related and cell-division-independent functions of cohesion--as exemplified in Drosophila--has not been demonstrated in vertebrate systems. To address this, here we deleted the cohesin locus Rad21 in mouse thymocytes at a time in development when these cells stop cycling and rearrange their T-cell receptor (TCR) α locus (Tcra). Rad21-deficient thymocytes had a normal lifespan and retained the ability to differentiate, albeit with reduced efficiency. Loss of Rad21 led to defective chromatin architecture at the Tcra locus, where cohesion-binding sites flank the TEA promoter and the Eα enhancer, and demarcate Tcra from interspersed Tcrd elements and neighbouring housekeeping genes. Cohesin was required for long-range promoter-enhancer interactions, Tcra transcription, H3K4me3 histone modifications that recruit the recombination machinery and Tcra rearrangement. Provision of pre-rearranged TCR transgenes largely rescued thymocyte differentiation, demonstrating that among thousands of potential target genes across the genome, defective Tcra rearrangement was limiting for the differentiation of cohesin-deficient thymocytes. These findings firmly establish a cell-division-independent role for cohesin in Tcra locus rearrangement and provide a comprehensive account of the mechanisms by which cohesin enables cellular differentiation in a well-characterized mammalian system.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Differentiation , Chromosomal Proteins, Non-Histone/metabolism , Gene Rearrangement, T-Lymphocyte , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Thymus Gland/cytology , Animals , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins , Gene Expression Regulation , Gene Rearrangement, T-Lymphocyte/genetics , Genes, RAG-1/genetics , Mice , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Phosphoproteins/deficiency , Phosphoproteins/genetics , Recombinases/metabolism , Thymus Gland/metabolism , Transcription, Genetic , Cohesins
6.
Nature ; 470(7335): 548-53, 2011 Feb 24.
Article in English | MEDLINE | ID: mdl-21326202

ABSTRACT

Inflammatory mechanisms influence tumorigenesis and metastatic progression even in cancers whose aetiology does not involve pre-existing inflammation or infection, such as breast and prostate cancers. For instance, prostate cancer metastasis is associated with the infiltration of lymphocytes into advanced tumours and the upregulation of two tumour-necrosis-factor family members: receptor activator of nuclear factor-κB (RANK) ligand (RANKL) and lymphotoxin. But the source of RANKL and its role in metastasis have not been established. RANKL and its receptor RANK control the proliferation of mammary lobuloalveolar cells during pregnancy through inhibitor of nuclear factor-κB (IκB) kinase-α (IKK-α), a protein kinase that is needed for the self-renewal of mammary cancer progenitors and for prostate cancer metastasis. We therefore examined whether RANKL, RANK and IKK-α are also involved in mammary/breast cancer metastasis. Indeed, RANK signalling in mammary carcinoma cells that overexpress the proto-oncogene Erbb2 (also known as Neu), which is frequently amplified in metastatic human breast cancers, was important for pulmonary metastasis. Metastatic spread of Erbb2-transformed carcinoma cells also required CD4(+)CD25(+) T cells, whose major pro-metastatic function was RANKL production. Most RANKL-producing T cells expressed forkhead box P3 (FOXP3), a transcription factor produced by regulatory T cells, and were located next to smooth muscle actin (SMA)(+) stromal cells in mouse and human breast cancers. The dependence of pulmonary metastasis on T cells was replaceable by exogenous RANKL, which also stimulated pulmonary metastasis of RANK(+) human breast cancer cells. These results are consistent with the adverse impact of tumour-infiltrating CD4(+) or FOXP3(+) T cells on human breast cancer prognosis and suggest that the targeting of RANKL-RANK can be used in conjunction with the therapeutic elimination of primary breast tumours to prevent recurrent metastatic disease.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/metabolism , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/metabolism , Animals , CD4 Antigens/genetics , CD4 Antigens/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8 Antigens/genetics , CD8 Antigens/metabolism , Cell Line, Tumor , Female , Forkhead Transcription Factors/metabolism , Genes, RAG-1/genetics , Humans , I-kappa B Kinase/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice , Mice, Inbred C57BL , Neoplasm Metastasis/pathology , Proto-Oncogene Mas , RANK Ligand/antagonists & inhibitors , RANK Ligand/pharmacology , Receptor Activator of Nuclear Factor-kappa B/deficiency , Receptor Activator of Nuclear Factor-kappa B/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Signal Transduction/drug effects
7.
Proc Natl Acad Sci U S A ; 111(1): 391-6, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24371308

ABSTRACT

Deregulated activation of ß-catenin in cancer has been correlated with genomic instability. During thymocyte development, ß-catenin activates transcription in partnership with T-cell-specific transcription factor 1 (Tcf-1). We previously reported that targeted activation of ß-catenin in thymocytes (CAT mice) induces lymphomas that depend on recombination activating gene (RAG) and myelocytomatosis oncogene (Myc) activities. Here we show that these lymphomas have recurring Tcra/Myc translocations that resulted from illegitimate RAG recombination events and resembled oncogenic translocations previously described in human T-ALL. We therefore used the CAT animal model to obtain mechanistic insights into the transformation process. ChIP-seq analysis uncovered a link between Tcf-1 and RAG2 showing that the two proteins shared binding sites marked by trimethylated histone-3 lysine-4 (H3K4me3) throughout the genome, including near the translocation sites. Pretransformed CAT thymocytes had increased DNA damage at the translocating loci and showed altered repair of RAG-induced DNA double strand breaks. These cells were able to survive despite DNA damage because activated ß-catenin promoted an antiapoptosis gene expression profile. Thus, activated ß-catenin promotes genomic instability that leads to T-cell lymphomas as a consequence of altered double strand break repair and increased survival of thymocytes with damaged DNA.


Subject(s)
Genomic Instability , Lymphocyte Activation , Lymphoma/genetics , T-Lymphocytes/cytology , beta Catenin/metabolism , Animals , Apoptosis , Base Sequence , Cell Survival , DNA Breaks, Double-Stranded , DNA Methylation , DNA Repair , Disease Models, Animal , Genes, RAG-1/genetics , Hepatocyte Nuclear Factor 1-alpha , Histones/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Sequence Data , Recombination, Genetic , T Cell Transcription Factor 1/metabolism , Thymocytes/cytology , Translocation, Genetic , beta Catenin/genetics
8.
Clin Exp Immunol ; 185(3): 271-80, 2016 09.
Article in English | MEDLINE | ID: mdl-27271348

ABSTRACT

A single determinant factor for autoimmunity does not exist; disease development probably involves contributions from genetics, the environment and immune dysfunction. Type 1 diabetes is no exception. Genomewide-associated studies (GWAS) analysis in T1D has proved disappointing in revealing contributors to disease prediction; the only reliable marker has been human leucocyte antigen (HLA). Specific HLAs include DR3/DR4/DQ2/DQ8, for example. Because HLA molecules present antigen to T cells, it is reasonable that certain HLA molecules have a higher affinity to present self-antigen. Recent studies have shown that additional polymorphisms in HLA that are restricted to autoimmune conditions are further contributory. A caveat is that not all individuals with the appropriate 'pro-autoimmune' HLA develop an autoimmune disease. Another crucial component is autoaggressive T cells. Finding a biomarker to discriminate autoaggressive T cells has been elusive. However, a subset of CD4 helper cells that express the CD40 receptor have been described as becoming pathogenic. An interesting function of CD40 on T cells is to induce the recombination-activating gene (RAG)1/RAG2 T cell receptor recombination machinery. This observation is contrary to immunology paradigms that changes in TCR molecules cannot take place outside the thymic microenvironment. Alteration in TCR, called TCR revision, not only occurs, but may help to account for the development of autoaggressive T cells. Another interesting facet is that type 1 diabetes (T1D) may be more than a single disease; that is, multiple cellular components contribute uniquely, but result ultimately in the same clinical outcome, T1D. This review considers the process of T cell maturation and how that could favor auto-aggressive T cell development in T1D. The potential contribution of TCR revision to autoimmunity is also considered.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Receptors, Antigen, T-Cell/physiology , T-Lymphocytes/metabolism , Autoantigens/immunology , Autoimmunity/genetics , Autoimmunity/immunology , CD40 Antigens/immunology , Diabetes Mellitus, Type 1/genetics , Genes, RAG-1/genetics , HLA-DQ Antigens/genetics , HLA-DR3 Antigen/genetics , HLA-DR4 Antigen/genetics , Humans , Polymorphism, Genetic , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology
9.
J Autoimmun ; 59: 67-76, 2015 May.
Article in English | MEDLINE | ID: mdl-25812467

ABSTRACT

Immune cells, particularly those expressing the ligand of the Fas-death receptor (FasL), e.g. cytotoxic T cells, induce apoptosis in 'undesirable' self- and non-self-cells, including lung fibroblasts, thus providing a means of immune surveillance. We aimed to validate this mechanism in resolution of lung fibrosis. In particular, we elucidated whether FasL(+) immune cells possess antifibrotic capabilities by induction of FasL-dependent myofibroblast apoptosis and whether antagonists of membrane (m) and soluble (s) FasL can inhibit these capabilities. Myofibroblast interaction with immune cells and its FasL-dependency, were investigated in vitro in coculture with T cells and in vivo, following transplantation into lungs of immune-deficient syngeneic Rag-/- as well as allogeneic SCID mice, and into lungs and air pouches of FasL-deficient (gld) mice, before and after reconstitution of the mice with wild-type (wt), FasL(+) immune cells. We found that myofibroblasts from lungs resolving fibrosis undergo FasL-dependent T cell-induced apoptosis in vitro and demonstrate susceptibility to in vivo immune surveillance in lungs of reconstituted, immune- and FasL-deficient, mice. However, immune-deficient Rag-/- and SCID mice, and gld-mice with FasL-deficiency, endure the accumulation of transplanted myofibroblasts in their lungs with subsequent development of fibrosis. Concomitantly, gld mice, in contrast to chimeric FasL-deficient mice with wt immune cells, accumulated transplanted myofibroblasts in the air pouch model. In humans we found that myofibroblasts from fibrotic lungs secrete sFasL and resist T cell-induced apoptosis, whereas normal lung myofibroblasts are susceptible to apoptosis but acquire resistance upon addition of anti-s/mFasL to the coculture. Immune surveillance, particularly functional FasL(+) immune cells, may represent an important extrinsic component in myofibroblast apoptosis and serve as a barrier to fibrosis. Factors interfering with Fas/FasL-immune cell-myofibroblast interaction such as sFasL secreted by fibrotic-lung myofibroblasts, may abrogate immune surveillance during fibrosis. Annulling these factors may pave a new direction to control human lung fibrosis.


Subject(s)
Apoptosis , Fas Ligand Protein/metabolism , Lung/pathology , Myofibroblasts/metabolism , T-Lymphocytes, Cytotoxic/immunology , Adoptive Transfer , Animals , Antibodies, Blocking/pharmacology , Apoptosis/drug effects , Cells, Cultured , Coculture Techniques , Fas Ligand Protein/genetics , Fibrosis , Genes, RAG-1/genetics , Humans , Immunologic Surveillance/drug effects , Lung/immunology , Mice , Mice, Knockout , Mice, SCID , Myofibroblasts/drug effects , Myofibroblasts/pathology , T-Lymphocytes, Cytotoxic/transplantation
10.
Infect Immun ; 81(12): 4534-43, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24082074

ABSTRACT

Streptococcus pneumoniae (pneumococcus) is a significant pathogen that frequently colonizes the human nasopharynx. Environmental factors, including antimicrobial use and host immunity, exert selection on members of the nasopharyngeal population, and the dynamics of selection are influenced by the effective population size of the selected population, about which little is known. We measured here the variance effective population size (N(e)) of pneumococcus in a mouse colonization model by monitoring the frequency change of two cocolonizing, competitively neutral pneumococcal strains over time. The point estimate of N(e) during nasal carriage in 16 BALB/c mice was 133 (95% confidence interval [CI] = 11 to 203). In contrast, the lower-bound census population exhibited a mean of 5768 (95% CI = 2,515 to 9,021). Therefore, pneumococcal N(e) during nasal carriage is substantially smaller than the census population. The N(e) during day 1 to day 4 of colonization was comparable to the Ne during day 4 to day 8. Similarly, a low Ne was also evident for the colonization of pneumococcus in BALB/c mice exposed to cholera toxin 4 weeks prior to challenge and in another mouse strain (DO11.10 RAG(-/-)). We developed a mathematical model of pneumococcal colonization composed of two subpopulations with differential contribution to future generations. By stochastic simulation, this model can reproduce the pattern of observed pneumococcal N(e) and predicts that the selection coefficients may be difficult to measure in vivo. We hypothesized that such a small N(e) may reduce the effectiveness of within host selection for pneumococcus.


Subject(s)
Nasopharynx/microbiology , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/growth & development , Animals , Bacterial Load , Cholera Toxin/metabolism , Genes, RAG-1/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Models, Theoretical , Nasopharynx/immunology , Pneumococcal Infections/immunology , Streptococcus pneumoniae/immunology
11.
Mol Biol Evol ; 29(2): 503-15, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21771716

ABSTRACT

Transposable elements (TEs) are highly abundant in the genome and capable of mobility, two properties that make them particularly prone to transfer horizontally between organisms. Although the impact of horizontal transfer (HT) of TEs is well recognized in prokaryotes, the frequency of this phenomenon and its contribution to genome evolution in eukaryotes remain poorly appreciated. Here, we provide evidence that a DNA transposon called SPIN has colonized the genome of 17 species of reptiles representing nearly every major lineage of squamates, including 14 families of lizards, snakes, and amphisbaenians. Slot blot analyses indicate that SPIN has amplified to high copy numbers in most of these species, ranging from 2,000-28,000 copies per haploid genome. In contrast, we could not detect the presence of SPIN in any of the turtles (seven species from seven families) and crocodiles (four species) examined. Genetic distances between SPIN sequences from species belonging to different squamate families are consistently very low (average = 0.1), considering the deep evolutionary divergence of the families investigated (most are >100 My diverged). Furthermore, these distances fall below interfamilial distances calculated for two genes known to have evolved under strong functional constraint in vertebrates (RAG1, average = 0.24 and C-mos, average = 0.27). These data, combined with phylogenetic analyses, indicate that the widespread distribution of SPIN among squamates is the result of at least 13 independent events of HTs. Molecular dating and paleobiogeographical data suggest that these transfers took place during the last 50 My on at least three different continents (North America, South America and, Africa). Together, these results triple the number of known SPIN transfer events among tetrapods, provide evidence for a previously hypothesized transoceanic movement of SPIN transposons during the Cenozoic, and further underscore the role of HT in the evolution of vertebrate genomes.


Subject(s)
DNA Transposable Elements/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Reptiles/genetics , Animals , Genes, RAG-1/genetics , Genes, mos/genetics , Molecular Sequence Data , Phylogeny , Reptiles/classification , Sequence Analysis, DNA
12.
Electrophoresis ; 34(24): 3352-60, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24310858

ABSTRACT

In this study, we have developed a PCR multiplex that can be used to assess DNA degradation and at the same time monitor for inhibition: primers have been designed to amplify human, pig, and rabbit DNA, allowing pig and rabbit to be used as experimental models for taphonomic research, but also enabling studies on human DNA persistence in forensic evidence. Internal amplified controls have been added to monitor for inhibition, allowing the effects of degradation and inhibition to be differentiated. Sequence data for single-copy nuclear recombination activation gene (RAG-1) from human, pig, and rabbit were aligned to identify conserved regions and primers were designed that targeted amplicons of 70, 194, 305, and 384 bp. Robust amplification in all three species was possible using as little as 0.3 ng of template DNA. These have been combined with primers that will amplify a bacterial DNA template within the PCR. The multiplex has been evaluated in a series of experiments to gain more knowledge of DNA persistence in soft tissues, which can be important when assessing what material to collect following events such as mass disasters or conflict, when muscle or bone material can be used to aid with the identification of human remains. The experiments used pigs as a model species. When whole pig bodies were exposed to the environment in Northwest England, DNA in muscle tissue persisted for over 24 days in the summer and over 77 days in the winter, with full profiles generated from these samples. In addition to time, accumulated degree days (ADD) were also used as a measure that combines both time and temperature-24 days was in summer equivalent to 295 ADD whereas 77 days in winter was equivalent to 494 ADD.


Subject(s)
DNA/analysis , DNA/chemistry , Forensic Genetics/methods , Multiplex Polymerase Chain Reaction/methods , Animals , DNA/classification , DNA/genetics , DNA Damage , Genes, RAG-1/genetics , Humans , Rabbits , Swine
13.
Syst Biol ; 61(4): 661-74, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22328568

ABSTRACT

Taxon and character sampling are central to phylogenetic experimental design; yet, we lack general rules. Goldman introduced a method to construct efficient sampling designs in phylogenetics, based on the calculation of expected Fisher information given a probabilistic model of sequence evolution. The considerable potential of this approach remains largely unexplored. In an earlier study, we applied Goldman's method to a problem in the phylogenetics of caecilian amphibians and made an a priori evaluation and testable predictions of which taxon additions would increase information about a particular weakly supported branch of the caecilian phylogeny by the greatest amount. We have now gathered mitogenomic and rag1 sequences (some newly determined for this study) from additional caecilian species and studied how information (both expected and observed) and bootstrap support vary as each new taxon is individually added to our previous data set. This provides the first empirical test of specific predictions made using Goldman's method for phylogenetic experimental design. Our results empirically validate the top 3 (more intuitive) taxon addition predictions made in our previous study, but only information results validate unambiguously the 4th (less intuitive) prediction. This highlights a complex relationship between information and support, reflecting that each measures different things: Information is related to the ability to estimate branch length accurately and support to the ability to estimate the tree topology accurately. Thus, an increase in information may be correlated with but does not necessitate an increase in support. Our results also provide the first empirical validation of the widely held intuition that additional taxa that join the tree proximal to poorly supported internal branches are more informative and enhance support more than additional taxa that join the tree more distally. Our work supports the view that adding more data for a single (well chosen) taxon may increase phylogenetic resolution and support in weakly supported parts of the tree without adding more characters/genes. Altogether our results corroborate that, although still underexplored, Goldman's method offers a powerful tool for experimental design in molecular phylogenetic studies. However, there are still several drawbacks to overcome, and further assessment of the method is needed in order to make it better understood, more accessible, and able to assess the addition of multiple taxa.


Subject(s)
Amphibians/genetics , Evolution, Molecular , Genes, RAG-1/genetics , Genome, Mitochondrial , Phylogeny , Amphibians/classification , Animals , Molecular Sequence Data , Sequence Analysis, DNA
14.
Nature ; 450(7171): 903-7, 2007 Dec 06.
Article in English | MEDLINE | ID: mdl-18026089

ABSTRACT

The capacity of immunity to control and shape cancer, that is, cancer immunoediting, is the result of three processes that function either independently or in sequence: elimination (cancer immunosurveillance, in which immunity functions as an extrinsic tumour suppressor in naive hosts); equilibrium (expansion of transformed cells is held in check by immunity); and escape (tumour cell variants with dampened immunogenicity or the capacity to attenuate immune responses grow into clinically apparent cancers). Extensive experimental support now exists for the elimination and escape processes because immunodeficient mice develop more carcinogen-induced and spontaneous cancers than wild-type mice, and tumour cells from immunodeficient mice are more immunogenic than those from immunocompetent mice. In contrast, the equilibrium process was inferred largely from clinical observations, including reports of transplantation of undetected (occult) cancer from organ donor into immunosuppressed recipients. Herein we use a mouse model of primary chemical carcinogenesis and demonstrate that equilibrium occurs, is mechanistically distinguishable from elimination and escape, and that neoplastic cells in equilibrium are transformed but proliferate poorly in vivo. We also show that tumour cells in equilibrium are unedited but become edited when they spontaneously escape immune control and grow into clinically apparent tumours. These results reveal that, in addition to destroying tumour cells and sculpting tumour immunogenicity, the immune system of a naive mouse can also restrain cancer growth for extended time periods.


Subject(s)
Neoplasm, Residual/immunology , Sarcoma/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Cell Proliferation/drug effects , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Disease Progression , Female , Genes, RAG-1/genetics , Immunity, Active/drug effects , Immunity, Active/immunology , Immunocompetence/immunology , Interferon-gamma/immunology , Male , Methylcholanthrene , Mice , Models, Immunological , Neoplasm, Residual/chemically induced , Neoplasm, Residual/pathology , Sarcoma/chemically induced , Sarcoma/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
15.
Zootaxa ; 3599: 301-24, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-24613954

ABSTRACT

Palearctic naked-toed geckos are a group of gekkonid geckos that range from North Africa to northern India and western China, with their greatest diversity in Iran and Pakistan. Relationships among the constituent genera remain incompletely resolved and the monophyly of key genera remains unverified. Further, competing classifications are in current use and many species have been allocated to different genera by different authors. We used both mitochondrial (ND2) and nuclear genes (RAG1, PDC) to explore relationships among representatives of all but one genus in the group (Rhinogecko), including four genera not previously included in phylogenetic analyses (Asiocolotes, Altigekko, Indogekko, and Siwaligekko). Siwaligekko (and presumably other Tibeto-Himalayan species often referred to Cyrtopodion) are more closely related to tropical Asian Cyrtodactylus than to Palearctic naked-toed geckos. Sampled species of Asiocolotes and Altigekko are sister taxa, but both genera are here considered junior subjective synonyms of Altiphylax. Cyrtopodion sensu lato is non-monophyletic; Mediodactylus and Tenuidactylus, which have variably been considered as subgenera or synonyms of Cyrtopodion are both valid genera. Indogekko is embedded within Cyrtopodion and is here treated as a subgenus. Bunopus and Crossobamon are closely related to one-another, and with Agamura are interdigitated among taxa previously assigned to Cyrtopodion. Our data confirm the previous identification of a Saharo-Arabian Stenodactylus/Tropiocolotes/Pseudoceramodactylus clade and verify that Microgecko and Alsophylax are not members of the main clade of Palearctic naked-toed geckos. Osteological differences between Tropiocolotes and Microgecko, formerly treated as congeneric, are discussed and illustrated. The divergence between Cyrtodactylus and the Palearctic naked-toed clade predates the initial collision of the Indian and Eurasian plates, but deeper divergences within both groups are consistent with mountain building in the Himalayas and adjacent ranges as promoting cladogenic events. Miocene divergences within Tenuidactylus are consistent with vicariant speciation caused by uplift events in the Iranian and Transcaspian regions. Taxonomic implications of our phylogenetic results are discussed and a preliminary allocation of all species of padless Palearctic gekkonids to genus is provided.


Subject(s)
Lizards/classification , Lizards/genetics , Africa, Northern , Animals , Asia , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Eye Proteins/genetics , GTP-Binding Protein Regulators/genetics , Genes, RAG-1/genetics , Molecular Sequence Data , NADH Dehydrogenase/genetics , Phosphoproteins/genetics , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA
16.
Front Immunol ; 14: 1210818, 2023.
Article in English | MEDLINE | ID: mdl-37497222

ABSTRACT

The mature lymphocyte population of a healthy individual has the remarkable ability to recognise an immense variety of antigens. Instead of encoding a unique gene for each potential antigen receptor, evolution has used gene rearrangements, also known as variable, diversity, and joining gene segment (V(D)J) recombination. This process is critical for lymphocyte development and relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively referred to as RAG. RAG serves as powerful genome editing tools for lymphocytes and is strictly regulated to prevent dysregulation. However, in the case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity and severe combined immunodeficiency (SCID). This review examines functional protein domains and motifs of RAG, describes advances in our understanding of the function and (dys)regulation of RAG, discuss new therapeutic options, such as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods for determining RAG activity and target specificity.


Subject(s)
Homeodomain Proteins , Recombinases , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Recombinases/genetics , Gene Rearrangement , Lymphocytes/metabolism , Genes, RAG-1/genetics
17.
Infect Immun ; 80(11): 3828-41, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22907814

ABSTRACT

IL12RB1 is essential for human resistance to Mycobacterium tuberculosis infection. In the absence of a functional IL12RB1 allele, individuals exhibit susceptibility to disseminated, recurrent mycobacterial infections that are associated with defects in both RAG1-dependent and RAG1-independent hematopoietic lineages. Despite this well-established association, a causal relationship between M. tuberculosis susceptibility and IL12RB1 deficiency in either RAG1-dependent or RAG1-independent lineages has never been formally tested. Here, we use the low-dose aerosol model of experimental tuberculosis (TB) to both establish that infected il12rb1(-/-) mice recapitulate important aspects of TB in IL12RB1 null individuals and, more importantly, use radiation bone marrow chimeras to demonstrate that restriction of il12rb1 deficiency solely to rag1-dependent lineages (i.e., T and B cells) allows for the full transfer of the il12rb1(-/-) phenotype. We further demonstrate that the protection afforded by adaptive lymphocyte il12rb1 expression is mediated partially through ifng and that, within the same infection, il12rb1-sufficient T cells exhibit dominance over il12rb1-deficient T cells by enhancing ifng expression in the latter population. Collectively, our data establish a basic framework in which to understand how IL12RB1 promotes control of this significant human disease.


Subject(s)
Genes, RAG-1/genetics , Lung/microbiology , Mycobacterium tuberculosis/genetics , Receptors, Interleukin-12/metabolism , T-Lymphocytes/metabolism , Tuberculosis/metabolism , Animals , Blotting, Western , Flow Cytometry , Lung/immunology , Mice , Mice, Inbred Strains , Mycobacterium tuberculosis/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Interleukin-12/genetics
18.
Mol Phylogenet Evol ; 64(1): 212-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22503670

ABSTRACT

Manta rays have been taxonomically revised as two species, Manta alfredi and M. birostris, on the basis of morphological and meristic data, yet the two species occur in extensive mosaic sympatry. We analysed the genetic signatures of the species boundary using a portion of the nuclear RAG1 (681 base pairs), mitochondrial CO1 (574 bp) and ND5 genes (1188 bp). The assay with CO1 sequences, widely used in DNA barcoding, failed to distinguish the two species. The two species were clearly distinguishable, however, with no shared RAG1 or ND5 haplotypes. The species were reciprocally monophyletic for RAG1, but paraphyletic for ND5 sequences. Qualitative evidence and statistical inferences using the 'Isolation-with-Migration models' indicated that these results were better explained with post-divergence gene flow in the recent past rather than incomplete lineage sorting with zero gene flow since speciation. An estimate of divergence time was less than 0.5 Ma with an upper confidence limit of within 1 Ma. Recent speciation of highly mobile species in the marine environment is of great interest, as it suggests that speciation may have occurred in the absence of long-term physical barriers to gene flow. We propose that the ecologically driven forces such as habitat choice played a significant role in speciation in manta rays.


Subject(s)
Ecosystem , Elasmobranchii/genetics , Genetic Speciation , Genetic Variation , Models, Genetic , Animals , Base Sequence , Bayes Theorem , DNA Primers/genetics , DNA, Mitochondrial/genetics , Elasmobranchii/classification , Gene Flow/genetics , Genes, RAG-1/genetics , Genetics, Population , Haplotypes/genetics , Indonesia , Japan , Likelihood Functions , Mexico , Molecular Sequence Data , Mozambique , Sequence Analysis, DNA , South Africa , Species Specificity , Western Australia
19.
Mol Phylogenet Evol ; 64(1): 66-72, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22491071

ABSTRACT

Shorebirds (Charadriiformes) are a diverse assemblage of species renowned for their variation in behavior, morphology, and life-history traits, but comparative studies of trait variation remain limited by the lack of a well-supported phylogeny based on DNA sequences. In this study we build upon previous shorebird phylogenies to construct the first sequence-based species-level phylogeny for the Scolopaci, one of three shorebird suborders. We sampled 84 species in the Scolopaci, and collected data for five genes (one nuclear and four mitochondrial) via PCR and sequencing or from GenBank. The phylogeny was estimated using Bayesian inference on a partitioned dataset of 6365 aligned base pairs, and was well-supported except for the radiations within Tringa and Calidris. The shanks and phalaropes are sister to the snipes, woodcocks and dowitchers, which in turn are sister to the sandpipers. The godwits and curlews are successive sister-groups to these clades, and the morphologically disparate taxa (jacanas, painted snipes, seedsnipes, and the Plains-wanderer) are the basal sister-group in the Scolopaci. We show that Tringa, Gallinago, and Calidris are paraphyletic assemblages, and thus are in need of taxonomic revision. The clade of Calidridine sandpipers has very short internal branches indicative of a relatively recent rapid radiation, and will require a gene tree/species tree approach to resolve relationships among species.


Subject(s)
Charadriiformes/classification , Charadriiformes/genetics , Phylogeny , Animals , Base Sequence , Bayes Theorem , Computational Biology , Cytochromes b/genetics , DNA Primers/genetics , Electron Transport Complex IV/genetics , Genes, RAG-1/genetics , Models, Genetic , Molecular Sequence Data , RNA, Ribosomal/genetics , Sequence Analysis, DNA , Species Specificity
20.
Syst Biol ; 60(5): 565-95, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21775340

ABSTRACT

Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.


Subject(s)
Evolution, Molecular , Perches/classification , Perches/genetics , Animals , Bayes Theorem , Cell Nucleus/genetics , Cytochrome b Group/genetics , DNA, Mitochondrial/genetics , Exons/genetics , Genes, RAG-1/genetics , Haplotypes , Hybridization, Genetic , Introns/genetics , Molecular Sequence Data , Perciformes/classification , Perciformes/genetics , Phylogeny , Ribosomal Proteins/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL