Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
1.
Cell ; 169(6): 1105-1118.e15, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28575672

ABSTRACT

Mutations truncating a single copy of the tumor suppressor, BRCA2, cause cancer susceptibility. In cells bearing such heterozygous mutations, we find that a cellular metabolite and ubiquitous environmental toxin, formaldehyde, stalls and destabilizes DNA replication forks, engendering structural chromosomal aberrations. Formaldehyde selectively depletes BRCA2 via proteasomal degradation, a mechanism of toxicity that affects very few additional cellular proteins. Heterozygous BRCA2 truncations, by lowering pre-existing BRCA2 expression, sensitize to BRCA2 haploinsufficiency induced by transient exposure to natural concentrations of formaldehyde. Acetaldehyde, an alcohol catabolite detoxified by ALDH2, precipitates similar effects. Ribonuclease H1 ameliorates replication fork instability and chromosomal aberrations provoked by aldehyde-induced BRCA2 haploinsufficiency, suggesting that BRCA2 inactivation triggers spontaneous mutagenesis during DNA replication via aberrant RNA-DNA hybrids (R-loops). These findings suggest a model wherein carcinogenesis in BRCA2 mutation carriers can be incited by compounds found pervasively in the environment and generated endogenously in certain tissues with implications for public health.


Subject(s)
BRCA2 Protein/genetics , Chromosome Aberrations/drug effects , Formaldehyde/toxicity , Genomic Instability/drug effects , Toxins, Biological/toxicity , DNA Damage , DNA Replication/drug effects , DNA-Binding Proteins/metabolism , Haploinsufficiency , HeLa Cells , Humans , MRE11 Homologue Protein , Proteome , Ribonuclease H/metabolism
2.
Nature ; 633(8030): 686-694, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39198647

ABSTRACT

Faithful DNA replication is essential for genome integrity1-4. Under-replicated DNA leads to defects in chromosome segregation, which are common during embryogenesis5-8. However, the regulation of DNA replication remains poorly understood in early mammalian embryos. Here we constructed a single-cell genome-wide DNA replication atlas of pre-implantation mouse embryos and identified an abrupt replication program switch accompanied by a transient period of genomic instability. In 1- and 2-cell embryos, we observed the complete absence of a replication timing program, and the entire genome replicated gradually and uniformly using extremely slow-moving replication forks. In 4-cell embryos, a somatic-cell-like replication timing program commenced abruptly. However, the fork speed was still slow, S phase was extended, and markers of replication stress, DNA damage and repair increased. This was followed by an increase in break-type chromosome segregation errors specifically during the 4-to-8-cell division with breakpoints enriched in late-replicating regions. These errors were rescued by nucleoside supplementation, which accelerated fork speed and reduced the replication stress. By the 8-cell stage, forks gained speed, S phase was no longer extended and chromosome aberrations decreased. Thus, a transient period of genomic instability exists during normal mouse development, preceded by an S phase lacking coordination between replisome-level regulation and megabase-scale replication timing regulation, implicating a link between their coordination and genome stability.


Subject(s)
DNA Replication Timing , Embryo, Mammalian , Embryonic Development , Genomic Instability , Animals , Female , Male , Mice , Blastocyst/cytology , Blastocyst/metabolism , Chromosome Aberrations/drug effects , Chromosome Segregation , DNA Damage/drug effects , DNA Repair , DNA Replication Timing/drug effects , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryo, Mammalian/embryology , Embryonic Development/genetics , Genomic Instability/drug effects , Genomic Instability/genetics , S Phase/drug effects , S Phase/genetics , Single-Cell Analysis , Chromosome Breakpoints , Cell Division , Nucleosides/metabolism , Nucleosides/pharmacology , DNA-Directed DNA Polymerase/metabolism , Multienzyme Complexes/metabolism
3.
Mol Cell ; 77(1): 26-38.e7, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31653568

ABSTRACT

53BP1 activity drives genome instability and lethality in BRCA1-deficient mice by inhibiting homologous recombination (HR). The anti-recombinogenic functions of 53BP1 require phosphorylation-dependent interactions with PTIP and RIF1/shieldin effector complexes. While RIF1/shieldin blocks 5'-3' nucleolytic processing of DNA ends, it remains unclear how PTIP antagonizes HR. Here, we show that mutation of the PTIP interaction site in 53BP1 (S25A) allows sufficient DNA2-dependent end resection to rescue the lethality of BRCA1Δ11 mice, despite increasing RIF1 "end-blocking" at DNA damage sites. However, double-mutant cells fail to complete HR, as excessive shieldin activity also inhibits RNF168-mediated loading of PALB2/RAD51. As a result, BRCA1Δ1153BP1S25A mice exhibit hallmark features of HR insufficiency, including premature aging and hypersensitivity to PARPi. Disruption of shieldin or forced targeting of PALB2 to ssDNA in BRCA1D1153BP1S25A cells restores RNF168 recruitment, RAD51 nucleofilament formation, and PARPi resistance. Our study therefore reveals a critical function of shieldin post-resection that limits the loading of RAD51.


Subject(s)
Homologous Recombination/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Aging/drug effects , Aging/genetics , Animals , BRCA1 Protein/genetics , DNA Breaks, Double-Stranded/drug effects , DNA Damage/drug effects , DNA Damage/genetics , Genomic Instability/drug effects , Genomic Instability/genetics , Homologous Recombination/drug effects , Mice , Mutation/drug effects , Mutation/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rad51 Recombinase/genetics , Ubiquitin-Protein Ligases/genetics
4.
Exp Cell Res ; 438(1): 114036, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38614421

ABSTRACT

Ovarian cancer is the leading cause of gynecologic cancer death. Among the most innovative anti-cancer approaches, the genetic concept of synthetic lethality is that mutations in multiple genes work synergistically to effect cell death. Previous studies found that although vaccinia-related kinase-1 (VRK1) associates with DNA damage repair proteins, its underlying mechanisms remain unclear. Here, we found high VRK1 expression in ovarian tumors, and that VRK1 depletion can significantly promote apoptosis and cell cycle arrest. The effect of VRK1 knockdown on apoptosis was manifested by increased DNA damage, genomic instability, and apoptosis, and also blocked non-homologous end joining (NHEJ) by destabilizing DNA-PK. Further, we verified that VRK1 depletion enhanced sensitivity to a PARP inhibitor (PARPi), olaparib, promoting apoptosis through DNA damage, especially in ovarian cancer cell lines with high VRK1 expression. Proteins implicated in DNA damage responses are suitable targets for the development of new anti-cancer therapeutic strategies, and their combination could represent an alternative form of synthetic lethality. Therefore, normal protective DNA damage responses are impaired by combining olaparib with elimination of VRK1 and could be used to reduce drug dose and its associated toxicity. In summary, VRK1 represents both a potential biomarker for PARPi sensitivity, and a new DDR-associated therapeutic target, in ovarian cancer.


Subject(s)
DNA Damage , DNA-Activated Protein Kinase , Intracellular Signaling Peptides and Proteins , Ovarian Neoplasms , Protein Serine-Threonine Kinases , Female , Humans , Apoptosis/drug effects , Cell Line, Tumor , DNA Damage/drug effects , DNA-Activated Protein Kinase/metabolism , DNA-Activated Protein Kinase/genetics , Gene Expression Regulation, Neoplastic/drug effects , Genomic Instability/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics
5.
Mol Cell ; 66(5): 581-596.e6, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28552615

ABSTRACT

The action of DNA topoisomerase II (Top2) creates transient DNA breaks that are normally concealed inside Top2-DNA covalent complexes. Top2 poisons, including ubiquitously present natural compounds and clinically used anti-cancer drugs, trap Top2-DNA complexes. Here, we show that cells actively prevent Top2 degradation to avoid the exposure of concealed DNA breaks. A genome-wide screen revealed that fission yeast cells lacking Rrp2, an Snf2-family DNA translocase, are strongly sensitive to Top2 poisons. Loss of Rrp2 enhances SUMOylation-dependent ubiquitination and degradation of Top2, which in turn increases DNA damage at sites where Top2-DNA complexes are trapped. Rrp2 possesses SUMO-binding ability and prevents excessive Top2 degradation by competing against the SUMO-targeted ubiquitin ligase (STUbL) for SUMO chain binding and by displacing SUMOylated Top2 from DNA. The budding yeast homolog of Rrp2, Uls1, plays a similar role, indicating that this genome protection mechanism is widely employed, a finding with implications for cancer treatment.


Subject(s)
DNA Damage , DNA Topoisomerases, Type II/metabolism , DNA, Fungal/metabolism , DNA-Binding Proteins/metabolism , Genome, Fungal , Genomic Instability , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Sumoylation , DNA Damage/drug effects , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Topoisomerases, Type II/genetics , DNA, Fungal/drug effects , DNA, Fungal/genetics , DNA-Binding Proteins/genetics , Drug Resistance , Etoposide/pharmacology , Genome, Fungal/drug effects , Genomic Instability/drug effects , Mutation , Protein Binding , Protein Interaction Domains and Motifs , Proteolysis , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces/drug effects , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Topoisomerase II Inhibitors/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
6.
Mol Cell ; 67(2): 266-281.e4, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28648781

ABSTRACT

Mec1ATR mediates the DNA damage response (DDR), integrating chromosomal signals and mechanical stimuli. We show that the PP2A phosphatases, ceramide-activated enzymes, couple cell metabolism with the DDR. Using genomic screens, metabolic analysis, and genetic and pharmacological studies, we found that PP2A attenuates the DDR and that three metabolic circuits influence the DDR by modulating PP2A activity. Irc21, a putative cytochrome b5 reductase that promotes the condensation reaction generating dihydroceramides (DHCs), and Ppm1, a PP2A methyltransferase, counteract the DDR by activating PP2A; conversely, the nutrient-sensing TORC1-Tap42 axis sustains DDR activation by inhibiting PP2A. Loss-of-function mutations in IRC21, PPM1, and PP2A and hyperactive tap42 alleles rescue mec1 mutants. Ceramides synergize with rapamycin, a TORC1 inhibitor, in counteracting the DDR. Hence, PP2A integrates nutrient-sensing and metabolic pathways to attenuate the Mec1ATR response. Our observations imply that metabolic changes affect genome integrity and may help with exploiting therapeutic options and repositioning known drugs.


Subject(s)
DNA Damage , DNA Repair , DNA, Fungal/metabolism , Energy Metabolism , Genome, Fungal , Genomic Instability , Protein Phosphatase 2/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Ceramides/metabolism , Ceramides/pharmacology , Cytochrome-B(5) Reductase/genetics , Cytochrome-B(5) Reductase/metabolism , DNA Repair/drug effects , DNA, Fungal/genetics , Enzyme Activation , Gene Expression Regulation, Fungal , Genome, Fungal/drug effects , Genomic Instability/drug effects , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Metabolomics , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Methyltransferases/genetics , Protein Methyltransferases/metabolism , Protein Phosphatase 2/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics , Sirolimus/pharmacology , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Nucleic Acids Res ; 51(7): 3150-3165, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36869674

ABSTRACT

DNA double-strand breaks (DSBs) are functionally linked to genomic instability in spermatocytes and to male infertility. The heavy metal cadmium (Cd) is known to induce DNA damage in spermatocytes by unknown mechanisms. Here, we showed that Cd ions impaired the canonical non-homologous end-joining (NHEJ) repair pathway, but not the homologous recombination (HR) repair pathway, through stimulation of Ser2056 and Thr2609 phosphorylation of DNA-PKcs at DSB sites. Hyper-phosphorylation of DNA-PKcs led to its premature dissociation from DNA ends and the Ku complex, preventing recruitment of processing enzymes and further ligation of DNA ends. Specifically, this cascade was initiated by the loss of PP5 phosphatase activity, which results from the dissociation of PP5 from its activating ions (Mn), that is antagonized by Cd ions through a competitive mechanism. In accordance, in a mouse model Cd-induced genomic instability and consequential male reproductive dysfunction were effectively reversed by a high dosage of Mn ions. Together, our findings corroborate a protein phosphorylation-mediated genomic instability pathway in spermatocytes that is triggered by exchange of heavy metal ions.


Subject(s)
Cadmium , Genomic Instability , Infertility, Male , Spermatocytes , Animals , Humans , Male , Mice , Cadmium/toxicity , DNA/metabolism , DNA End-Joining Repair , DNA Repair , Genomic Instability/drug effects , Infertility, Male/genetics , Infertility, Male/metabolism , Ions/metabolism , Phosphorylation , Recombinational DNA Repair , Spermatocytes/drug effects
8.
Nature ; 559(7713): 279-284, 2018 07.
Article in English | MEDLINE | ID: mdl-29950726

ABSTRACT

Accurate replication of DNA requires stringent regulation to ensure genome integrity. In human cells, thousands of origins of replication are coordinately activated during S phase, and the velocity of replication forks is adjusted to fully replicate DNA in pace with the cell cycle1. Replication stress induces fork stalling and fuels genome instability2. The mechanistic basis of replication stress remains poorly understood despite its emerging role in promoting cancer2. Here we show that inhibition of poly(ADP-ribose) polymerase (PARP) increases the speed of fork elongation and does not cause fork stalling, which is in contrast to the accepted model in which inhibitors of PARP induce fork stalling and collapse3. Aberrant acceleration of fork progression by 40% above the normal velocity leads to DNA damage. Depletion of the treslin or MTBP proteins, which are involved in origin firing, also increases fork speed above the tolerated threshold, and induces the DNA damage response pathway. Mechanistically, we show that poly(ADP-ribosyl)ation (PARylation) and the PCNA interactor p21Cip1 (p21) are crucial modulators of fork progression. PARylation and p21 act as suppressors of fork speed in a coordinated regulatory network that is orchestrated by the PARP1 and p53 proteins. Moreover, at the fork level, PARylation acts as a sensor of replication stress. During PARP inhibition, DNA lesions that induce fork arrest and are normally resolved or repaired remain unrecognized by the replication machinery. Conceptually, our results show that accelerated replication fork progression represents a general mechanism that triggers replication stress and the DNA damage response. Our findings contribute to a better understanding of the mechanism of fork speed control, with implications for genomic (in)stability and rational cancer treatment.


Subject(s)
Chromosome Structures , DNA Damage , DNA Replication/physiology , Genomic Instability , Poly (ADP-Ribose) Polymerase-1/metabolism , Cell Line, Tumor , Chromosome Structures/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage/drug effects , DNA Replication/drug effects , Genomic Instability/drug effects , Humans , Phthalazines/pharmacology , Piperazines/pharmacology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Time Factors , Tumor Suppressor Protein p53/metabolism
9.
Nature ; 563(7732): 522-526, 2018 11.
Article in English | MEDLINE | ID: mdl-30464262

ABSTRACT

Limited DNA end resection is the key to impaired homologous recombination in BRCA1-mutant cancer cells. Here, using a loss-of-function CRISPR screen, we identify DYNLL1 as an inhibitor of DNA end resection. The loss of DYNLL1 enables DNA end resection and restores homologous recombination in BRCA1-mutant cells, thereby inducing resistance to platinum drugs and inhibitors of poly(ADP-ribose) polymerase. Low BRCA1 expression correlates with increased chromosomal aberrations in primary ovarian carcinomas, and the junction sequences of somatic structural variants indicate diminished homologous recombination. Concurrent decreases in DYNLL1 expression in carcinomas with low BRCA1 expression reduced genomic alterations and increased homology at lesions. In cells, DYNLL1 limits nucleolytic degradation of DNA ends by associating with the DNA end-resection machinery (MRN complex, BLM helicase and DNA2 endonuclease). In vitro, DYNLL1 binds directly to MRE11 to limit its end-resection activity. Therefore, we infer that DYNLL1 is an important anti-resection factor that influences genomic stability and responses to DNA-damaging chemotherapy.


Subject(s)
BRCA1 Protein/deficiency , Cytoplasmic Dyneins/metabolism , DNA/metabolism , Genes, BRCA1 , MRE11 Homologue Protein/metabolism , Recombinational DNA Repair , BRCA1 Protein/genetics , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Chromosome Aberrations , DNA Damage/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Gene Editing , Genomic Instability/drug effects , Homologous Recombination/drug effects , Humans , Mutation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Platinum/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Binding , Recombinational DNA Repair/drug effects , Transcription Factors/metabolism
10.
Nature ; 560(7718): 325-330, 2018 08.
Article in English | MEDLINE | ID: mdl-30089904

ABSTRACT

Human cancer cell lines are the workhorse of cancer research. Although cell lines are known to evolve in culture, the extent of the resultant genetic and transcriptional heterogeneity and its functional consequences remain understudied. Here we use genomic analyses of 106 human cell lines grown in two laboratories to show extensive clonal diversity. Further comprehensive genomic characterization of 27 strains of the common breast cancer cell line MCF7 uncovered rapid genetic diversification. Similar results were obtained with multiple strains of 13 additional cell lines. Notably, genetic changes were associated with differential activation of gene expression programs and marked differences in cell morphology and proliferation. Barcoding experiments showed that cell line evolution occurs as a result of positive clonal selection that is highly sensitive to culture conditions. Analyses of single-cell-derived clones demonstrated that continuous instability quickly translates into heterogeneity of the cell line. When the 27 MCF7 strains were tested against 321 anti-cancer compounds, we uncovered considerably different drug responses: at least 75% of compounds that strongly inhibited some strains were completely inactive in others. This study documents the extent, origins and consequences of genetic variation within cell lines, and provides a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Evolution, Molecular , Genetic Variation/genetics , Genomic Instability/genetics , Transcription, Genetic/genetics , Breast Neoplasms/pathology , Cell Proliferation , Cell Shape , Clone Cells/cytology , Clone Cells/drug effects , Clone Cells/metabolism , Genetic Variation/drug effects , Genomic Instability/drug effects , Humans , MCF-7 Cells , Reproducibility of Results
11.
Nature ; 553(7687): 171-177, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323295

ABSTRACT

Haematopoietic stem cells renew blood. Accumulation of DNA damage in these cells promotes their decline, while misrepair of this damage initiates malignancies. Here we describe the features and mutational landscape of DNA damage caused by acetaldehyde, an endogenous and alcohol-derived metabolite. This damage results in DNA double-stranded breaks that, despite stimulating recombination repair, also cause chromosome rearrangements. We combined transplantation of single haematopoietic stem cells with whole-genome sequencing to show that this damage occurs in stem cells, leading to deletions and rearrangements that are indicative of microhomology-mediated end-joining repair. Moreover, deletion of p53 completely rescues the survival of aldehyde-stressed and mutated haematopoietic stem cells, but does not change the pattern or the intensity of genome instability within individual stem cells. These findings characterize the mutation of the stem-cell genome by an alcohol-derived and endogenous source of DNA damage. Furthermore, we identify how the choice of DNA-repair pathway and a stringent p53 response limit the transmission of aldehyde-induced mutations in stem cells.


Subject(s)
Acetaldehyde/metabolism , DNA Breaks, Double-Stranded/drug effects , Ethanol/metabolism , Ethanol/pharmacology , Genomic Instability/drug effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/pathology , Mutation , Alcohol Dehydrogenase/deficiency , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Animals , Cell Survival/drug effects , DNA End-Joining Repair , Ethanol/administration & dosage , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia/pathology , Fanconi Anemia Complementation Group D2 Protein/deficiency , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Female , Gene Deletion , Genes, p53/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Ku Autoantigen/metabolism , Male , Mice , Mice, Inbred C57BL , Recombinational DNA Repair/drug effects , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Whole Genome Sequencing
12.
Mol Cell ; 64(3): 580-592, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27814490

ABSTRACT

The Mre11/Rad50/Nbs1 complex initiates double-strand break repair by homologous recombination (HR). Loss of Mre11 or its nuclease activity in mouse cells is known to cause genome aberrations and cellular senescence, although the molecular basis for this phenotype is not clear. To identify the origin of these defects, we characterized Mre11-deficient (MRE11-/-) and nuclease-deficient Mre11 (MRE11-/H129N) chicken DT40 and human lymphoblast cell lines. These cells exhibit increased spontaneous chromosomal DSBs and extreme sensitivity to topoisomerase 2 poisons. The defects in Mre11 compromise the repair of etoposide-induced Top2-DNA covalent complexes, and MRE11-/- and MRE11-/H129N cells accumulate high levels of Top2 covalent conjugates even in the absence of exogenous damage. We demonstrate that both the genome instability and mortality of MRE11-/- and MRE11-/H129N cells are significantly reversed by overexpression of Tdp2, an enzyme that eliminates covalent Top2 conjugates; thus, the essential role of Mre11 nuclease activity is likely to remove these lesions.


Subject(s)
Antigens, Neoplasm/genetics , DNA Breaks, Double-Stranded/drug effects , DNA Topoisomerases, Type II/genetics , DNA-Binding Proteins/genetics , DNA/genetics , Nuclear Proteins/genetics , Recombinational DNA Repair/drug effects , Transcription Factors/genetics , Acid Anhydride Hydrolases , Animals , Antigens, Neoplasm/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Death/drug effects , Cell Line, Tumor , Chickens , DNA/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Etoposide/pharmacology , Gene Expression Regulation , Genomic Instability/drug effects , Humans , Lymphocytes/cytology , Lymphocytes/drug effects , Lymphocytes/metabolism , MRE11 Homologue Protein , Mutation , Nuclear Proteins/metabolism , Phosphoric Diester Hydrolases , Poly-ADP-Ribose Binding Proteins , Signal Transduction , Topoisomerase II Inhibitors/pharmacology , Transcription Factors/metabolism
13.
Arch Toxicol ; 98(9): 2817-2841, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38805047

ABSTRACT

Indoor air pollution is becoming a rising public health problem and is largely resulting from the burning of solid fuels and heating in households. Burning these fuels produces harmful compounds, such as particulate matter regarded as a major health risk, particularly affecting the onset and exacerbation of respiratory diseases. As exposure to polluted indoor air can cause DNA damage including DNA sd breaks as well as chromosomal damage, in this paper, we aim to provide an overview of the impact of indoor air pollution on DNA damage and genome stability by reviewing the scientific papers that have used the comet, micronucleus, and γ-H2AX assays. These methods are valuable tools in human biomonitoring and for studying the mechanisms of action of various pollutants, and are readily used for the assessment of primary DNA damage and genome instability induced by air pollutants by measuring different aspects of DNA and chromosomal damage. Based on our search, in selected studies (in vitro, animal models, and human biomonitoring), we found generally higher levels of DNA strand breaks and chromosomal damage due to indoor air pollutants compared to matched control or unexposed groups. In summary, our systematic review reveals the importance of the comet, micronucleus, and γ-H2AX assays as sensitive tools for the evaluation of DNA and genome damaging potential of different indoor air pollutants. Additionally, research in this particular direction is warranted since little is still known about the level of indoor air pollution in households or public buildings and its impact on genetic material. Future studies should focus on research investigating the possible impact of indoor air pollutants in complex mixtures on the genome and relate pollutants to possible health outcomes.


Subject(s)
Air Pollutants , Air Pollution, Indoor , DNA Damage , Micronucleus Tests , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Humans , Animals , Air Pollutants/toxicity , Chromosomal Instability/drug effects , Comet Assay , Particulate Matter/toxicity , Particulate Matter/analysis , Histones/metabolism , Environmental Monitoring/methods , Genomic Instability/drug effects , Biological Monitoring/methods
14.
Nucleic Acids Res ; 50(3): 1484-1500, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35037045

ABSTRACT

The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14-nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14-nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14-nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3'-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14-nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12-nsp7-nsp8 (nsp12-7-8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14-nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14-nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Exoribonucleases/metabolism , Genome, Viral/genetics , Genomic Instability , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Exoribonucleases/antagonists & inhibitors , Genome, Viral/drug effects , Genomic Instability/drug effects , Genomic Instability/genetics , HIV Integrase Inhibitors/pharmacology , Isoindoles/pharmacology , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Organoselenium Compounds/pharmacology , RNA, Viral/biosynthesis , RNA, Viral/genetics , Raltegravir Potassium/pharmacology , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Virus Replication/drug effects , Virus Replication/genetics
15.
Ecotoxicol Environ Saf ; 284: 116920, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39208581

ABSTRACT

Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.


Subject(s)
Aging , Air Pollutants , Cellular Senescence , Particulate Matter , Particulate Matter/toxicity , Humans , Cellular Senescence/drug effects , Aging/drug effects , Air Pollutants/toxicity , Genomic Instability/drug effects , Epigenesis, Genetic/drug effects , Air Pollution/adverse effects , Animals , Environmental Exposure/adverse effects , Mitochondria/drug effects , Neurodegenerative Diseases/chemically induced
16.
Annu Rev Microbiol ; 72: 209-230, 2018 Sep 08.
Article in English | MEDLINE | ID: mdl-30200850

ABSTRACT

By targeting essential cellular processes, antibiotics provoke metabolic perturbations and induce stress responses and genetic variation in bacteria. Here we review current knowledge of the mechanisms by which these molecules generate genetic instability. They include production of reactive oxygen species, as well as induction of the stress response regulons, which lead to enhancement of mutation and recombination rates and modulation of horizontal gene transfer. All these phenomena influence the evolution and spread of antibiotic resistance. The use of strategies to stop or decrease the generation of resistant variants is also discussed.


Subject(s)
Anti-Bacterial Agents/adverse effects , Bacteria/drug effects , Genetic Variation/drug effects , Adaptation, Biological , Bacteria/genetics , Genomic Instability/drug effects , Mutation , Reactive Oxygen Species/metabolism , Recombination, Genetic , Selection, Genetic/drug effects , Stress, Physiological
17.
Nature ; 542(7642): 489-493, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28199309

ABSTRACT

Activation-induced cytidine deaminase (AID) is a B-cell-specific enzyme that targets immunoglobulin genes to initiate class switch recombination and somatic hypermutation. In addition, through off-target activity, AID has a much broader effect on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in the development and progression of lymphoma. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation. The phosphatidylinositol 3-kinase δ (PI3Kδ) pathway regulates AID by suppressing its expression in B cells. Drugs for leukaemia or lymphoma therapy such as idelalisib, duvelisib and ibrutinib block PI3Kδ activity directly or indirectly, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both of these effects were completely abrogated in AID-deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumours in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IGH and AID off-target sites in human chronic lymphocytic leukaemia and mantle cell lymphoma cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased somatic hypermutation in AID off-targets. In summary, we show that PI3Kδ or Bruton's tyrosine kinase inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism. This effect should be carefully considered, as such inhibitors can be administered to patients for years.


Subject(s)
B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Genomic Instability/drug effects , Phosphoinositide-3 Kinase Inhibitors , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , B-Lymphocytes/enzymology , B-Lymphocytes/pathology , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/metabolism , Cytidine Deaminase/metabolism , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacology , Female , Humans , Immunoglobulin Class Switching/drug effects , Immunoglobulin Heavy Chains/genetics , Isoquinolines/adverse effects , Isoquinolines/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Mice , Phosphatidylinositol 3-Kinases/metabolism , Piperidines , Protein-Tyrosine Kinases/antagonists & inhibitors , Purines/adverse effects , Purines/pharmacology , Pyrazoles/adverse effects , Pyrazoles/pharmacology , Pyrimidines/adverse effects , Pyrimidines/pharmacology , Quinazolinones/adverse effects , Quinazolinones/pharmacology , Recombination, Genetic/drug effects , Somatic Hypermutation, Immunoglobulin/drug effects , Translocation, Genetic/drug effects
18.
Mol Cell ; 60(4): 524-36, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26590712

ABSTRACT

The cell cycle is an evolutionarily conserved process necessary for mammalian cell growth and development. Because cell-cycle aberrations are a hallmark of cancer, this process has been the target of anti-cancer therapeutics for decades. However, despite numerous clinical trials, cell-cycle-targeting agents have generally failed in the clinic. This review briefly examines past cell-cycle-targeted therapeutics and outlines how experience with these agents has provided valuable insight to refine and improve anti-mitotic strategies. An overview of emerging anti-mitotic approaches with promising pre-clinical results is provided, and the concept of exploiting the genomic instability of tumor cells through therapeutic inhibition of mitotic checkpoints is discussed. We believe this strategy has a high likelihood of success given its potential to enhance therapeutic index by targeting tumor-specific vulnerabilities. This reasoning stimulated our development of novel inhibitors targeting the critical regulators of genomic stability and the mitotic checkpoint: AURKA, PLK4, and Mps1/TTK.


Subject(s)
Antineoplastic Agents/pharmacology , Mitosis/drug effects , Neoplasms/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Aurora Kinase A/antagonists & inhibitors , Cell Cycle Proteins/antagonists & inhibitors , Genomic Instability/drug effects , Humans , Molecular Targeted Therapy , Neoplasms/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors
19.
Mol Cell ; 60(4): 547-60, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26590714

ABSTRACT

An underlying hallmark of cancers is their genomic instability, which is associated with a greater propensity to accumulate DNA damage. Historical treatment of cancer by radiotherapy and DNA-damaging chemotherapy is based on this principle, yet it is accompanied by significant collateral damage to normal tissue and unwanted side effects. Targeted therapy based on inhibiting the DNA damage response (DDR) in cancers offers the potential for a greater therapeutic window by tailoring treatment to patients with tumors lacking specific DDR functions. The recent approval of olaparib (Lynparza), the poly (ADP-ribose) polymerase (PARP) inhibitor for treating tumors harboring BRCA1 or BRCA2 mutations, represents the first medicine based on this principle, exploiting an underlying cause of tumor formation that also represents an Achilles' heel. This review highlights the different concepts behind targeting DDR in cancer and how this can provide significant opportunities for DDR-based therapies in the future.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Repair/drug effects , Neoplasms/drug therapy , Animals , Antineoplastic Agents/therapeutic use , DNA Damage , Genomic Instability/drug effects , Humans , Molecular Targeted Therapy , Neoplasms/genetics
20.
PLoS Genet ; 16(7): e1008611, 2020 07.
Article in English | MEDLINE | ID: mdl-32658892

ABSTRACT

Epimutations in fungal pathogens are emerging as novel phenomena that could explain the fast-developing resistance to antifungal drugs and other stresses. These epimutations are generated by RNA interference (RNAi) mechanisms that transiently silence specific genes to overcome stressful stimuli. The early-diverging fungus Mucor circinelloides exercises a fine control over two interacting RNAi pathways to produce epimutants: the canonical RNAi pathway and a new RNAi degradative pathway. The latter is considered a non-canonical RNAi pathway (NCRIP) because it relies on RNA-dependent RNA polymerases (RdRPs) and a novel ribonuclease III-like named R3B2 to degrade target transcripts. Here in this work, we uncovered the role of NCRIP in regulating virulence processes and transposon movements through key components of the pathway, RdRP1 and R3B2. Mutants in these genes are unable to launch a proper virulence response to macrophage phagocytosis, resulting in a decreased virulence potential. The transcriptomic profile of rdrp1Δ and r3b2Δ mutants revealed a pre-exposure adaptation to the stressful phagosomal environment even when the strains are not confronted by macrophages. These results suggest that NCRIP represses key targets during regular growth and releases its control when a stressful environment challenges the fungus. NCRIP interacts with the RNAi canonical core to protect genome stability by controlling the expression of centromeric retrotransposable elements. In the absence of NCRIP, these retrotransposons are robustly repressed by the canonical RNAi machinery; thus, supporting the antagonistic role of NCRIP in containing the epimutational pathway. Both interacting RNAi pathways might be essential to govern host-pathogen interactions through transient adaptations, contributing to the unique traits of the emerging infection mucormycosis.


Subject(s)
Mucorales/genetics , Mucormycosis/genetics , RNA Interference , Ribonuclease III/genetics , Antifungal Agents/pharmacology , Drug Resistance, Fungal/genetics , Epigenesis, Genetic/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal/genetics , Genomic Instability/drug effects , Host-Pathogen Interactions/genetics , Mucorales/pathogenicity , Mucormycosis/microbiology , Mutation/genetics , RNA, Messenger/genetics , Signal Transduction/drug effects , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL