Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.143
Filter
1.
J Toxicol Environ Health A ; 85(7): 291-306, 2022 04 03.
Article in English | MEDLINE | ID: mdl-34879786

ABSTRACT

Triclosan (TCS) is a synthetic broad-spectrum antimicrobial agent commonly used world-wide in a range of personal care and sanitizing products detected frequently in aquatic ecosystems. The aim of this study was to examine biochemical markers responses triggered by TCS in Danio rerio and in a native South American fish species (Corydoras paleatus). Further, an integrated approach comparing both test fish species was undertaken. These fish organisms were exposed to 100 or 189 µg TCS/L for 48 h. The activities of catalase (CAT), glutathione-s-transferase (GST), superoxide dismutase (SOD), and lipid peroxidation levels (LPO) and total antioxidant capacity against peroxyl radicals (ACAP) were determined in liver, gills, and brain. Acetylcholinesterase activity (AChE) was measured in the brain. Multivariate analysis showed that the most sensitive hepatic parameters were activities of GST and SOD for C. paleatus while LPO levels were for D. rerio. In gills the same parameters were responsive for C. paleatus but CAT in D. rerio. ACAP and GST activity were responsive parameters in brain of both species. Integrated biomarker responses (IBR) index demonstrated similar trends in both species suggesting this parameter might serve as a useful tool for quantification of integrated responses induced by TCS.


Subject(s)
Anti-Infective Agents, Local/toxicity , Biomarkers , Oxidative Stress/drug effects , Triclosan/toxicity , Water Pollutants, Chemical/toxicity , Animals , Brain/drug effects , Brain/enzymology , Catfishes , Gills/drug effects , Gills/enzymology , Liver/drug effects , Liver/enzymology , Zebrafish
2.
Article in English | MEDLINE | ID: mdl-33249144

ABSTRACT

The marble goby, Oxyeleotris marmorata, is a freshwater teleost, but can acclimate progressively to survive in seawater (salinity 30). As an obligatory air-breather, it can also survive long periods of emersion. Two isoforms of Na+/K+-ATPase (nka) α-subunit, nkaα1 and nkaα3, but not nkaα2, had been cloned from the gills of O. marmorata. The cDNA sequence of nkaα1 consisted of 3069 nucleotides, coding for 1023 amino acids (112.5 kDa), whereas nkaα3 consisted of 2976 nucleotides, coding for 992 amino acids (109.5 kDa). As only one form of branchial Nkaα1 was identified using molecular cloning in this study, O. marmorata lacks specific freshwater- and seawater-type Nkaα isoforms as demonstrated by some other euryhaline fish species. The nkaα1 transcript level was about 2.5-fold higher than that of nkaα3 in the gills of freshwater O. marmorata. During exposure to seawater, the branchial transcript level of nkaα1 increased significantly on day 1 (~3.3-fold) and day 6 (~2.6-fold). By contrast, the branchial transcript level of nkaα3 increased significantly on day 1 (~2.6-fold), but not on day 6, of seawater exposure. Six days of exposure to seawater also led to significant increases in protein abundances of Nkaα1 (~6.9-fold) and Nkaα3 (~2.8-fold) in the gills of O. marmorata. Hence, the mRNA and protein expressions of both nkaα1/Nkaα1 and nkaα3/Nkaα3 were up-regulated in O. marmorata during seawater acclimation. This could explain why Vmax increases but Km for Na+ and K+ remain unchanged in Nka extracted from the gills of O. marmorata acclimated to seawater as reported previously.


Subject(s)
Acclimatization/physiology , Gills/enzymology , Isoenzymes/metabolism , Perciformes/metabolism , Seawater , Sodium-Potassium-Exchanging ATPase/metabolism , Amino Acid Sequence , Animals , Isoenzymes/chemistry , Isoenzymes/genetics , Osmoregulation , Perciformes/classification , Perciformes/genetics , Phylogeny , RNA, Messenger/metabolism , Sequence Homology, Amino Acid , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/genetics
3.
Ecotoxicol Environ Saf ; 208: 111603, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396123

ABSTRACT

Chlorothalonil (CLT) is a broad spectrum, and non-systemic fungicide applied in foliar structures to prevent and treat pathogens. This compound reaches to aquatic environments and affects the biota. In this context, the main goal of this study was to assess the effects of CLT at biochemical, tissular, and individual levels of biological organization using the invasive bivalve Corbicula largillierti as a bioindicator species. Clams were exposed to different sublethal concentrations (0, 10, 20 and 50 µg. L-1 CLT) for 96 h. At biochemical level, the enzymatic activity (Glutathione-s-Transferase, Catalase, Acetyl-, Butiryl- and Carboxyl-esterases) and lipid peroxidation were measured in gills and the visceral mass. Also, the digestive gland morphometry through quantitative histological indexes was registered at the tissular level. Finally, filtering activity and burial behavior at the individual level were measured. At the highest CLT concentration, the most significant changes were observed in enzymatic activity (except for butyrylcholinesterase), lipid peroxidation and in digestive gland morphometry. It was also registered increases of the filtering activity and the latency time to burial. Most of the biomarkers assessed showed significant responses under CLT exposure. Therefore, taking into account that C. largillierti was affected by CLT, it can be expected that other species could be in a potential risk if this fungicide is present in freshwater systems.


Subject(s)
Corbicula/drug effects , Environmental Monitoring/methods , Fresh Water/chemistry , Fungicides, Industrial/toxicity , Nitriles/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Catalase/metabolism , Corbicula/enzymology , Dose-Response Relationship, Drug , Fungicides, Industrial/analysis , Gills/drug effects , Gills/enzymology , Glutathione Transferase/metabolism , Lipid Peroxidation/drug effects , Nitriles/analysis , Water Pollutants, Chemical/analysis
4.
Fish Physiol Biochem ; 47(2): 251-263, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33405067

ABSTRACT

This aim of this study was to determine the respiratory physiology response in the gill and gut of Paramisgurnus dabryanus under different breathing treatment patterns. The experimental design included the following three conditions: a control group without any stress treatments, an inhibited group with intestinal respiration inhibited, and an air-exposed group with gill respiration inhibited. The results indicated that the total static metabolic rate in the air-exposed group (188.92 ± 13.67 mg h-1 kg-1) was much higher than that of the other group after 7 days, decreased significantly after the first day of recovery (81.64 ± 7.85 mg h-1 kg-1). The air metabolic rate in the air-exposed group increased significantly after 7 days (P < 0.05). There was no significant difference among the groups. Histological observation on the gill and hindgut of P. dabryanus showed that the gill filament area of inhibited group became larger, while the gill structure of air exposed group showed some damage. The number of capillariesin the hindgut mucosal epithelial in air-exposed group showed a rapidly increase (P < 0.05). Likewise, the gas diffusion distance (1.24 ± 0.36 µm) became significantly shorter (P < 0.05). Lactate dehydrogenase activity of gill in the air-exposed group (846.68 ± 88.78 U mg-1 protein) significantly increased after 7 days whereas succinate dehydrogenase (1.02 ± 0.21 U mg-1 protein) and Na+/K+ ATPase (0.57 ± 0.20 U mg-1 protein) activity decreased significantly (P < 0.05). However, there was no significant change in the hindgut. After recovery, there was no significant difference in lactate dehydrogenase, succinate dehydrogenase, and Na+/K+ ATPase activity in the gill or hindgut in groups. P. dabryanus had a high viability in air-exposed condition. When recovery occurred under normoxic conditions, the physical levels of respiration returned back to the normal level quickly.


Subject(s)
Cypriniformes/physiology , Hypoxia , Oxygen Consumption , Oxygen/metabolism , Acclimatization , Air , Animals , Gills/enzymology , L-Lactate Dehydrogenase/metabolism , Oxygen/chemistry , Respiration , Water/chemistry
5.
Ecotoxicol Environ Saf ; 203: 110980, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32888623

ABSTRACT

Pesticides can enter aquatic environments potentially affecting non-target organisms. Unfortunately, the effects of such substances are still poorly understood. This study investigated the effects of the active neonicotinoid substance thiacloprid (TH) and the commercial product Calypso 480 SC (CA) (active compound 40.4% TH) on Mytilus galloprovincialis after short-term exposure to sublethal concentrations. Mussels were tested for seven days to 0, 1, 5 and 10 mg L-1 TH and 0, 10, 50 and 100 mg L-1 CA. For this purpose, several parameters, such as cell viability of haemocytes and digestive cells, biochemical haemolymph features, superoxide dismutase (SOD) and catalase (CAT) enzymatic activity of gills and digestive gland, as well as histology of such tissues were analysed. The sublethal concentrations of both substances lead to abatement or completely stopping the byssal fibres creation. Biochemical analysis of haemolymph showed significant changes (P < 0.01) in electrolytes ions (Cl-, K+, Na+, Ca2+, S-phosphor), lactate dehydrogenase (LDH) enzyme activity and glucose concentration following exposure to both substances. The TH-exposed mussels showed significant imbalance (P < 0.05) in CAT activity in digestive gland and gills. CA caused significant decrease (P < 0.05) in SOD activity in gills and in CAT activity in both tissues. Results of histological analyses showed severe damage in both digestive gland and gills in a time- and concentration-dependent manner. This study provides useful information about the acute toxicity of a neonicotinoid compound and a commercial insecticide on mussels. Nevertheless, considering that neonicotinoids are still widely used and that mussels are very important species for marine environment and human consumption, further researches are needed to better comprehend the potential risk posed by such compounds to aquatic non-target species.


Subject(s)
Gills/drug effects , Hemolymph/drug effects , Insecticides/toxicity , Mytilus/drug effects , Neonicotinoids/toxicity , Thiazines/toxicity , Water Pollutants, Chemical/toxicity , Animals , Catalase/metabolism , Cell Survival , Dose-Response Relationship, Drug , Gills/enzymology , Hemocytes/drug effects , Superoxide Dismutase/metabolism , Toxicity Tests, Acute
6.
Ecotoxicol Environ Saf ; 188: 109890, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31704321

ABSTRACT

The present study evaluated the adverse effects of the hexavalent chromium (Cr (VI)) at sub-lethal concentrations and the ameliorative potential of curcumin (CUR) over a sub-chronic exposure period on Oreochromis niloticus. Fish were exposed to Cr (VI) (4.57 mg/L) and CUR (0.02% in diet or 200 mg/kg diet), individually or in combination for 60-days. The growth rate during the period of experiment, condition factor, body composition, hepatosomatic index (HSI), hematological parameters, oxidative stress, apoptotic and DNA damage, branchial, hepato- and nephrotoxicity were estimated in this study. Moreover, the changes in mRNA expression of Cytochromes (CYP450) and glutathione S-transferase (GST) in kidney and liver tissues were assessed by qRT-PCR. Additionally, the concentration of metallothionine in the liver, histological investigation, and lesion scoring to the branchial, hepatic, renal and gill tissues were applied. The results revealed that Cr (VI) exposure caused a significant decline in most hematological variables and growth rate with down-regulation of CYP450 and GST expression. Histologically, Cr (VI) induced diverse forms of cell injury, vascular, and inflammatory alterations with upregulation of caspase-3 and downregulation of Bcl2 expression in the examined tissues. Additionally, it elevated the levels of serum MDA and 8-hydroxy-2' -deoxyguanosine than control. CUR-supplementation resulted in a significant improvement in most indices, amelioration of histological alterations and up-regulation of CYP450 and GST expression. These results may conclude that dietary supplements with CUR could be useful for modulation of the growth with protective effects to the branchial, hepatic, and renal tissues in response to Cr (VI) exposure, thereby presenting a promising feed additive for Nile tilapia in aquaculture.


Subject(s)
Chromium/toxicity , Cichlids/metabolism , Curcumin/pharmacology , Cytochrome P-450 Enzyme System/genetics , Glutathione Transferase/genetics , Kidney/drug effects , Liver/drug effects , Water Pollutants, Chemical/toxicity , Animals , Aquaculture , Cichlids/genetics , Cytochrome P-450 Enzyme System/metabolism , Diet , Dietary Supplements , Gene Expression/drug effects , Gills/drug effects , Gills/enzymology , Glutathione Transferase/metabolism , Kidney/enzymology , Liver/enzymology , Oxidative Stress/drug effects
7.
Fish Physiol Biochem ; 46(4): 1537-1547, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32383148

ABSTRACT

We assessed the acute and chronic effects of copper (Cu2+) on the antioxidant system in golden trout (Oncorhynchus mykiss aguabonita). The median lethal concentration after 96 h was determined as 0.24 mg L-1. We then used 0.06 (L) and 0.12 mg L-1 (H) Cu2+ to assess the responses of the antioxidant system to long-term exposure. The activities of superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, reduced glutathione, and oxidized glutathione were measured in gill and liver tissue after 24 and 72 h and 7, 14, 21, and 28 days of exposure, as well as after 16 days of recovery in Cu2+-free water. Cu2+ accumulated to a greater extent in the liver than in the gill (0.61-0.75 mg kg-1 vs. 24.0-69.9 mg kg-1 in L group and 0.98-1.47 mg kg-1 vs. 33.3-66.03 mg kg-1 in H group). In the gill, we observed increases in the activities of superoxide dismutase, catalase, and glutathione peroxidase, as well as in the concentrations of reduced glutathione and oxidized glutathione. In the liver of L group, we observed increases in glutathione reductase activity and in the levels of reduced glutathione and oxidized glutathione. In L group, the activity of superoxide dismutase and reduced glutathione content increased after 24 h and then decreased over time, while catalase and glutathione reductase activity and oxidized glutathione levels increased. Data from the recovery period indicated that higher concentrations of Cu2+ may induce irreversible oxidative damage to the gill of golden trout.


Subject(s)
Copper/toxicity , Gills/drug effects , Liver/drug effects , Oncorhynchus mykiss/metabolism , Animals , Catalase/metabolism , Copper/metabolism , Gills/enzymology , Gills/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Lethal Dose 50 , Liver/enzymology , Liver/metabolism , Oxidation-Reduction/drug effects , Random Allocation , Superoxide Dismutase/metabolism
8.
Fish Physiol Biochem ; 46(1): 315-329, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31732893

ABSTRACT

Global warming due to increasing temperature and contamination in aquatic environment has been found to be inducing cellular metabolic stress in fish. The present study focused on temperature and contamination in aquatic ecosystems and its alleviation/mitigation. Hence, this study was conducted to evaluate the role of zinc to improve growth performance, cellular metabolic stress, and digestive enzymes of the Pangasianodon hypophthalmus reared under lead (Pb) and high temperature. Two hundred and seventy-three fishes were distributed randomly into seven treatments, each with three replicates. Three isocaloric and isonitrogenous diets with graded levels of zinc at 0 mg/kg, 10 mg/kg, and 20 mg/kg were prepared. The Pb in treated water was maintained at the level of 1/21th of LC50 (4 ppm) and maintained at a temperature of 34 °C in exposure groups. The growth performance in terms of weight gain (%), protein efficiency ratio (PER), and specific growth rate (SGR) was found to be inhibited, and the feed conversion ratio (FCR) was enhanced in the Pb and high temperature-exposed group, whereas zinc supplementation has improved weight gain (%), FCR, PER, and SGR. The liver, gill, muscle, and kidney tissues of carbohydrate metabolic enzymes (LDH and MDH), protein metabolic enzymes (ALT and AST), and liver, gill, and muscle G6PDH and ATPase as well as intestinal digestives enzymes (proteases, amylase, and lipase) and intestinal ALP were significantly affected (p < 0.01) by Pb and high temperature exposure to P. hypophthalmus. We herein report the role of zinc in mitigating cellular metabolic stress in fish exposed to Pb and high temperature.


Subject(s)
Catfishes/growth & development , Stress, Physiological/drug effects , Zinc/pharmacology , Alkaline Phosphatase , Amylases/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Digestion/drug effects , Digestion/physiology , Gene Expression Regulation, Enzymologic/drug effects , Gills/drug effects , Gills/enzymology , Glucosephosphate Dehydrogenase , Kidney/drug effects , Kidney/enzymology , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Liver/drug effects , Liver/enzymology , Muscle, Skeletal/drug effects , Muscle, Skeletal/enzymology , Peptide Hydrolases/metabolism , Zinc/administration & dosage
9.
Article in English | MEDLINE | ID: mdl-30818018

ABSTRACT

Aeglidae anomuran crabs originated in the sea, but invaded and diversified in southern South American freshwater (FW) streams. We here aimed at examining their tolerance of increased salinity, after a long time of evolution in FW (~33 million years). Aegla schmitti were exposed to FW and dilute seawater of salinities 15, 20, and 25‰ for 1, 5 and 10 days. Mortality in 35‰ was also assessed. Hemolymph osmolality, Na+, K+, Cl-, and Mg2+ ions, and hydration levels of the abdominal muscle were assayed. The activities of the Carbonic Anhydrase (CA), Na+/K+-ATPase (NKA) and V-H+-ATPase (VHA) were also assayed in the gills. A. schmitti preserves osmoregulatory mechanisms of its marine ancestors. It is able to survive in high salinities (25‰) for at least 10 days. Mortality in 35‰ was of 56% after 1 day, and of 100% after 7 days. In 25‰, NaCl is apparently hyporegulated at all times, while hemolymph osmolality rises after 5 days. CA and NKA activities remained unchanged in all experimental conditions, while VHA activity decreased after 10 days in 25‰. Hemolymph NaCl data was compatible with either hyporegulation and/or putative influx of NaCl into cells for regulatory volume increase (RVI). Further studies should deepen the understanding of the roles of low permeabilities and saturation of high affinity uptake systems in truly FW decapods, in their responses to high salinities. Moreover, the fate of extracellular NaCl as secretion in true hypo-regulation and/or influx into cells for RVI should also be investigated.


Subject(s)
Carbonic Anhydrases/metabolism , Crustacea/physiology , Gills/enzymology , Osmoregulation , Proton-Translocating ATPases/metabolism , Salinity , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Gills/physiology
10.
Article in English | MEDLINE | ID: mdl-30389628

ABSTRACT

Fathead minnows, Pimephales promelas, are found throughout the continental United States in waters in which salinity can change with tides and temperatures vary seasonally. They have been used extensively in studies of environmental toxicology and are commercially important. In a very recent study in our labs RNA Seq was used to assemble transcriptomes from the gills of fatheads acclimated to either 5° or 22 °C. By comparison with published genomes, transcripts were identified for a number of ion transporters, ion channels, and signal molecule receptors, as well as enzymes that generate ammonia. H-ATPase and Na/K-ATPase activities were measured in supernatants of gill homogenates from fish acclimated to water sodium concentrations of 1.6, 3.1 or 124 mM sodium. As the water sodium concentration increased, in vitro activities of Na/K-ATPase activity and gill glutamate dehydrogenase activity decreased while H-ATPase activity increased. In a second series of experiments minnows were acclimated to 5 °C, 12.5 °C or 22 °C. In vitro activity of Na/K-ATPase decreased but activities of H-ATPase and glutamate dehydrogenase increased as temperature increased in gill membranes. These data do not support a primary role for apical H-ATPase in sodium influx under all conditions but do suggest a role for glutamate dehydrogenase production of ammonium to act as a counter-ion for sodium uptake by NHE-3.


Subject(s)
Cyprinidae/metabolism , Gills/enzymology , Glutamate Dehydrogenase/metabolism , Salinity , Sodium-Potassium-Exchanging ATPase/metabolism , Temperature , Acclimatization , Animals , Cyprinidae/physiology , Ion Transport , Sodium/metabolism , Transcriptome
11.
Article in English | MEDLINE | ID: mdl-30594527

ABSTRACT

The cell cycle comprises a series of steps necessary for cell growth until cell division. The participation of proteins responsible for cell cycle regulation, known as cyclin dependent kinases or Cdks, is necessary for cycle progression. Cyclin dependent kinase 2 (Cdk-2) is one of the most studied Cdks. This kinase regulates the passage through the G1/S phase and is involved in DNA replication in the S phase. Cdks have been extensively studied in mammals, but there is little information about these proteins in crustaceans. In the present work, the nucleotide and amino acid sequence of Cdk-2 from the white shrimp (Cdk-2) and its expression during hypoxia and reoxygenation are reported. Cdk-2 is a highly conserved protein and contains the serine/threonine catalytic domain, an ATP binding site and the PSTAIRE sequence. The predicted Cdk-2 structure showed the two-lobed structure characteristic of kinases. Expression of Cdk-2 was detected in hepatopancreas, gills and muscle, with hepatopancreas having the highest expression during normoxic conditions. Cdk-2 expression was significantly induced after hypoxia for 24 h in muscle cells, but in hypoxia exposure for 24 followed by 1 h of reoxygenation, the expression levels returned to the levels found in normoxic conditions, suggesting induction of cell cycle progression in muscular cells during hypoxia. No significant changes in expression of Cdk-2 were detected in these conditions in hepatopancreas and gills.


Subject(s)
Arthropod Proteins/metabolism , Cyclin-Dependent Kinase 2/metabolism , Hypoxia/enzymology , Oxygen/metabolism , Penaeidae/enzymology , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Base Sequence , Cyclin-Dependent Kinase 2/chemistry , Cyclin-Dependent Kinase 2/genetics , Gills/enzymology , Hepatopancreas/enzymology , Muscles/enzymology , Penaeidae/metabolism , Phylogeny
12.
Ecotoxicol Environ Saf ; 176: 178-185, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-30927639

ABSTRACT

Diarrhetic shellfish poisoning (DSP) toxins are key shellfish toxins that cause diarrhea, vomiting and even tumor. Interestingly, bivalves such as Perna viridis have been reported to exhibit some resistances to alleviate toxic effects of DSP toxins in a species-specific manner. Nevertheless, the molecular mechanisms underlying the resistance phenomenon to DSP toxins, particularly the mechanistic role of CYP450 is scant despite its crucial role in detoxification. Here, we exposed P. viridis to Prorocentrum lima and examined the expression pattern of the CYP450 and our comprehensive analyses revealed that P. lima exposure resulted in unique expression pattern of key CYP450 genes in bivalves. Exposure to P. lima (2 × 105 cells/L) dramatically orchestrated the relative expression of CYP450 genes. CYP2D14-like mRNA was significantly down-regulated at 6 h in gill, but up-regulated at 2 h in digestive gland compared with control counterparts (p < 0.05), while CYP3A4 mRNA was increased at 12 h in gill. After exposure to P. lima at 2 × 106 cells/L, the expression of CYP3A4 mRNA was significantly increased in digestive gland at 2 h and 12 h, while CYP2D14-like was up-regulated at 6 h. Besides, CYP3L3 and CYP2C8 also exhibited differential expression. These data suggested that CYP3A4, CYP2D14-like, and even CYP3L3 and CYP2C8 might be involved in DSP toxins metabolism. Besides, provision of ketoconazole resulted in significant decrement of CYP3A4 in digestive gland at 2 h and 12 h, while the OA content significantly decreased at 2 h and 6 h compared to control group without ketoconazole. These findings indicated that ketoconazole could depress CYP3A4 activity in bivalves thereby altering the metabolic activities of DSP toxins in bivalves, and also provided novel insights into the mechanistic role of CYP3A4 on DSP toxins metabolism in bivalves.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Dinoflagellida/metabolism , Marine Toxins/toxicity , Perna/enzymology , Shellfish Poisoning , Water Pollutants/toxicity , Animals , Cytochrome P-450 Enzyme System/genetics , Gills/drug effects , Gills/enzymology , Perna/drug effects , Seafood/analysis
13.
Drug Chem Toxicol ; 42(5): 463-470, 2019 Sep.
Article in English | MEDLINE | ID: mdl-29258333

ABSTRACT

In the present study, the acute toxicity of chlorpyrifos (an organophosphate, OP) and cypermethrin (a pyrethroid) pesticides was estimated for 96 h in Heteropneustes fossilis. The LC50 for chlorpyrifos (CPF) and cypermethrin was found to be 1.90 mg/L and 0.085 mg/L, respectively. The acetylcholinesterase (AChE, EC 3.1.1.7) activity in Heteropneustes fossilis exposed to both the insecticides was assayed in brain, muscle and gills. In general, tissue specific as well as dose-dependent decrease in the AChE activity was exhibited by both pesticides. In response to the increasing concentrations of chlorpyrifos and cypermethrin as well, a significant decrease in the activity of AChE was found in brain while muscle and gills exhibited lesser inhibition. Thus, the brain was the main target organ for both insecticides, followed by muscle and gills. Between the two pesticides chlorpyrifos acted as more potent AChE inhibitor than cypermethrin since more intense changes in behavioral pattern was observed with the chlorpyrifos. These changes indicate that the effects of these pesticides are at neural as well as neuromuscular level.


Subject(s)
Acetylcholinesterase/metabolism , Catfishes , Chlorpyrifos/toxicity , Cholinesterase Inhibitors/toxicity , Pyrethrins/toxicity , Water Pollutants, Chemical/toxicity , Animals , Brain/drug effects , Brain/enzymology , Gills/drug effects , Gills/enzymology , Lethal Dose 50 , Muscles/drug effects , Muscles/enzymology , Toxicity Tests, Acute
14.
Arch Environ Contam Toxicol ; 76(3): 469-482, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30607445

ABSTRACT

The present study delineate the various biochemical and histopathological tool to evaluate as strong biomarker in the field condition for detection of the least and maximize level of pollution and contamination. We have collected Labeo rohita from 13 different sites from East Kolkata wetland to determine biochemical and histopathological status to analyse metal contamination in the significant biological hot spot EKW. The biochemical marker as antioxidative status, i.e., catalase, superoxide dismutase (SOD), and glutathione-S-transferase (GST) in liver and gill, were remarkably higher (p < 0.01) at some of the sampling sites, but catalase in brain, SOD in kidney, GST in brain and kidney, and neurotransmitter as acetylcholine esterase (AChE) in brain were not significant (p > 0.05) among the sampling sites. The glycolytic enzymes, such as lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) in liver, gill, and muscle, and protein metabolic enzymes, such as alanine amino transferase (ALT) and aspartate amino transferase (AST) in liver, gill, muscle, and kidney, were noticeably higher (p < 0.01) at some of the sampling sites. The histopathology of the liver and gill were altered at different sampling sites, such as blood congestion, leucocyte infiltration with parenchymal vacuolisation, nucleus with blood vessels, hepatocytes granular degeneration, haemorrhage, karyorrhexis, shrink nucleus, and pyknotic nuclei in liver. In the gill, structural changes, such as complete destruction and shortening of secondary gill lamellae, blood vessel in gill arch, curling of secondary gill lamellae, aneurism in gill lamellae, and neoplasia, were observed. Most of the metals were found within the safe limit all along the 13 sampling sites, indicating that fishes are safe for the consumption. Based on our finding, we could recommend that a rational application of biochemical profiles, such as oxidative and metabolic stress parameters, including histopathology to be used as biomarkers for biomonitoring the metal contamination in the aquatic environment.


Subject(s)
Environmental Monitoring/methods , Fishes/metabolism , Metals/analysis , Oxidative Stress/drug effects , Water Pollutants, Chemical/analysis , Wetlands , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Gills/enzymology , Gills/pathology , India , Liver/enzymology , Liver/pathology , Stress, Physiological/drug effects
15.
Fish Physiol Biochem ; 45(4): 1245-1260, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31190261

ABSTRACT

Anthropogenic use of water systems may cause temperature fluctuations between tributaries and large rivers for which physiological population related-effects on osmoregulatory capacity of Atlantic salmon are not well described. We simulated the downstream route in the case of the River Meuse basin to investigate the impact of a 5 °C temperature shift during smoltification on hypo-osmoregulatory capacities of smolts. Three temperature regimes were tested: control temperature-treatment (T1) without temperature shift, early (T2) or late (T3) temperature shift-treatment. Moreover, fish were subjected to seawater challenge during and after the downstream migration peak time. Two allochtonous strains were used: Loire-Allier (LA) and Cong (CG). Without temperature shift (T1), significant differences between the strains were noticed in the peak date and maximum activity of gill Na+/K+ATPase as well as in plasma sodium and potassium concentrations. For early (T2) and late (T3) temperature shift-treatments, gill Na+/K+ATPase activity, plasma osmolality and ion concentrations were negatively influenced in both strains. After salinity challenge, the highest osmolality was measured in smolts subjected to the temperature shift. Predictably circulating levels of GH and IGF-1 changed over the smolting period but they did not explain the observed modifications in hypo-osmoregulatory abilities whatever the population. The results show a negative impact of a temperature shift on hypo-osmoregulatory capacities of smolts regardless of population differences in smoltification timing under conditions without temperature shift. The resilience of such physiological impact was sustained at least for 1 week, comforting the role of high temperature in influencing the rate of changes occurring during smoltification. Therefore, favouring the downstream migration to help smolts reach the sea faster may mitigate the impact of a rapid temperature increase.


Subject(s)
Animal Migration , Osmoregulation , Salmo salar/physiology , Temperature , Animals , Fish Proteins/metabolism , Gills/enzymology , Growth Hormone/blood , Insulin-Like Growth Factor I/analysis , Sodium-Potassium-Exchanging ATPase/metabolism , Species Specificity
16.
Microb Pathog ; 117: 157-161, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29471134

ABSTRACT

The precise coupling of spatially separated intracellular adenosine triphosphate (ATP)-producing and ATP-consuming, catalyzed by creatine kinase (CK), adenylate kinase (AK), and pyruvate kinase (PK), is a critical process in the bioenergetics of tissues with high energy demand, such as the branchial tissue. The effects of Citrobacter freundii infection on gills remain poorly understood, limited only to histopathological studies. Thus, the aim of this study was to evaluate whether experimental infection by C. freundii impairs the enzymes of the phosphoryl transfer network in gills of silver catfish (Rhamdia quelen). The CK (cytosolic and mitochondrial) and AK activities decreased in infected compared to uninfected animals, while the PK activity did not differ between groups. The gill histopathology of infected animals revealed extensive degeneration with fusion and necrosis of secondary lamellae, detachment of superficial epithelium, aneurysm, vessel congestion and inflammatory process. Based on these evidences, the inhibition and absence of an efficient communication between CK compartments caused the impairment of the branchial bioenergetics homeostasis, which was not compensated by the augmentation on branchial AK activity in an attempt to restore energy homeostasis. In summary, these alterations contribute to disease pathogenesis linked to branchial tissue in animals infected with C. freundii.


Subject(s)
Catfishes/microbiology , Citrobacter freundii/pathogenicity , Energy Metabolism , Enterobacteriaceae Infections/metabolism , Enterobacteriaceae Infections/veterinary , Fish Diseases/metabolism , Gills/enzymology , Gills/metabolism , Homeostasis , Adenylate Kinase/metabolism , Aneurysm/pathology , Animals , Branchial Region/pathology , Brazil , Creatine Kinase/metabolism , Cytosol/enzymology , Disease Models, Animal , Epithelium/pathology , Fish Diseases/pathology , Gills/microbiology , Gills/pathology , Hyperemia/pathology , Mitochondria/enzymology , Necrosis/pathology , Phosphorylation , Pyruvate Kinase/metabolism , Virulence
17.
Anal Biochem ; 553: 38-45, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29787731

ABSTRACT

Cytochrome c oxidase (COX) catalyzes the terminal oxidation reaction in the electron transport chain (ETC) of aerobic respiratory systems. COX activity is an important indicator for the evaluation of energy production by aerobic respiration in various tissues. On the basis of the respiratory characteristics of muscle, we established an optimal method for the measurement of maximal COX activity. To validate the measurement of cytochrome c absorbance, different ionic buffer concentrations and tissue homogenate protein concentrations were used to investigate COX activity. The results showed that optimal COX activity is achieved when using 50-100 µg fish gill homogenate in conjunction with 75-100 mM potassium phosphate buffer. Furthermore, we compared branchial COX activities among three species of euryhaline teleost (Chanos chanos, Oreochromis mossambicus, and Oryzias dancena) to investigate differences in aerobic respiration of osmoregulatory organs. COX activities in the gills of these three euryhaline species were compared with COX subunit 4 (COX4) protein levels. COX4 protein abundance and COX activity patterns in the three species occurring in environments with various salinities increased when fish encountered salinity challenges. This COX activity assay therefore provides an effective and accurate means of assessing aerobic metabolism in fish.


Subject(s)
Electron Transport Complex IV/metabolism , Fishes , Gills/enzymology , Animals , Fresh Water , Salinity , Species Specificity
18.
J Exp Biol ; 221(Pt 6)2018 03 21.
Article in English | MEDLINE | ID: mdl-29361576

ABSTRACT

Many studies have investigated ammonia excretion and acid-base regulation in aquatic arthropods, yet current knowledge of marine chelicerates is non-existent. In American horseshoe crabs (Limulus polyphemus), book gills bear physiologically distinct regions: dorsal and ventral half-lamellae, a central mitochondria-rich area (CMRA) and peripheral mitochondria-poor areas (PMPAs). In the present study, the CMRA and ventral half-lamella exhibited characteristics important for ammonia excretion and/or acid-base regulation, as supported by high expression levels of Rhesus-protein 1 (LpRh-1), cytoplasmic carbonic anhydrase (CA-2) and hyperpolarization-activated cyclic nucleotide-gated K+ channel (HCN) compared with the PMPA and dorsal half-lamella. The half-lamellae displayed remarkable differences; the ventral epithelium was ion-leaky whereas the dorsal counterpart possessed an exceptionally tight epithelium. LpRh-1 was more abundant than Rhesus-protein 2 (LpRh-2) in all investigated tissues, but LpRh-2 was more prevalent in the PMPA than in the CMRA. Ammonia influx associated with high ambient ammonia (HAA) treatment was counteracted by intact animals and complemented by upregulation of branchial CA-2, V-type H+-ATPase (HAT), HCN and LpRh-1 mRNA expression. The dorsal epithelium demonstrated characteristics of active ammonia excretion. However, an influx was observed across the ventral epithelium as a result of the tissue's high ion conductance, although the influx rate was not proportionately high considering the ∼3-fold inwardly directed ammonia gradient. These novel findings suggest a role for the coxal gland in excretion and in the maintenance of hemolymph ammonia regulation under HAA. Hypercapnic exposure induced compensatory respiratory acidosis and partial metabolic depression. Functional differences between the two halves of a branchial lamella may be physiologically beneficial in reducing the backflow of waste products into adjacent lamellae, especially in fluctuating environments where ammonia levels can increase.


Subject(s)
Acid-Base Equilibrium , Ammonia/metabolism , Arthropod Proteins/metabolism , Horseshoe Crabs/metabolism , Animals , Gills/enzymology , Gills/metabolism , Gills/ultrastructure , Horseshoe Crabs/enzymology , Male
19.
J Exp Biol ; 221(Pt 22)2018 11 19.
Article in English | MEDLINE | ID: mdl-30291156

ABSTRACT

In all vertebrates studied to date, CO2 excretion depends on the enzyme carbonic anhydrase (CA) that catalyses the rapid conversion of HCO3- to CO2 at the gas-exchange organs. The largest pool of CA is present within red blood cells (RBCs) and, in some vertebrates, plasma-accessible CA (paCA) isoforms participate in CO2 excretion. However, teleost fishes typically do not have paCA at the gills and CO2 excretion is reliant entirely on RBC CA - a strategy that is not possible in icefishes. As the result of a natural knockout, Antarctic icefishes (Channichthyidae) are the only known vertebrates that do not express haemoglobin (Hb) as adults, and largely lack RBCs in the circulation (haematocrit <1%). Previous work has indicated the presence of high levels of membrane-bound CA activity in the gills of icefishes, but without determining its cellular orientation. Thus, we hypothesised that icefishes express a membrane-bound CA isoform at the gill that is accessible to the blood plasma. The CA distribution was compared in the gills of two closely related notothenioid species, one with Hb and RBCs (Notothenia rossii) and one without (Champsocephalus gunnari). Molecular, biochemical and immunohistochemical markers indicate high levels of a Ca4 isoform in the gills of the icefish (but not the red-blooded N. rossii), in a plasma-accessible location that is consistent with a role in CO2 excretion. Thus, in the absence of RBC CA, the icefish gill could exclusively provide the catalytic activity necessary for CO2 excretion - a pathway that is unlike that of any other vertebrate.


Subject(s)
Carbonic Anhydrases/analysis , Gills/enzymology , Perciformes/metabolism , Animals , Antarctic Regions , Carbon Dioxide/metabolism , Erythrocytes/enzymology , Gills/metabolism , Immunohistochemistry , Plasma/enzymology
20.
Fish Shellfish Immunol ; 74: 637-648, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29360541

ABSTRACT

This study was conducted to investigate the effects of methionine hydroxy analogue (MHA) on the physical barrier and immune defence in the gill of young grass carp (Ctenopharyngodon idella). A total 630 young grass carp with an average initial weight of 259.70 ±â€¯0.47 g were fed graded levels of MHA (0, 2.4, 4.4, 6.4, 8.5 and 10.5 g/kg diet) and one DL-methionine (DLM) group (6.4 g/kg diet) for 8 weeks. After feeding trial, 15 fish from each treatment were challenged with Flavobacterium columnare. Compared to the basal diet, optimal MHA improved cellular structure integrity of gill via repressing death receptor and mitochondria pathways induced apoptosis, which might be related to the down-regulation of c-Jun-N-terminal kinase mRNA levels (P < .05). Simultaneously, optimal MHA supplementation improved cellular structure integrity of gill via elevating glutathione contents, antioxidant enzymes activities and corresponding isoforms mRNA levels to attenuate oxidative damage, which might be to the up-regulation of NF-E2-related factor 2 mRNA levels and down-regulation of Kelch-like ECH-associating protein 1a mRNA levels (P < .05). Besides, optimal MHA improved intercellular structure integrity of immune organs via up-regulating the mRNA levels of intercellular tight junctions-related genes, which might be owing to the down-regulation of myosin light chain kinase (MLCK) mRNA levels (P < .05). Summarily, MHA could improve the physical barrier of fish gill. In addition, optimal MHA supplementation increased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M contents and up-regulated mRNA levels of liver-expressed antimicrobial peptide 2, hepcidin and ß-defensin, suggesting that MHA could enhance antimicrobial ability of fish gill. Meanwhile, optimal MHA supplementation enhanced the immune defence of gill via down-regulating pro-inflammatory cytokines mRNA levels and up-regulated anti-inflammatory cytokines mRNA levels, which might be attributed to the down-regulation of nuclear factor κB p65, c-Rel, IκB kinase ß, p38 mitogen activated protein kinase, eIF4E-binding protein1 (4E-BP1) and 4E-BP2 mRNA levels and up-regulation of inhibitor of κBα, ribosomal protein S6 kinase 1 and target of rapamycin mRNA levels (P < .05). In conclusion, the positive effect of MHA on gill health is associated with the improvement of the defence against apoptosis, antioxidant status, tight junctions and immune defence of fish gill. Meanwhile, MHA was superior to DLM on improving the physical barrier of fish gill. For the direction to healthy breeding of young grass carp, the optimal MHA supplementation levels on the premise of 4.01 g/kg methionine basal were estimated by quadratic regression curve, such as 5.49, 6.17 and 6.02 g/kg diet bases on the defence against gill-rot, malondialdehyde content and LZ activity in the gill, respectively.


Subject(s)
Carps/immunology , Carps/metabolism , Fish Diseases/immunology , Immunity, Innate/drug effects , Methionine/analogs & derivatives , Animal Feed/analysis , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Diet/veterinary , Dietary Supplements/analysis , Fish Proteins/genetics , Fish Proteins/immunology , Flavobacteriaceae Infections/immunology , Flavobacterium/physiology , Gills/enzymology , Gills/immunology , Methionine/administration & dosage , Methionine/metabolism , Random Allocation , Tight Junction Proteins/genetics , Tight Junction Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL