Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 860
Filter
1.
FASEB J ; 35(3): e21389, 2021 03.
Article in English | MEDLINE | ID: mdl-33583081

ABSTRACT

The glial fibrillary acidic protein (GFAP) is a type III intermediate filament (IF) protein that is highly expressed in astrocytes, neural stem cells, and in gliomas. Gliomas are a heterogeneous group of primary brain tumors that arise from glia cells or neural stem cells and rely on accurate diagnosis for prognosis and treatment strategies. GFAP is differentially expressed between glioma subtypes and, therefore, often used as a diagnostic marker. However, GFAP is highly regulated by the process of alternative splicing; many different isoforms have been identified. Differential expression of GFAP isoforms between glioma subtypes suggests that GFAP isoform-specific analyses could benefit diagnostics. In this study we report on the differential expression of a new GFAP isoform between glioma subtypes, GFAPµ. A short GFAP transcript resulting from GFAP exon 2 skipping was detected by RNA sequencing of human glioma. We show that GFAPµ mRNA is expressed in healthy brain tissue, glioma cell lines, and primary glioma cells and that it translates into a ~21 kDa GFAP protein. 21 kDa GFAP protein was detected in the IF protein fraction isolated from human spinal cord as well. We further show that induced GFAPµ expression disrupts the GFAP IF network. The characterization of this new GFAP isoform adds on to the numerous previously identified GFAP splice isoforms. It emphasizes the importance of studying the contribution of IF splice variants to specialized functions of the IF network and to glioma research.


Subject(s)
Alternative Splicing , Brain Neoplasms/metabolism , Glial Fibrillary Acidic Protein/biosynthesis , Glioma/metabolism , Brain/metabolism , Cell Line, Tumor , Glial Fibrillary Acidic Protein/chemistry , Glial Fibrillary Acidic Protein/genetics , Humans , Protein Biosynthesis , Protein Isoforms , Vimentin/chemistry
2.
Acta Neuropathol ; 142(1): 179-189, 2021 07.
Article in English | MEDLINE | ID: mdl-33876327

ABSTRACT

Glioblastoma IDH-wildtype presents with a wide histological spectrum. Some features are so distinctive that they are considered as separate histological variants or patterns for the purpose of classification. However, these usually lack defined (epi-)genetic alterations or profiles correlating with this histology. Here, we describe a molecular subtype with overlap to the unique histological pattern of glioblastoma with primitive neuronal component. Our cohort consists of 63 IDH-wildtype glioblastomas that harbor a characteristic DNA methylation profile. Median age at diagnosis was 59.5 years. Copy-number variations and genetic sequencing revealed frequent alterations in TP53, RB1 and PTEN, with fewer gains of chromosome 7 and homozygous CDKN2A/B deletions than usually described for IDH-wildtype glioblastoma. Gains of chromosome 1 were detected in more than half of the cases. A poorly differentiated phenotype with frequent absence of GFAP expression, high proliferation index and strong staining for p53 and TTF1 often caused misleading histological classification as carcinoma metastasis or primitive neuroectodermal tumor. Clinically, many patients presented with leptomeningeal dissemination and spinal metastasis. Outcome was poor with a median overall survival of only 12 months. Overall, we describe a new molecular subtype of IDH-wildtype glioblastoma with a distinct histological appearance and genetic signature.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Methylation , Glioblastoma/genetics , Glioblastoma/pathology , Neuroectodermal Tumors, Primitive/genetics , Neuroectodermal Tumors, Primitive/pathology , PTEN Phosphohydrolase/genetics , Retinoblastoma Binding Proteins/genetics , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/genetics , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 7/genetics , Cohort Studies , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Copy Number Variations , Female , Gene Deletion , Glial Fibrillary Acidic Protein/biosynthesis , Glial Fibrillary Acidic Protein/genetics , Humans , Male , Middle Aged
3.
Int J Mol Sci ; 22(17)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34502498

ABSTRACT

The postnatal rodent spinal cord in-vitro is a useful model to investigate early pathophysiological changes after injury. While low dose nicotine (1 µM) induces neuroprotection, how higher doses affect spinal networks is unknown. Using spinal preparations of postnatal wild-type Wistar rat and Wnt1Cre2:Rosa26Tom double-transgenic mouse, we studied the effect of nicotine (0.5-10 µM) on locomotor networks in-vitro. Nicotine 10 µM induced motoneuron depolarization, suppressed monosynaptic reflexes, and decreased fictive locomotion in rat spinal cord. Delayed fall in neuronal numbers (including motoneurons) of central and ventral regions emerged without loss of dorsal neurons. Conversely, nicotine (0.5-1 µM) preserved neurons throughout the spinal cord and strongly activated the Wnt1 signaling pathway. High-dose nicotine enhanced expression of S100 and GFAP in astrocytes indicating a stress response. Excitotoxicity induced by kainate was contrasted by nicotine (10 µM) in the dorsal area and persisted in central and ventral regions with no change in basal Wnt signaling. When combining nicotine with kainate, the activation of Wnt1 was reduced compared to kainate/sham. The present results suggest that high dose nicotine was neurotoxic to central and ventral spinal neurons as the neuroprotective role of Wnt signaling became attenuated. This also corroborates the risk of cigarette smoking for the foetus/newborn since tobacco contains nicotine.


Subject(s)
Motor Neurons/metabolism , Neurotoxins/toxicity , Nicotine/toxicity , Spine/metabolism , Wnt Signaling Pathway/drug effects , Animals , Animals, Newborn , Astrocytes/metabolism , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/biosynthesis , Glial Fibrillary Acidic Protein/genetics , Mice , Mice, Transgenic , Rats , Rats, Wistar , S100 Proteins/biosynthesis , S100 Proteins/genetics , Spine/pathology
4.
J Neurosci ; 38(6): 1366-1382, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29279310

ABSTRACT

Spinal cord injury (SCI) induces a centralized fibrotic scar surrounded by a reactive glial scar at the lesion site. The origin of these scars is thought to be perivascular cells entering lesions on ingrowing blood vessels and reactive astrocytes, respectively. However, two NG2-expressing cell populations, pericytes and glia, may also influence scar formation. In the periphery, new blood vessel growth requires proliferating NG2+ pericytes; if this were also true in the CNS, then the fibrotic scar would depend on dividing NG2+ pericytes. NG2+ glial cells (also called oligodendrocyte progenitors or polydendrocytes) also proliferate after SCI and accumulate in large numbers among astrocytes in the glial scar. Their effect there, if any, is unknown. We show that proliferating NG2+ pericytes and glia largely segregate into the fibrotic and glial scars, respectively; therefore, we used a thymidine kinase/ganciclovir paradigm to ablate both dividing NG2+ cell populations to determine whether either scar was altered. Results reveal that loss of proliferating NG2+ pericytes in the lesion prevented intralesion angiogenesis and completely abolished the fibrotic scar. The glial scar was also altered in the absence of acutely dividing NG2+ cells, displaying discontinuous borders and significantly reduced GFAP density. Collectively, these changes enhanced edema, prolonged hemorrhage, and impaired forelimb functional recovery. Interestingly, after halting GCV at 14 d postinjury, scar elements and vessels entered the lesions over the next 7 d, as did large numbers of axons that were not present in controls. Collectively, these data reveal that acutely dividing NG2+ pericytes and glia play fundamental roles in post-SCI tissue remodeling.SIGNIFICANCE STATEMENT Spinal cord injury (SCI) is characterized by formation of astrocytic and fibrotic scars, both of which are necessary for lesion repair. NG2+ cells may influence both scar-forming processes. This study used a novel transgenic mouse paradigm to ablate proliferating NG2+ cells after SCI to better understand their role in repair. For the first time, our data show that dividing NG2+ pericytes are required for post-SCI angiogenesis, which in turn is needed for fibrotic scar formation. Moreover, loss of cycling NG2+ glia and pericytes caused significant multicellular tissue changes, including altered astrocyte responses and impaired functional recovery. This work reveals previously unknown ways in which proliferating NG2+ cells contribute to endogenous repair after SCI.


Subject(s)
Antigens/genetics , Axons/pathology , Cicatrix/genetics , Neovascularization, Pathologic/genetics , Proteoglycans/genetics , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology , Animals , Astrocytes/pathology , Cell Proliferation/drug effects , Cicatrix/pathology , Fibrosis/pathology , Glial Fibrillary Acidic Protein/biosynthesis , Glial Fibrillary Acidic Protein/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neovascularization, Pathologic/pathology , Neuroglia/metabolism , Neuroglia/pathology , Pericytes/metabolism , Pericytes/pathology , Recovery of Function/genetics
5.
Glia ; 67(7): 1308-1319, 2019 07.
Article in English | MEDLINE | ID: mdl-30801815

ABSTRACT

Enhanced glial fibrillary acidic protein (GFAP) expression occurs in most diseases of the central nervous system. Thus far, little is known about the effect that GFAP exerts on astrocyte cell signaling. In the present study, we observed that silencing GFAP expression in isolated astrocytes leads to enhanced CCL2 and CXCL10 release, whereas overexpression of GFAP in astrocytes results in a significantly reduced CXCL10 release in vitro. Additionally, we analyzed transgenic mice carrying a full-length copy of the wild-type human GFAP gene. We demonstrate that a persistent GFAP increase alters the astrocytic cell signaling profile, thereby protecting oligodendrocytes, myelin and, subsequently, axons from cuprizone-induced demyelination. Our study revealed that reduced CXCL10 mRNA was accompanied by reduced NF-κB expression in astrocytes. Furthermore, analysis of human tissue from a patient with Alexander disease showed NF-κB activation in astrocytes to be almost completely absent. Our findings indicate that regulation of GFAP expression in astrocytes is crucial for astrocyte signaling and function. Understanding the role of the cytoskeletal protein, GFAP is thus of importance as it is highly regulated in diseases of the central nervous system.


Subject(s)
Astrocytes/metabolism , Chemokines/metabolism , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Glial Fibrillary Acidic Protein/biosynthesis , Adolescent , Animals , Animals, Newborn , Astrocytes/drug effects , Cells, Cultured , Chelating Agents/toxicity , Demyelinating Diseases/genetics , Female , Gene Expression Regulation , Glial Fibrillary Acidic Protein/genetics , Humans , Mice , Mice, Transgenic
6.
J Neurochem ; 149(5): 679-698, 2019 06.
Article in English | MEDLINE | ID: mdl-30311190

ABSTRACT

The anti-diabetic drug and peroxisome proliferator-activated receptor-gamma (PPARγ) agonist, rosiglitazone, alters astrocyte activation; however, its mechanism remains less-known. We hypothesized participation of epidermal growth factor receptor (EGFR), known to control astrocyte reactivity. We first detected that rosiglitazone promoted glial fibrillary acidic protein (GFAP) expression in primary astrocytes as well as the mouse cerebral cortex, associated with increased EGFR activation. Screening for EGFR ligands revealed a rosiglitazone-mediated increase of heparin-binding epidermal growth factor (HB-EGF) in astrocytes, resulting in HB-EGF release into culture medium and mouse cerebrospinal fluid too. Treatment with HB-EGF-siRNA and EGFR inhibitors showed that the rosiglitazone-induced HB-EGF and p-EFGR were interdependent, which participated in GFAP increase. Interestingly, we observed that rosiglitazone could induce cellular and secreted-HB-EGF in neurons also, contributing toward the activated EGFR-induced GFAP in astrocytes. Probing whether these effects of rosiglitazone were PPARγ-linked, revealed potential PPARγ-responsive elements within HB-EGF gene. Moreover, gel-shift, site-directed mutagenesis, chromatin-immunoprecipitation and luciferase-reporter assays demonstrated a PPARγ-dependent HB-EGF transactivation. Subsequently, we examined effects of rosiglitazone in a high-fat diet-fed diabetes mouse model, and supporting observations in the normal cortical cells, identified a rosiglitazone-induced GFAP, astrocyte and neuronal HB-EGF and secreted-HB-EGF in the cerebral cortex of diabetic mice. Moreover, assessing relevance of increased HB-EGF and GFAP revealed an anti-apoptotic role of rosiglitazone in the cerebral cortex, supported by a GFAP-siRNA as well as HB-EGF-siRNA-mediated increase in cleaved-caspase 3 and 9 levels in the rosiglitazone-treated astrocyte-neuron coculture. Overall, our study indicates that rosiglitazone may protect the brain, via a PPARγ-dependent HB-EGF/EGFR signaling and increased GFAP.


Subject(s)
Astrocytes/drug effects , Hypoglycemic Agents/pharmacology , Neurons/drug effects , Rosiglitazone/pharmacology , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Astrocytes/metabolism , Brain/drug effects , Brain/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Glial Fibrillary Acidic Protein/biosynthesis , Heparin-binding EGF-like Growth Factor/biosynthesis , Hypoglycemic Agents/adverse effects , Mice , Neurons/metabolism , PPAR gamma/drug effects , PPAR gamma/metabolism , Up-Regulation
7.
Ann Neurol ; 83(1): 27-39, 2018 01.
Article in English | MEDLINE | ID: mdl-29226998

ABSTRACT

OBJECTIVE: Alexander disease is a fatal leukodystrophy caused by autosomal dominant gain-of-function mutations in the gene for glial fibrillary acidic protein (GFAP), an intermediate filament protein primarily expressed in astrocytes of the central nervous system. A key feature of pathogenesis is overexpression and accumulation of GFAP, with formation of characteristic cytoplasmic aggregates known as Rosenthal fibers. Here we investigate whether suppressing GFAP with antisense oligonucleotides could provide a therapeutic strategy for treating Alexander disease. METHODS: In this study, we use GFAP mutant mouse models of Alexander disease to test the efficacy of antisense suppression and evaluate the effects on molecular and cellular phenotypes and non-cell-autonomous toxicity. Antisense oligonucleotides were designed to target the murine Gfap transcript, and screened using primary mouse cortical cultures. Lead oligonucleotides were then tested for their ability to reduce GFAP transcripts and protein, first in wild-type mice with normal levels of GFAP, and then in adult mutant mice with established pathology and elevated levels of GFAP. RESULTS: Nearly complete and long-lasting elimination of GFAP occurred in brain and spinal cord following single bolus intracerebroventricular injections, with a striking reversal of Rosenthal fibers and downstream markers of microglial and other stress-related responses. GFAP protein was also cleared from cerebrospinal fluid, demonstrating its potential utility as a biomarker in future clinical applications. Finally, treatment led to improved body condition and rescue of hippocampal neurogenesis. INTERPRETATION: These results demonstrate the efficacy of antisense suppression for an astrocyte target, and provide a compelling therapeutic approach for Alexander disease. Ann Neurol 2018;83:27-39.


Subject(s)
Alexander Disease/drug therapy , Glial Fibrillary Acidic Protein/antagonists & inhibitors , Oligonucleotides, Antisense/therapeutic use , Alexander Disease/genetics , Alexander Disease/pathology , Animals , Biomarkers/cerebrospinal fluid , Brain Chemistry/drug effects , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/biosynthesis , Glial Fibrillary Acidic Protein/genetics , Hippocampus/drug effects , Hippocampus/growth & development , Hippocampus/pathology , Humans , Injections, Intraventricular , Mice , Mice, Inbred C57BL , Mutation/genetics , Neurogenesis/drug effects , Spinal Cord/drug effects , Spinal Cord/metabolism
8.
Ecotoxicol Environ Saf ; 182: 109407, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31279280

ABSTRACT

Aflatoxin B1 poses the greatest risk among the mycotoxins to target-organisms particularly human, however, no studies addressed the neurotoxicity of chronic exposure of aflatoxin. The oral dose level 1/600th of LD50 for 30, 60, and 90 days was used for three aflatoxin groups, respective to negative and vehicle control groups. Activity levels of brain antioxidants viz: superoxide dismutase, catalase, glutathione, and glutathione peroxidase significantly decreased in the three experimental durations in time-dependent trend, in contrast, lipid peroxidation showed a significant increase compared to controls. Significantly, chronic-dependent increase trend was noticed in the AF60 and AF90 group for acid phosphatase (16.1%, 35.2%), alkaline phosphatase (32.1%, 50.8%), aspartate aminotransferase (38.7%, 120.0%) and lactate dehydrogenase (30.6%, 42.1%) activities, respectively. However, a significant 23.7% decrease in the brain creatine kinase activity following 90 days of AFB1administration. Chronic administration of aflatoxin also causes alterations in activities of protein carbonyl with a maximum increase (twofold) after 90 days. Further, histopathological and immunohistochemical results confirmed time-related vasodilation, necrosis and astrocytes gliosis by high glial fibrillary acidic protein immunostaining in response to AFB1. These findings infer that long-term exposure to AFB1 results in several pathophysiological circumstances in a duration-dependent manner concerning neurodegeneration especially Alzheimer's disease.


Subject(s)
Aflatoxin B1/toxicity , Astrocytes/drug effects , Brain/drug effects , Brain/enzymology , Environmental Pollutants/toxicity , Oxidative Stress , Animals , Antioxidants/metabolism , Astrocytes/immunology , Astrocytes/pathology , Brain/pathology , Dose-Response Relationship, Drug , Glial Fibrillary Acidic Protein/biosynthesis , Immunohistochemistry , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Oxidative Stress/immunology , Rats , Rats, Wistar , Time Factors , Toxicity Tests, Chronic
9.
Int J Neurosci ; 129(9): 896-903, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30806135

ABSTRACT

Aim: Thalidomide is one of the first line therapies in cancer pain management. Previous study has shown that thalidomide decreases the expression of tumor necrosis factor alpha in the mouse spinal cord. However, the exact cellular and molecular mechanism underlying the effect of thalidomide remains unclear. Here, we investigated the effect of thalidomide on the expression level of NF-κB as well as glial fibrillary acidic protein (GFAP) in the spinal cord astrocyte in a mice model. Materials and methods: MC57G fibrosarcoma cells were intramedullary injected into the right femurs of C57/BL mice to induce behaviors related to bone cancer pain. Postoperative thalidomide was administered intraperitoneally to the mice at dose of 100 mg/kg/day for 7 days. The effect of thalidomide on pain hypersensitivity was checked by behavioral testing. The expression levels of NF-κB and GFAP in spinal cord were evaluated by using Western blotting and Immunohistochemistry. Results: Compared with the controls, the tumor-bearing mice showed substantial pain-related behaviors. Furthermore, the expression levels of both NF-κB and GFAP increased significantly in the spinal cord astrocytes of the tumor-bearing mice. Treating the tumor-bearing mice with thalidomide results in a dramatic reduction in pain behaviors and a significant decrease of NF-κB and GFAP expressions. Conclusions: Thalidomide alleviates the pain behaviors probably by down-regulating the expression of NF-κB and GFAP.


Subject(s)
Astrocytes/drug effects , Bone Neoplasms/drug therapy , Cancer Pain/drug therapy , Glial Fibrillary Acidic Protein/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Thalidomide/therapeutic use , Animals , Astrocytes/metabolism , Bone Neoplasms/metabolism , Cancer Pain/metabolism , Cell Line, Tumor , Disease Models, Animal , Down-Regulation/drug effects , Down-Regulation/physiology , Gene Expression , Glial Fibrillary Acidic Protein/biosynthesis , Glial Fibrillary Acidic Protein/genetics , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Male , Mice , Mice, Inbred C57BL , NF-kappa B/biosynthesis , NF-kappa B/genetics , Random Allocation
10.
Neurochem Res ; 43(5): 1058-1066, 2018 May.
Article in English | MEDLINE | ID: mdl-29671236

ABSTRACT

Reactive astrocyte-mediated neuroinflammatory responses in the spinal dorsal horn have been reported to play a pivotal role in pathological pain. Chronic constriction injury (CCI) enhances the activation of nuclear factor kappa B (NF-κB), which is involved in neuropathic pain (NP). Picroside II (PII), a major active component of Picrorhiza scrophulariiflora, has been investigated for its anti-oxidative, anti-inflammatory, and anti-apoptotic activities. Here, we explored the analgesic effects of PII on a model of CCI-induced NP and investigated the levels of the GFAP protein and the mRNA and protein levels of pro-inflammatory cytokines in the spinal cord, including interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). CCI significantly induced mechanical allodynia and thermal hyperalgesia. Intraperitoneal administration of PII remarkably reversed the CCI-induced mechanical allodynia and thermal hyperalgesia and reduced the mRNA and protein levels of IL-1ß, IL-6, and TNF-α in the spinal cord. Additionally, according to the in vitro data, the PII treatment inhibited LPS-induced increases in the mRNA and protein levels of IL-1ß, IL-6, and TNF-α and suppressed the NF-κB pathway by inhibiting the phosphorylation of NF-κB/p65 and the degradation of inhibitor of NF-κB (IκB) in astrocytes without toxicity to astrocytes. Overall, the analgesic effect of PII correlated with the inhibition of spinal reactive astrocyte-mediated neuroinflammation through the NF-κB pathway in rats with NP.


Subject(s)
Analgesics/therapeutic use , Astrocytes/drug effects , Cinnamates/therapeutic use , Iridoid Glucosides/therapeutic use , NF-kappa B/drug effects , Neuralgia/drug therapy , Signal Transduction/drug effects , Spinal Cord/drug effects , Animals , Astrocytes/pathology , Cells, Cultured , Constriction, Pathologic/complications , Cytokines/metabolism , Glial Fibrillary Acidic Protein/biosynthesis , Glial Fibrillary Acidic Protein/genetics , Hyperalgesia/drug therapy , Inflammation/pathology , Inflammation/prevention & control , Male , Neuralgia/etiology , Neuralgia/pathology , Rats , Rats, Sprague-Dawley , Spinal Cord/pathology
11.
Part Fibre Toxicol ; 15(1): 36, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30201004

ABSTRACT

BACKGROUND: Engineered nanoparticles are smaller than 100 nm and designed to improve or creating even new physico-chemical properties. Consequently, toxicological properties of materials may change as size reaches the nm size-range. We examined outcomes related to the central nervous system in the offspring following maternal inhalation exposure to nanosized carbon black particles (Printex 90). METHODS: Time-mated mice (NMRI) were exposed by inhalation, for 45 min/day to 0, 4.6 or 37 mg/m3 aerosolized carbon black on gestation days 4-18, i.e. for a total of 15 days. Outcomes included maternal lung inflammation (differential cell count in bronchoalveolar lavage fluid and Saa3 mRNA expression in lung tissue), offspring neurohistopathology and behaviour in the open field test. RESULTS: Carbon black exposure did not cause lung inflammation in the exposed females, measured 11 or 28-29 days post-exposure. Glial fibrillary acidic protein (GFAP) expression levels were dose-dependently increased in astrocytes around blood vessels in the cerebral cortex and hippocampus in six weeks old offspring, indicative of reactive astrogliosis. Also enlarged lysosomal granules were observed in brain perivascular macrophages (PVMs) in the prenatally exposed offspring. The number of parvalbumin-positive interneurons and the expression levels of parvalbumin were decreased in the motor and prefrontal cortices at weaning and 120 days of age in the prenatally exposed offspring. In the open field test, behaviour was dose-dependently altered following maternal exposure to Printex 90, at 90 days of age. Prenatally exposed female offspring moved a longer total distance, and especially males spent significantly longer time in the central zone of the maze. In the offspring, the described effects were long-lasting as they were present at all time points investigated. CONCLUSION: The present study reports for the first time that maternal inhalation exposure to Printex 90 carbon black induced dose-dependent denaturation of PVM and reactive astrocytes, similarly to the findings observed following maternal exposure to Printex 90 by airway instillation. Of note, some of the observed effects have striking similarities with those observed in mouse models of neurodevelopmental disorders.


Subject(s)
Brain/drug effects , Inhalation Exposure/adverse effects , Maternal Exposure/adverse effects , Nanoparticles/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Soot/toxicity , Animals , Behavior, Animal/drug effects , Brain/growth & development , Dose-Response Relationship, Drug , Female , Glial Fibrillary Acidic Protein/biosynthesis , Macrophages/drug effects , Macrophages/pathology , Male , Maze Learning/drug effects , Mice, Inbred Strains , Motor Activity/drug effects , Pregnancy
12.
Med Sci Monit ; 24: 8822-8830, 2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30520434

ABSTRACT

BACKGROUND Astrocytomas are the most common primary brain neoplasms. Biological indicators of astrocytomas can reflect its biological characteristics. The aim of this study was to assess the expression of the pathological glial fibrillary acidic protein (GFAP) Topo IIα and O6-methylguanine-DNA methyltransferase (MGMT) in astrocytomas using magnetic resonance (MR) diffusion kurtosis imaging (DKI) to evaluate the biological characteristics of astrocytomas. MATERIAL AND METHODS Sixty-six patients with pathologically proven astrocytomas were enrolled in this study. All patients underwent conventional MRI head scanning, DKI scanning, and enhanced scanning under the same conditions. Spearman's rank correlation analysis and Bonferroni correction were used to compare the values of DKI and the expression levels of GFAP, Topo IIα, and MGMT between the 2 groups. RESULTS Mean kurtosis (MK) values were negatively correlated with the expression of GFAP (r=-0.836; P=0.03). However, these were positively correlated with the expression of Topo IIα (r=0.896; P=0.01). Moreover, fractional anisotropy (FA) values were not correlated with the expression of GFAP (r=0.366; P=0.05), Topo IIα (r=-0.562; P=0.05), or MGMT (r=-0.153; P=0.10). CONCLUSIONS MK was significantly associated with the expression of GFAP and Topo IIα. To a certain extent, applying DKI may show the biological behavior of tumor cell differentiation, proliferation activity, invasion, and metastasis, and guide individual treatment.


Subject(s)
Astrocytoma/metabolism , Brain Neoplasms/metabolism , DNA Modification Methylases/biosynthesis , DNA Repair Enzymes/biosynthesis , DNA Topoisomerases, Type II/biosynthesis , Glial Fibrillary Acidic Protein/biosynthesis , Poly-ADP-Ribose Binding Proteins/biosynthesis , Tumor Suppressor Proteins/biosynthesis , Adult , Aged , Anisotropy , Astrocytoma/diagnostic imaging , Astrocytoma/genetics , Astrocytoma/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Female , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
13.
J Biol Chem ; 291(43): 22830-22840, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27609518

ABSTRACT

Tat interaction with astrocytes has been shown to be important for Tat neurotoxicity and HIV/neuroAIDS. We have recently shown that Tat expression leads to increased glial fibrillary acidic protein (GFAP) expression and aggregation and activation of unfolded protein response/endoplasmic reticulum (ER) stress in astrocytes and causes neurotoxicity. However, the exact molecular mechanism of astrocyte-mediated Tat neurotoxicity is not defined. In this study, we showed that neurotoxic factors other than Tat protein itself were present in the supernatant of Tat-expressing astrocytes. Two-dimensional gel electrophoresis and mass spectrometry revealed significantly elevated lysosomal hydrolytic enzymes and plasma membrane-associated proteins in the supernatant of Tat-expressing astrocytes. We confirmed that Tat expression and infection of pseudotyped HIV.GFP led to increased lysosomal exocytosis from mouse astrocytes and human astrocytes. We found that Tat-induced lysosomal exocytosis was tightly coupled to astrocyte-mediated Tat neurotoxicity. In addition, we demonstrated that Tat-induced lysosomal exocytosis was astrocyte-specific and required GFAP expression and was mediated by ER stress. Taken together, these results show for the first time that Tat promotes lysosomal exocytosis in astrocytes and causes neurotoxicity through GFAP activation and ER stress induction in astrocytes and suggest a common cascade through which aberrant astrocytosis/GFAP up-regulation potentiates neurotoxicity and contributes to neurodegenerative diseases.


Subject(s)
Astrocytes/metabolism , Endoplasmic Reticulum Stress , Exocytosis , HIV-1/metabolism , Neurotoxicity Syndromes/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Astrocytes/pathology , Cell Line, Tumor , Glial Fibrillary Acidic Protein/biosynthesis , Glial Fibrillary Acidic Protein/genetics , HIV-1/genetics , Humans , Mice , Mice, Transgenic , Neurotoxicity Syndromes/genetics , Neurotoxicity Syndromes/pathology , Up-Regulation , tat Gene Products, Human Immunodeficiency Virus/genetics
14.
J Neurochem ; 140(1): 96-113, 2017 01.
Article in English | MEDLINE | ID: mdl-27787894

ABSTRACT

The astrocyte marker, glial fibrillary acidic protein (GFAP), has essential functions in the brain, but may trigger astroglial scarring when expressed in excess. Docosahexaenoic acid (DHA) is an n-3 fatty acid that is protective during brain development. However, the effect of DHA on GFAP levels of developing brain remains unexplored. Here, we detected that treating developing rats with DHA-enriched fish-oil caused dose-dependent GFAP augmentation. We investigated the mechanism promoting GFAP, hypothesizing the participation of fatty acid-binding protein-7 (FABP7), known to bind DHA. We identified that DHA stimulated FABP7 expression in astrocytes, and FABP7-silencing suppressed DHA-induced GFAP, indicating FABP7-mediated GFAP increase. Further investigation proved FABP7 expression to be phosphatidylinositide 3-kinases (PI3K)/AKT and nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ)-dependent. We found that PI3K/AKT activated PPARγ that triggered FABP7 expression via PPARγ-responsive elements within its gene. Towards identifying FABP7-downstream pathways, we considered our previous report that demonstrated cyclin-dependent kinase-5 (CDK5)-PPARγ-protein-protein complex to suppress GFAP. We found that the DHA-induced FABP7 underwent protein-protein interaction with PPARγ, which impeded CDK5-PPARγ formation. Hence, it appeared that enhanced FABP7-PPARγ in lieu of CDK5-PPARγ resulted in increased GFAP. PI3K/AKT not only stimulated formation of FABP7-PPARγ protein-protein complex, but also up-regulated a FABP7-independent MAP-kinase-phosphatase-3 pathway that inactivated CDK5 and hence attenuated CDK5-PPARγ. Overall, our data reveal that via the proximal PI3K/AKT, DHA induces FABP7-PPARγ, through genomic and non-genomic mechanisms, and MAP-kinase-phosphatase-3 that converged at attenuated CDK5-PPARγ and therefore, enhanced GFAP. Accordingly, our study demonstrates a DHA-mediated astroglial hyperactivation, pointing toward a probable injurious role of DHA in brain development.


Subject(s)
Astrocytes/metabolism , Docosahexaenoic Acids/pharmacology , Dual Specificity Phosphatase 6/biosynthesis , Fatty Acid-Binding Protein 7/biosynthesis , Glial Fibrillary Acidic Protein/biosynthesis , Oncogene Protein v-akt/biosynthesis , PPAR gamma/biosynthesis , Animals , Astrocytes/drug effects , Brain/drug effects , Brain/growth & development , Brain/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Female , Male , Protein Binding/physiology , Rats , Rats, Wistar , Up-Regulation/drug effects , Up-Regulation/physiology
15.
Exp Eye Res ; 160: 1-10, 2017 07.
Article in English | MEDLINE | ID: mdl-28419863

ABSTRACT

Bevacizumab, an anti-vascular endothelial growth factor (VEGF) agent, is widely used in the treatment of retinal vascular diseases. However, due to the essential role Müller cell derived-VEGF plays in the maintenance of retinal neurons and glial cells, cell viability is likely to be affected by VEGF inhibition. We therefore evaluated the effect of bevacizumab-induced VEGF inhibition on Müller cells (MIO-M1) in vitro. MIO-M1 cells were cultured for 12 or 24 h in media containing bevacizumab at 0.25 or 0.5 mg/mL. Controls were cultured in medium only. Cell viability was determined with the trypan blue exclusion test and MTT assay. Caspase-3, beclin-1, glial fibrillary acidic protein (GFAP) and vimentin content were quantified by immunohistochemistry. Gene expression was evaluated by real-time quantitative PCR. Treatment with bevacizumab did not reduce MIO-M1 cell viability, but increased metabolic activity at 24 h (0.5 mg/mL) and induced apoptosis and autophagy, as shown by the increased caspase-3 levels at 12 h (0.25 and 0.5 mg/mL) and the increased beclin levels at 24 h (0.5 mg/mL). Caspase-3 mRNA was upregulated at 12 h and downregulated at 24 h in cells treated with bevacizumab at 0.25 mg/mL. Bevacizumab treatment was also associated with structural protein abnormalities, with decreased GFAP and vimentin content and upregulated GFAP and vimentin mRNA expression. Although bevacizumab did not significantly affect MIO-M1 cell viability, it led to metabolic and molecular changes (apoptosis, autophagy and structural abnormalities) suggestive of significant cellular toxicity.


Subject(s)
Bevacizumab/pharmacology , Ependymoglial Cells/pathology , Gene Expression Regulation , Glial Fibrillary Acidic Protein/genetics , RNA/genetics , Vimentin/genetics , Angiogenesis Inhibitors/pharmacology , Apoptosis , Cell Survival , Cells, Cultured , Ependymoglial Cells/drug effects , Glial Fibrillary Acidic Protein/biosynthesis , Humans , Oxidative Stress , Real-Time Polymerase Chain Reaction , Retinal Diseases/drug therapy , Retinal Diseases/genetics , Retinal Diseases/pathology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vimentin/biosynthesis
16.
Brain Behav Immun ; 59: 173-189, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27658543

ABSTRACT

Studies have demonstrated separately that hypertension is associated with platelet activation in the periphery (resulting in accumulation and localized inflammatory response) and glial activation in the brain. We investigated the contribution of platelets in brain inflammation, particularly glial activation in vitro and in a rat model of hypertension. We found that HTN increased the expression of adhesion molecules like JAM-1, ICAM-1, and VCAM-1 on brain endothelium and resulted in the deposition of platelets in the brain. Platelet deposition in hypertensive rats was associated with augmented CD40 and CD40L and activation of astrocytes (GFAP expression) and microglia (Iba-1 expression) in the brain. Platelets isolated from hypertensive rats had significantly higher sCD40L levels and induced more prominent glial activation than platelets from normotensive rats. Activation of platelets with ADP induced sCD40L release and activation of astrocytes and microglia. Moreover, CD40L induced glial (astrocytes and microglia) activation, NFкB and MAPK inflammatory signaling, culminating in neuroinflammation and neuronal injury (increased apoptotic cells). Importantly, injection of ADP-activated platelets into normotensive rats strongly induced activation of astrocytes and microglia and increased plasma sCD40L levels compared with control platelets. On the contrary, inhibition of platelet activation by Clopidogrel or disruption of CD40 signaling prevented astrocyte and microglial activation and provided neuroprotection in both in vivo and in vitro conditions. Thus, we have identified platelet CD40L as a key inflammatory molecule for the induction of astrocyte and microglia activation, the major contributors to inflammation-mediated injury in the brain.


Subject(s)
Astrocytes/immunology , Blood Platelets/chemistry , CD40 Ligand/pharmacology , Hypertension/immunology , Microglia/immunology , Animals , CD40 Ligand/blood , Calcium-Binding Proteins/biosynthesis , Calcium-Binding Proteins/genetics , Cell Adhesion Molecules/metabolism , Cells, Cultured , Cytokines/metabolism , Glial Fibrillary Acidic Protein/biosynthesis , Hypertension/blood , Inflammation/pathology , Macrophage Activation/drug effects , Male , Microcirculation , Microfilament Proteins/biosynthesis , Microfilament Proteins/genetics , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/immunology , Rats , Rats, Sprague-Dawley
17.
Mol Psychiatry ; 21(4): 509-15, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26033239

ABSTRACT

There is mounting evidence to suggest aberrant astrocytic function in depression and suicide. Independent studies have reported astrocytic abnormalities in certain brain regions, but it remains unclear whether this is a brain-wide phenomenon. The present study examined this question by measuring glial fibrillary acidic protein (GFAP) expression in postmortem brain samples from suicide completers and matched non-psychiatric controls. Suicide completers were selected based on their recent characterization as low GFAP expressors in the prefrontal cortex, (Brodmann areas 8/9 and 10). Real-time PCR and immunoblotting were used to measure GFAP gene expression and protein levels in BA4 (primary motor cortex), BA17 (primary visual cortex), cerebellar cortex, mediodorsal thalamus and caudate nucleus. We found downregulation of GFAP mRNA and protein in the mediodorsal thalamus and caudate nucleus of depressed suicides compared with controls, whereas GFAP expression in other brain regions was similar between groups. Furthermore, a regional comparison including all samples revealed that GFAP expression in both subcortical regions was, on average, between 11- and 15-fold greater than in cerebellum and neocortex. Examining astrocyte morphology by immunohistochemistry showed that astrocytes in both thalamus and caudate displayed larger cell bodies and extended more ramified processes across larger domains than the previously described cortical astrocytes. This study reveals that astrocytic abnormalities are not brain wide and suggests that they are restricted to cortical and subcortical networks known to be affected in mood disorders. Additionally, our results show a greater diversity in human astrocytic phenotypes than previously thought.


Subject(s)
Cerebral Cortex/metabolism , Depression/metabolism , Glial Fibrillary Acidic Protein/biosynthesis , Prefrontal Cortex/metabolism , Adult , Astrocytes/metabolism , Brain/metabolism , Case-Control Studies , Caudate Nucleus/metabolism , Depression/genetics , Depressive Disorder/genetics , Depressive Disorder/metabolism , Down-Regulation , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Humans , Immunohistochemistry , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Suicide/psychology , Thalamus/metabolism
18.
Cytotherapy ; 18(2): 229-41, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26794714

ABSTRACT

BACKGROUND AIMS: The human umbilical cord (UC) is a rich source of mesenchymal stromal cells (MSCs), which have been reported to have multi-lineage potential. The objectives of this study were to investigate the characteristics and capacity of UC-MSC neurosphere formation and whether this event enhances the propensity of UC-MSCs to undergo neural differentiation. METHODS: UC-MSCs were collected by the improved explant method. UC-MSCs and neurosphere-forming UC-MSCs (UC-MSC-neurospheres) were induced to undergo neurogenic differentiation, the latter of which were induced by suspension culturing in the presence of epidermal growth factor and basic fibroblast growth factor. The differentiation and migratory capacities of the individual cultures were then compared on the basis of the expression of neural markers, as measured by immunocytochemistry, immunoblotting and quantitative real-time polymerase chain reaction and transwell assays, respectively. RESULTS: Both UC-MSCs and UC-MSC-neurospheres were capable of differentiating into neurogenic cells when cultured in neurogenic differentiation medium. However, pre-conditioned UC-MSC-neurospheres exhibited significantly higher expression of neural markers--including microtubule-associated protein (MAP2), MUSASHI1, glial fibrillary acidic protein (GFAP), and NESTIN--compared with those derived from UC-MSCs directly. Moreover, UC-MSC-neurospheres expressed significantly higher levels of the stemness markers NANOG, KLF4 and OCT4 than did UC-MSCs. Migration assays also revealed that both UC-MSCs and UC-MSC-neurospheres actively migrate toward glucose-depleted cells. CONCLUSIONS: Neurogenic differentiation potential probably is greater in UC-MSC-neurospheres than in UC-MSCs. Thus, UC-MSC-neurospheres may serve as a better source of cells for neurogenic regenerative medicine.


Subject(s)
Mesenchymal Stem Cells/cytology , Neurogenesis/physiology , Spheroids, Cellular/cytology , Umbilical Cord/cytology , Biomarkers/metabolism , Cell Culture Techniques , Cell Movement/physiology , Epidermal Growth Factor/pharmacology , Fibroblast Growth Factor 2/pharmacology , Glial Fibrillary Acidic Protein/biosynthesis , Homeodomain Proteins/biosynthesis , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/biosynthesis , Microtubule-Associated Proteins/biosynthesis , Nanog Homeobox Protein , Nerve Tissue Proteins/biosynthesis , Nestin/biosynthesis , Octamer Transcription Factor-3/biosynthesis , RNA-Binding Proteins/biosynthesis , Real-Time Polymerase Chain Reaction
19.
Anticancer Drugs ; 27(10): 960-9, 2016 11.
Article in English | MEDLINE | ID: mdl-27622606

ABSTRACT

This study aimed to investigate the antitumor and immunomodulatory properties of the flavonoid apigenin (5,7,4'-trihydroxyflavone), which was extracted from Croton betulaster Mull, in glioma cell culture using the high-proliferative rat C6 glioma cell line as a model. Apigenin was found to have the ability to reduce the viability and proliferation of C6 cells in a time-dependent and dose-dependent manner, with an IC50 of 22.8 µmol/l, 40 times lower than that of temozolomide (1000 µmol/l), after 72 h of apigenin treatment. Even after C6 cells were treated with apigenin for 48 h, high proportions of C6 cells entered apoptosis (39.56%) and autophagy (22%) as shown by flow cytometry using annexin V/propidium iodide and acridine orange staining, respectively. In addition, the flavonoid apigenin induced cell accumulation in the G0/G1 phase of the cell cycle and inhibited glioma cell migration efficiently. Moreover, apigenin induced astroglial differentiation and morphological changes in C6 cells, characterized by increased expression of glial fibrillary acidic protein and decreased expression of nestin protein, a typical marker of neuronal precursors. The immunomodulating effects of apigenin were also characterized by a change in the inflammatory profile as evidenced by a significant decrease in interleukin-10 and tumor necrosis factor production and increased nitric oxide levels. Because apigenin can induce differentiation, apoptosis, and autophagy, can alter the profile of cytokines involved in regulating the immune response, and can reduce the survival, growth, proliferation, and migration of C6 cells, this flavonoid may be considered a potential antitumor drug for the adjuvant treatment of malignant gliomas.


Subject(s)
Apigenin/pharmacology , Brain Neoplasms/drug therapy , Glioma/drug therapy , Animals , Apoptosis/drug effects , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Differentiation/drug effects , Cell Growth Processes/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Dose-Response Relationship, Drug , Glial Fibrillary Acidic Protein/biosynthesis , Glioma/immunology , Glioma/pathology , Interleukin-10/biosynthesis , Nestin/biosynthesis , Nitric Oxide/biosynthesis , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/biosynthesis
20.
Exp Cell Res ; 330(2): 300-310, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25304103

ABSTRACT

Pancreatic stellate cells (PSCs) play a key role in the dense desmoplastic stroma associated with pancreatic ductal adenocarcinoma. Studies on human PSCs have been minimal due to difficulty in maintaining primary PSC in culture. We have generated the first conditionally immortalized human non-tumor (NPSC) and tumor-derived (TPSC) pancreatic stellate cells via transformation with the temperature-sensitive SV40 large T antigen and human telomerase (hTERT). These cells proliferate at 33°C. After transfer to 37°C, the SV40LT is switched off and the cells regain their primary PSC phenotype and growth characteristics. NPSC contained cytoplasmic vitamin A-storing lipid droplets, while both NPSC and TPSC expressed the characteristic markers αSMA, vimentin, desmin and GFAP. Proteome array analysis revealed that of the 55 evaluated proteins, 27 (49%) were upregulated ≥3-fold in TPSC compared to NPSC, including uPA, pentraxin-3, endoglin and endothelin-1. Two insulin-like growth factor binding proteins (IGFBPs) were inversely expressed. Although discordant IGFBP-2 and IGFBP-3 levels, IGF-I was found to stimulate proliferation of both NPSC and TPSC. Both basal and IGF-I stimulated motility was significantly enhanced in TPSC compared to NPSC. In conclusion, these cells provide a unique resource that will facilitate further study of the active stroma compartment associated with pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Insulin-Like Growth Factor I/pharmacology , Pancreatic Ducts/pathology , Pancreatic Neoplasms/pathology , Pancreatic Stellate Cells/metabolism , Antigens, Polyomavirus Transforming/genetics , Cell Culture Techniques , Cell Cycle/physiology , Cell Movement , Cell Proliferation , Desmin/biosynthesis , Glial Fibrillary Acidic Protein/biosynthesis , Humans , Insulin-Like Growth Factor Binding Protein 2/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor I/metabolism , Neoplasm Invasiveness/pathology , Primary Cell Culture , Smad Proteins/biosynthesis , Telomerase/genetics , Tumor Cells, Cultured , Vimentin/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL