Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 842
Filter
1.
Cell ; 184(8): 1945-1948, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33831374

ABSTRACT

The 2021 Gairdner Prize is awarded to Daniel Drucker, Joel Habener, and Jens Juul Holst for the discovery of novel peptides encoded in the proglucagon sequence and the establishment of their physiological roles. These discoveries underpinned the development of therapeutics that are now benefiting patients with type 2 diabetes and other disorders worldwide.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1/therapeutic use , Glucagon-Like Peptide 2/therapeutic use , Proglucagon/chemistry , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/chemistry , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/chemistry , Glucagon-Like Peptide 2/metabolism , Humans , Islets of Langerhans/metabolism , Proglucagon/metabolism , Receptors, Glucagon/metabolism , Short Bowel Syndrome/drug therapy , Short Bowel Syndrome/metabolism
2.
Arterioscler Thromb Vasc Biol ; 44(1): 192-201, 2024 01.
Article in English | MEDLINE | ID: mdl-37970717

ABSTRACT

BACKGROUND: The gut hormone GLP-2 (glucagon-like peptide-2) plays important roles in lipid handling in the intestine. During postabsorptive stage, it releases preformed chylomicrons stored in the intestine, the underlying mechanisms of which are not well understood. Previous studies implicate the involvement of neural pathways in GLP-2's actions on lipid absorption in the intestine, but the role of such mechanisms in releasing postabsorptive lipid storage has not been established. METHODS: Here, in mesenteric lymph duct cannulated rats, we directly tested whether gut-brain neural communication mediates GLP-2's effects on postabsorptive lipid mobilization in the intestine. We performed total subdiaphragmatic vagotomy to disrupt the gut-brain neural communication and analyzed lipid output 5 hours after a lipid load in response to intraperitoneal GLP-2 or saline. RESULTS: Peripheral GLP-2 administration led to increased lymph lipid output and activation of proopiomelanocortin neurons in the arcuate nucleus of hypothalamus. Disruption of gut-brain neural communication via vagotomy blunted GLP-2's effects on promoting lipid release in the intestine. CONCLUSIONS: These results, for the first time, demonstrate a novel mechanism in which postabsorptive mobilization of intestinal lipid storage by GLP-2 enlists a gut-brain neural pathway.


Subject(s)
Chylomicrons , Glucagon-Like Peptide 2 , Rats , Animals , Glucagon-Like Peptide 2/pharmacology , Chylomicrons/metabolism , Brain/metabolism , Neural Pathways/metabolism , Intestines
3.
Chembiochem ; 25(13): e202400201, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38701360

ABSTRACT

Selective modification of peptides is often exploited to improve pharmaceutically relevant properties of bioactive peptides like stability, circulation time, and potency. In Nature, natural products belonging to the class of ribosomally synthesized and post-translationally modified peptides (RiPPs) are known to install a number of highly attractive modifications with high selectivity. These modifications are installed by enzymes guided to the peptide by corresponding leader peptides that are removed as the last step of biosynthesis. Here, we exploit leader peptides and their matching enzymes to investigate the installation of D-Ala post-translationally in a critical position in the hormones, glucagon-like peptides (GLP) 1 and 2. We also offer insight into how precursor peptide design can modulate the modification pattern achieved.


Subject(s)
Escherichia coli , Glucagon-Like Peptide 1 , Glucagon-Like Peptide 2 , Escherichia coli/enzymology , Glucagon-Like Peptide 1/chemistry , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 2/chemistry , Glucagon-Like Peptide 2/metabolism , Protein Processing, Post-Translational , Amino Acid Sequence
4.
Curr Opin Clin Nutr Metab Care ; 27(5): 457-461, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38963563

ABSTRACT

PURPOSE OF REVIEW: Over the past decade, trophic gastrointestinal hormonal factors have been included in the intestinal rehabilitation programs for short bowel syndrome (SBS). Up today the only trophic factor approved for clinical practice is the glucagon-like peptide-2 (GLP-2) analogue, teduglutide. A literature review on the last 2-year data on GLP-2 analogues for the treatment of SBS in adults has been performed. RECENT FINDINGS: Several reports on real-world data on the efficacy and safety of teduglutide treatment for SBS, some case-reports on the use of teduglutide in non-SBS conditions as well as phase 2 trials on new GL-2 analogues on patients with SBS have been retrieved. SUMMARY: Real-world data confirmed the teduglutide efficacy not only in weaning off IVS in accurately selected patients but also increased the alert on the risk of development of gastrointestinal polyps related to the drug; the impact of the therapy on patients' QoL deserves further studies and the cost-utility of the treatment is still uncertain. Some case reports highlighted the potential benefit of treatment with teduglutide in non-SBS gastrointestinal diseases, such as graft-versus-host disease, primary amyloidosis and refractory microscopic colitis. Phase 2 RCTs on safety and efficacy of two new long-acting GLP-2 analogues, glepaglutide and apraglutide, were published, and phase 3 RCTs have been completed.


Subject(s)
Gastrointestinal Agents , Glucagon-Like Peptide 2 , Peptides , Short Bowel Syndrome , Humans , Short Bowel Syndrome/drug therapy , Short Bowel Syndrome/rehabilitation , Glucagon-Like Peptide 2/therapeutic use , Peptides/therapeutic use , Gastrointestinal Agents/therapeutic use , Adaptation, Physiological/drug effects , Adult , Intestines/drug effects , Intestines/physiopathology , Quality of Life
5.
Expert Opin Emerg Drugs ; 29(3): 277-288, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38761162

ABSTRACT

INTRODUCTION: SBS is a rare and disabling condition. The standard management is based on diet optimization with parenteral supplementation. In addition, glucagon-like peptide-2 (GLP-2)analogs, have shown promising results as disease-modifying therapies for SBS. AREAS COVERED: Short bowel syndrome (SBS) is defined as a reduction in functional intestinal length to less than 200 cm, leading to intestinal failure (IF) leading to malnutrition and parenteral support dependency. This review discusses the current management of SBS-CIFpatients, the place of GLP-2 analog treatment in terms of efficacy, safety and availability, and the new perspectives opened by the use of enterohormones. EXPERT OPINION: Clinical trials and real-world experience demonstrated that Teduglutide   reduces dependence on parenteral support and has a place in the management of patients with SBS-CIF.  The use of Teduglutide should be discussed in patients stabilized after resection and its introduction requires the advice of an expert center capable of assessing the benefit-risk ratio. The complex, individualized management of SBS-C IF requires theexpertise of a specialized IF center which a multidisciplinary approach. The arrival of new treatments will call for new therapeutic strategies, and the question of how to introduce and monitor them will represent a new therapeutic challenge.


Subject(s)
Gastrointestinal Agents , Glucagon-Like Peptide 2 , Peptides , Short Bowel Syndrome , Humans , Short Bowel Syndrome/drug therapy , Short Bowel Syndrome/physiopathology , Gastrointestinal Agents/pharmacology , Gastrointestinal Agents/therapeutic use , Gastrointestinal Agents/administration & dosage , Gastrointestinal Agents/adverse effects , Peptides/administration & dosage , Peptides/pharmacology , Peptides/therapeutic use , Glucagon-Like Peptide 2/administration & dosage , Glucagon-Like Peptide 2/pharmacology , Drug Development , Animals , Parenteral Nutrition/methods
6.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339131

ABSTRACT

Glucagon-like peptide-2 (GLP-2) has been reported to influence gastrointestinal motor responses, exerting a modulatory role on enteric neurotransmission. To our knowledge, no data on GLP-2 effects on the motility of the isolated ileum are available; therefore, we investigated whether GLP-2 affects the contractile activity of mouse ileal preparations and the neurotransmitters engaged. Ileal preparations showed tetrodotoxin (TTX)- and atropine-insensitive spontaneous contractile activity, which was unaffected by the nitric oxide synthesis inhibitor, L-NNA. GLP-2 depressed the spontaneous contractility, an effect that was abolished by TTX or L-NNA and not influenced by atropine. Electrical field stimulation induced TTX- and atropine-sensitive contractile responses, which were reduced in amplitude by GLP-2 even in the presence of L-NNA. Immunohistochemical results showed a significant increase in nNOS-positive fibers in the ileal muscle wall and a significant decrease in ChAT-positive myenteric neurons in GLP-2-exposed preparations. The present results offer the first evidence that GLP-2 acts on ileal preparations. The hormone appears to depress ileal contractility through a dual opposite modulatory effect on inhibitory nitrergic and excitatory cholinergic neurotransmission. From a physiological point of view, it could be hypothesized that GLP-2 inhibitory actions on ileal contractility can increase transit time, facilitating nutrient absorption.


Subject(s)
Glucagon-Like Peptide 2 , Synaptic Transmission , Mice , Animals , Muscle Contraction/physiology , Nitroarginine/pharmacology , Ileum , Cholinergic Agents/pharmacology , Atropine Derivatives/pharmacology , Electric Stimulation
7.
Br J Haematol ; 201(4): 620-627, 2023 05.
Article in English | MEDLINE | ID: mdl-36965050

ABSTRACT

Acute graft-versus-host disease (aGVHD) is a life-threatening complication after allogeneic haematopoietic cell transplantation, with gastrointestinal (GI) tract involvement (GI aGVHD) being one of the leading causes of morbidity and mortality. Whilst systemic steroids are the standard first-line treatment for aGVHD, approximately 50% of patients become steroid refractory (SR), which is associated with poor outcomes. Existing options for SR-GVHD are limited, and there is a significant unmet need for new non-immunosuppressive treatment approaches in patients with GI aGVHD. Here, we review newer concepts in the pathogenesis of GI aGVHD and present the evidence for the role of glucagon-like peptide 2 (GLP-2) in maintaining and protecting GI epithelial cells, including the enterocytes, intestinal stem cells and Paneth cells, which are direct targets of aGVHD. Finally, we discuss the therapeutic rationale for GLP-2 treatment as a tissue regeneration approach and the potential use of the novel GLP-2 analogue apraglutide as an adjunctive treatment for GI aGVHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Glucagon-Like Peptide 2/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Steroids/therapeutic use , Transplantation, Homologous/adverse effects , Graft vs Host Disease/drug therapy , Graft vs Host Disease/etiology , Acute Disease
8.
J Pharmacol Exp Ther ; 386(2): 129-137, 2023 08.
Article in English | MEDLINE | ID: mdl-37316329

ABSTRACT

Apraglutide (FE 203799) is a glucagon-like peptide-2 (GLP-2) analog under development for the treatment of intestinal failure associated with short bowel syndrome (SBS-IF) and graft-versus-host disease (GvHD). Compared with native GLP-2, apraglutide has slower absorption, reduced clearance, and higher protein binding, enabling once-weekly dosing. This study evaluated the pharmacokinetic (PK) and pharmacodynamic (PD) profile of apraglutide in healthy adults. Healthy volunteers were randomized to receive 6 weekly subcutaneous administrations of 1, 5, or 10 mg apraglutide or placebo. PK and citrulline (an enterocyte mass PD marker) samples were collected at multiple time points. Kinetic parameters of apraglutide and citrulline were calculated using noncompartmental analysis; repeated PD measures were analyzed with a mixed model of covariance. A population PK/PD model was developed that also included data from a previous phase 1 study in healthy volunteers. Twenty-four subjects were randomized; 23 received all study drug administrations. Mean estimated apraglutide clearance was 16.5-20.7 l/day, and mean volume of distribution was 55.4-105.0 liters. A dose-dependent increase in citrulline plasma concentration was observed, with 5-mg and 10-mg doses inducing higher citrulline levels than 1-mg doses and placebo. PK/PD analysis showed that weekly 5-mg apraglutide induced the maximal citrulline response. Increased plasma citrulline levels were sustained for 10-17 days after the final apraglutide administration. Apraglutide displays predictable dose-dependent PK and PD profiles, with a 5-mg dose showing significant PD effects. Results suggest that apraglutide has early and enduring effects on enterocyte mass and supports the continued development of weekly subcutaneous apraglutide for SBS-IF and GvHD patient populations. SIGNIFICANCE STATEMENT: Once-weekly subcutaneous apraglutide results in dose-dependent elevations of plasma citrulline (an enterocyte mass pharmacodynamic marker) with parameters suggesting that apraglutide has lasting effects on enterocyte mass and the potential to provide therapeutic benefits. This is the first report of a model relating glucagon-like peptide-2 (GLP-2) agonism and its effects in intestinal mucosa, affording not only the ability to predict pharmacologic effects of GLP-2 analogs but also the exploration of optimal dosing regimens for this drug class across populations with different body weights.


Subject(s)
Citrulline , Peptides , Adult , Humans , Healthy Volunteers , Citrulline/pharmacology , Peptides/pharmacology , Glucagon-Like Peptide 2
9.
J Pharmacol Exp Ther ; 384(2): 277-286, 2023 02.
Article in English | MEDLINE | ID: mdl-36410792

ABSTRACT

Extensive bowel resection caused by various diseases that affect the intestines, such as Crohn's disease, volvulus, and cancer, leads to short bowel syndrome (SBS). Teduglutide is the only approved glucagon-like peptide-2 (GLP-2) drug for SBS; however, it requires daily administration. A novel GLP-2 analog with a prolonged duration of action to reduce dosing frequency and promote a greater efficacy may provide patients with a better quality of life. In the present study, the sustained exposure of HM15912 was characterized in normal male rats. The efficacy of HM15912 on intestinal growth and absorption capacity was also evaluated in normal male mice, rats, and SBS rats. HM15912 exhibited a remarkably extended half-life (42.3 hours) compared with teduglutide (0.6 hours) in rats. Despite somewhat lower in vitro potency on GLP-2 receptor than human GLP-2 or teduglutide, this longer-lasting mode of action promotes HM15912 to be more effective in terms of small intestinal growth than existing GLP-2 analogs even with a less frequent dosing interval of as little as once a week in rodents, including SBS rats. Furthermore, the small intestinal weight was approximately doubled, and the D-xylose absorption was significantly increased after pre-treatment of existing GLP-2 analogs on the market or under clinical development followed by HM15912 in rodents. These results indicate that HM15912 possesses a significant small bowel trophic effect driven by continuously increased exposure, supporting that HM15912 may be a novel treatment option with greater efficacy and the longest dosing interval among existing GLP-2 analogs for SBS with intestinal failure. SIGNIFICANCE STATEMENT: HM15912, a novel long-acting glucagon-like peptide-2 (GLP-2) analog, has a significant small bowel hypertrophic effect in rodents with a reduced frequency of administration compared to the existing GLP-2 analogs on the market or currently under clinical development. This study supports the possibility that HM15912 could be administered much less frequently than other long-acting GLP-2 analogs for patients with short bowel syndrome.


Subject(s)
Short Bowel Syndrome , Animals , Humans , Male , Mice , Rats , Glucagon-Like Peptide 2/pharmacology , Intestinal Absorption , Intestine, Small , Intestines , Quality of Life , Short Bowel Syndrome/drug therapy
10.
Curr Opin Clin Nutr Metab Care ; 26(3): 201-209, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37017713

ABSTRACT

PURPOSE OF REVIEW: Advances in the field of intestinal failure continue to reduce mortality rates of this complex syndrome. Over the last 20 months (January 2021- October 2022), several important papers were published that relate to the nutritional and medical management of intestinal failure and rehabilitation. RECENT FINDINGS: New reports on the epidemiology of intestinal failure have shown that short bowel syndrome (SBS) remains the most common cause of intestinal failure worldwide in both adults and children. Advances in the provision of parenteral nutrition (PN), the advent of Glucagon-like peptide-2 (GLP-2) analogs, and the development of interdisciplinary centers have allowed for safer and longer courses of parenteral support. Unfortunately, rates of enteral anatomy continue to lag behind these advancements, requiring greater focus on quality of life, neurodevelopmental outcomes, and management of sequalae of long-term PN such as Intestinal Failure Associated Liver Disease (IFALD), small bowel bacterial overgrowth (SBBO), and Metabolic Bone Disease (MBD). SUMMARY: There have been significant advances in the nutritional and medical approaches in intestinal failure, including advances in PN, use of GLP-2 analogs, and key developments in the medical management of this condition. As children with intestinal failure increasingly survive to adulthood, new challenges exist with respect to the management of a changing population of patients with SBS. Interdisciplinary centers remain standard of care for this complex patient population.


Subject(s)
Intestinal Diseases , Intestinal Failure , Short Bowel Syndrome , Child , Adult , Humans , Quality of Life , Short Bowel Syndrome/complications , Intestine, Small , Parenteral Nutrition , Glucagon-Like Peptide 2
11.
Curr Opin Clin Nutr Metab Care ; 26(5): 449-454, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37421385

ABSTRACT

Short bowel syndrome (SBS) is a rare condition defined as a reduced residual functional small intestinal length to less than 200 cm often resulting from extensive intestinal resection, and can lead to chronic intestinal failure (CIF). Patients with SBS-CIF are unable to absorb sufficient nutrients or fluids to maintain metabolic homeostasis through oral or enteral intake and require long-term parenteral nutrition and/or fluids and electrolytes. However, complications may arise from both SBS-IF and life-sustaining intravenous support, such as intestinal failure-associated liver disease (IFALD), chronic renal failure, metabolic bone disease and catheter-related complications. An interdisciplinary approach is required to optimize intestinal adaptation and decrease complications. In the last two decades, glucagon-like peptide 2 (GLP-2) analogs have sparked pharmacological interest as a potential disease-modifying therapy for SBS-IF. Teduglutide (TED) is the first developed and marketed GLP-2 analog for SBS-IF. It is approved in the United States, Europe, and Japan for use in adults and children with SBS-IF who are intravenous supplementation dependent. This article discusses the indications, candidacy criteria and results of the use of TED in patients with SBS.


Subject(s)
Intestinal Diseases , Intestinal Failure , Short Bowel Syndrome , Adult , Child , Humans , Gastrointestinal Agents/therapeutic use , Intestine, Small , Intestines , Short Bowel Syndrome/drug therapy , Intestinal Diseases/drug therapy , Chronic Disease , Glucagon-Like Peptide 2/therapeutic use
12.
Exp Physiol ; 108(4): 568-580, 2023 04.
Article in English | MEDLINE | ID: mdl-36744850

ABSTRACT

NEW FINDINGS: What is the central question of this study? Non-responsive stunting is characterised by a progressive decline of circulating glucagon-like peptide 2: what are the possible causes of this decline? What is the main finding and its importance? In contrast with the established loss of Paneth and goblet cells in environmental enteropathy, there was no evidence of a parallel loss of enteroendocrine cells as seen by positive tissue staining for chromogranin A. Transcriptomic and genomic analyses showed evidence of genetic transcripts that could account for some of the variability seen in circulating glucagon-like peptide 2 values. ABSTRACT: Nutrient sensing determines digestive and hormonal responses following nutrient ingestion. We have previously reported decreased levels of glucagon-like peptide 2 (GLP-2) in children with stunting. Here we demonstrate the presence of enteroendocrine cells in stunted children and explore potential pathways that may be involved in reduced circulating levels of GLP-2. At the time of performing diagnostic endoscopies for non-responsive stunted children, intestinal biopsies were collected for immunofluorescence staining of enteroendocrine cells and transcriptomic analysis. Circulating levels of GLP-2 were also measured and correlated with transcriptomic data. An exploratory genome-wide association study (GWAS) was conducted on DNA samples (n = 158) to assess genetic contribution to GLP-2 variability. Intestinal tissue sections collected from non-responsive stunted children stained positive for chromogranin A (88/89), alongside G-protein-coupled receptors G-protein receptor 119 (75/87), free fatty acid receptor 3 (76/89) and taste 1 receptor 1 (39/45). Transcriptomic analysis found three pathways correlated with circulating GLP-2: sugar metabolism, epithelial transport, and barrier function, which likely reflect downstream events following receptor-ligand interaction. GWAS analysis revealed potential genetic contributions to GLP-2 half-life and receptor binding. Enteroendocrine cell loss was not identified in stunted Zambian children as has been observed for goblet and Paneth cells. Transcriptomic analysis suggests that GLP-2 has pleiotrophic actions on the intestinal mucosa in malnutrition, but further work is needed to dissect pathways leading to perturbations in nutrient sensing.


Subject(s)
Genome-Wide Association Study , Glucagon-Like Peptide 2 , Growth Disorders , Child , Humans , Chromogranin A , Growth Disorders/metabolism , Zambia
13.
Diabetes Obes Metab ; 25(9): 2561-2574, 2023 09.
Article in English | MEDLINE | ID: mdl-37246799

ABSTRACT

AIM: To investigate the changes of circulating levels of all proglucagon-derived peptides (PGDPs) in individuals with overweight or obesity receiving liraglutide (3 mg) or naltrexone/bupropion (32/360 mg), and to explore the association between induced changes in postprandial PGDP levels and body composition, as well as metabolic variables, after 3 and 6 months on treatment. MATERIALS AND METHODS: Seventeen patients with obesity or with overweight and co-morbidities, but without diabetes, were assigned to receive once-daily oral naltrexone/bupropion 32/360 mg (n = 8) or once-daily subcutaneous liraglutide 3 mg (n = 9). Participants were assessed before treatment initiation and after 3 and 6 months on treatment. At the baseline and 3-month visits, participants underwent a 3-hour mixed meal tolerance test to measure fasting and postprandial levels of PGDPs, C-peptide, hunger and satiety. Clinical and biochemical indices of metabolic function, magnetic resonance-assessed liver steatosis and ultrasound-assessed liver stiffness were measured at each visit. RESULTS: Both medications improved body weight and composition, carbohydrate and lipid metabolism, and liver fat and function. Naltrexone/bupropion produced a weight-independent increase in the levels of proglucagon (P < .001) and decreases in glucagon-like peptide-2 (GLP-2), glucagon and the major proglucagon fragment (P ≤ .01), whereas liraglutide markedly upregulated total glucagon-like peptide-1 (GLP-1) levels in a weight-independent manner (P = .04), and similarly downregulated the major proglucagon fragment, GLP-2 and glucagon (P < .01). PGDP levels at the 3-month visit were positively and independently correlated with improvements in fat mass, glycaemia, lipaemia and liver function, and negatively with reductions in fat-free mass, at both the 3- and 6-month visits. CONCLUSIONS: PGDP levels in response to liraglutide and naltrexone/bupropion are associated with improvements in metabolism. Our study provides support for the administration of the downregulated members of the PGDP family as replacement therapy (e.g. glucagon), in addition to the medications currently in use that induced their downregulation (e.g. GLP-1), and future studies should explore whether the addition of other PGDPs (e.g. GLP-2) could offer additional benefits.


Subject(s)
Glucagon-Like Peptide 1 , Glucagon , Humans , Proglucagon , Glucagon/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , Bupropion/therapeutic use , Naltrexone/therapeutic use , Overweight , Peptides/pharmacology , Weight Loss , Glucagon-Like Peptide 2 , Obesity/drug therapy , Glucagon-Like Peptides/pharmacology
14.
BMC Gastroenterol ; 23(1): 79, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36944922

ABSTRACT

BACKGROUND: Glucagon-like peptide-2 (GLP-2) enhances intestinal repair and attenuates inflammation in preclinical inflammatory bowel disease (IBD) models, making GLP-2 analogues attractive candidates for IBD therapy. Glepaglutide is a long-acting GLP-2 receptor agonist in clinical development for treatment of short bowel syndrome. Here, we investigated if glepaglutide is therapeutically beneficial in rats with small intestinal inflammation. METHODS: Small intestinal inflammation was induced with indomethacin in naive Wistar rats, followed by glepaglutide administration at different disease stages. Glepaglutide was administered in co-treatment and post-treatment regimens. Small intestinal length and concentrations of inflammatory markers α-1-acid glycoprotein and myeloperoxidase were used to assess anti-inflammatory effects. Small intestinal mass was evaluated to determine intestinotrophic effects. RESULTS: Glepaglutide co- and post-treatment significantly reduced severity of small intestinal inflammation, evidenced by reversed small intestinal shortening and decreased α-1-acid glycoprotein and/or myeloperoxidase concentration(s). Co- and post-treatment with glepaglutide also significantly increased small intestinal mass, indicating intestinal regenerative effects. Similar effects were observed in naive rats after glepaglutide treatment. CONCLUSION: Glepaglutide has anti-inflammatory and intestinotrophic effects without the need for pre-treatment in a rat model of small intestinal inflammation. Thus, glepaglutide is of potential clinical interest for patients with IBD.


Subject(s)
Glucagon-Like Peptide 2 , Inflammatory Bowel Diseases , Animals , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Glucagon-Like Peptide 2/agonists , Glycoproteins/metabolism , Inflammation/drug therapy , Inflammatory Bowel Diseases/drug therapy , Intestinal Mucosa , Models, Theoretical , Peroxidase/metabolism , Rats, Wistar
15.
Curr Osteoporos Rep ; 21(1): 21-31, 2023 02.
Article in English | MEDLINE | ID: mdl-36441432

ABSTRACT

PURPOSE OF REVIEW: To describe recent advances in the understanding of how gut-derived hormones regulate bone homeostasis in humans with emphasis on pathophysiological and therapeutic perspectives in diabetes. RECENT FINDINGS: The gut-derived incretin hormone glucose-dependent insulinotropic polypeptide (GIP) is important for postprandial suppression of bone resorption. The other incretin hormone, glucagon-like peptide 1 (GLP-1), as well as the intestinotrophic glucagon-like peptide 2 (GLP-2) has been shown to suppress bone resorption in pharmacological concentrations, but the role of the endogenous hormones in bone homeostasis is uncertain. For ambiguous reasons, both patients with type 1 and type 2 diabetes have increased fracture risk. In diabetes, the suppressive effect of endogenous GIP on bone resorption seems preserved, while the effect of GLP-2 remains unexplored both pharmacologically and physiologically. GLP-1 receptor agonists, used for the treatment of type 2 diabetes and obesity, may reduce bone loss, but results are inconsistent. GIP is an important physiological suppressor of postprandial bone resorption, while GLP-1 and GLP-2 may also exert bone-preserving effects when used pharmacologically. A better understanding of the actions of these gut hormones on bone homeostasis in patients with diabetes may lead to new strategies for the prevention and treatment of skeletal frailty related to diabetes.


Subject(s)
Bone Resorption , Diabetes Mellitus, Type 2 , Gastrointestinal Hormones , Humans , Incretins/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1 , Gastric Inhibitory Polypeptide , Bone Resorption/drug therapy , Glucagon-Like Peptide 2
16.
Gerontology ; 69(4): 428-449, 2023.
Article in English | MEDLINE | ID: mdl-36470214

ABSTRACT

INTRODUCTION: Senile osteoporosis is one of the most common age-related diseases worldwide. Glucagon like peptide-2 (GLP-2), a naturally occurring gastrointestinal peptide, possesses therapeutic effects on bone loss in postmenopausal women and ovariectomized rats. However, the role of GLP-2 in senile osteoporosis and underlying mechanisms has not been explored. METHODS: GLP-2 was subcutaneously injected into the 6-month-old male senile osteoporosis model of senescence-accelerated mouse prone 6 (SAMP6) mice for 6 weeks. SAMP6 subjected to normal saline and senescence-accelerated mouse resistant 1 served as control groups. Micro-computed tomography was performed to evaluate the bone mass and microarchitecture of the mice. Osteoblastic and osteoclastic activities were determined by biochemical, quantitative real-time PCR, histological, and histomorphometric analyses combined with hematoxylin-eosin, toluidine blue, and tartrate-resistant acid phosphatase staining. We also examined the proteins and structure of intestinal tight junction using immunohistochemical assay as well as a transmission electron microscope. Serum inflammation marker levels were measured using ELISA. Additionally, anti-oxidative enzymes GPX-4 and SOD-2 and receptors of GLP-2 and vitamin D expression in the ileum and colon were detected under immunofluorescence staining. RESULTS: Six-week GLP-2 treatment attenuated bone loss in SAMP6 mice, as evidenced by increased bone mineral density, improved microarchitecture in femora, and enhanced osteogenic activities. In contrast, the activity of osteoclastic activity was not obviously inhibited. Moreover, GLP-2 ameliorated tight junction structure and protein expression in the intestinal barrier, which was accompanied by the reduction of TNF-α level. The expression of receptors of intestinal GLP-2 and vitamin D in the ileum was elevated. Furthermore, the oxidative stress in the intestines was improved by increasing the GPX-4 and SOD-2 signaling. CONCLUSION: Our findings suggest that GLP-2 could ameliorate age-associated bone loss, tight junction structure, and improved antioxidant enzyme activity in the gut in SAMP6 mice. Amelioration of gut barrier dysfunction may potentially contribute to improving bone formation and provide evidence for targeting the entero-bone axis in the treatment of senile osteoporosis.


Subject(s)
Glucagon-Like Peptide 2 , Osteoporosis , Mice , Male , Female , Rats , Animals , X-Ray Microtomography/methods , Glucagon-Like Peptide 2/pharmacology , Disease Models, Animal , Osteoporosis/drug therapy , Osteoporosis/metabolism , Osteoporosis/pathology , Aging , Vitamin D , Superoxide Dismutase
17.
J Dairy Sci ; 106(6): 4443-4453, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37080779

ABSTRACT

Kraft pulp (KP), an intermediate product obtained when wood chips are converted to paper, contains highly digestible fiber. This study evaluated the effect of KP inclusion in calf starters on growth performance, health, and plasma glucagon-like peptide 2 (GLP-2) concentration in calves. Twenty-five Holstein heifer calves were raised on a high plane of nutrition program using milk replacer containing 29% crude protein and 18% fat until 49 d after birth, and were fed calf starters containing KP at 0 (CON; n = 14) or 12% (KPS; n = 11) on a dry matter basis. All calves were fed the treatment calf starters and timothy hay ad libitum. Blood was collected at 4, 14, 21, 35, 49, 70, and 91 d after birth. Dry matter intake (DMI) of milk replacer and hay was not affected by treatment, whereas calf starter DMI was lower for KPS (0.93 kg/d) than for CON (1.03 kg/d). Higher neutral detergent fiber (NDF) content in KPS (31.7%) than in the CON starter (22.1%) resulted in higher NDF intake for KPS (0.55 kg/d) than for CON (0.47 kg/d). However, the consumption of starch was lower for KPS (0.29 kg/d) than for CON (0.33 kg/d). Despite the lower starter intake for KPS, body weight and average daily gain did not differ between treatments. No significant difference was observed in the plasma concentrations of metabolites, except for ß-hydroxybutyrate (BHB); BHB concentration was lower for KPS (216 µmol/L) than for CON (257 µmol/L). The area under the curve for plasma GLP-2 concentration was higher for KPS (54.1 ng/mL × d) than for CON (36.0 ng/mL × d). Additionally, the fecal score postweaning (1.19 and 1.48 for KPS and CON, respectively) and the number of days that calves developed diarrhea throughout the experimental period (2.50 d and 8.10 d for KPS and CON, respectively) were lower for KPS than for CON. These results indicate that feeding KP reduces the severity and frequency of diarrhea without adversely affecting growth performance. This could be attributed to the increased plasma GLP-2 concentration induced by higher NDF intake.


Subject(s)
Diet , Glucagon-Like Peptide 2 , Animals , Cattle , Female , Weaning , Diet/veterinary , Animal Feed/analysis , Body Weight , Diarrhea/veterinary , 3-Hydroxybutyric Acid
18.
Blood ; 136(12): 1442-1455, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32542357

ABSTRACT

Acute graft-versus-host disease (GVHD) is a life-threatening complication after allogeneic hematopoietic cell transplantation (allo-HCT). Although currently used GVHD treatment regimens target the donor immune system, we explored here an approach that aims at protecting and regenerating Paneth cells (PCs) and intestinal stem cells (ISCs). Glucagon-like-peptide-2 (GLP-2) is an enteroendocrine tissue hormone produced by intestinal L cells. We observed that acute GVHD reduced intestinal GLP-2 levels in mice and patients developing GVHD. Treatment with the GLP-2 agonist, teduglutide, reduced de novo acute GVHD and steroid-refractory GVHD, without compromising graft-versus-leukemia (GVL) effects in multiple mouse models. Mechanistically GLP-2 substitution promoted regeneration of PCs and ISCs, which enhanced production of antimicrobial peptides and caused microbiome changes. GLP-2 expanded intestinal organoids and reduced expression of apoptosis-related genes. Low numbers of L cells in intestinal biopsies and high serum levels of GLP-2 were associated with a higher incidence of nonrelapse mortality in patients undergoing allo-HCT. Our findings indicate that L cells are a target of GVHD and that GLP-2-based treatment of acute GVHD restores intestinal homeostasis via an increase of ISCs and PCs without impairing GVL effects. Teduglutide could become a novel combination partner for immunosuppressive GVHD therapy to be tested in clinical trials.


Subject(s)
Glucagon-Like Peptide 2/therapeutic use , Graft vs Host Disease/drug therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Intestines/drug effects , Paneth Cells/drug effects , Peptides/therapeutic use , Stem Cells/drug effects , Animals , Female , Gastrointestinal Agents/therapeutic use , Graft vs Host Disease/pathology , Humans , Intestines/cytology , Intestines/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Paneth Cells/pathology , Stem Cells/pathology , Transplantation, Homologous/adverse effects
19.
Pharmacol Res ; 176: 106058, 2022 02.
Article in English | MEDLINE | ID: mdl-34995796

ABSTRACT

The intestinal hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-2 (GLP-2) are key regulators of postprandial bone turnover in humans. We hypothesized that GIP and GLP-2 co-administration would provide stronger effect on bone turnover than administration of the hormones separately, and tested this using subcutaneous injections of GIP and GLP-2 alone or in combination in humans. Guided by these findings, we designed series of GIPR-GLP-2R co-agonists as template for new osteoporosis treatment. The clinical experiment was a randomized cross-over design including 10 healthy men administered subcutaneous injections of GIP and GLP-2 alone or in combination. The GIPR-GLP-2R co-agonists were characterized in terms of binding and activation profiles on human and rodent GIP and GLP-2 receptors, and their pharmacokinetic (PK) profiles were improved by dipeptidyl peptidase-4 protection and site-directed lipidation. Co-administration of GIP and GLP-2 in humans resulted in an additive reduction in bone resorption superior to each hormone individually. The GIPR-GLP-2R co-agonists, designed by combining regions of importance for cognate receptor activation, obtained similar efficacies as the two native hormones and nanomolar potencies on both human receptors. The PK-improved co-agonists maintained receptor activity along with their prolonged half-lives. Finally, we found that the GIPR-GLP-2R co-agonists optimized toward the human receptors for bone remodeling are not feasible for use in rodent models. The successful development of potent and efficacious GIPR-GLP-2R co-agonists, combined with the improved effect on bone metabolism in humans by co-administration, support these co-agonists as a future osteoporosis treatment.


Subject(s)
Bone Remodeling/drug effects , Gastric Inhibitory Polypeptide/pharmacology , Glucagon-Like Peptide 2/pharmacology , Glucagon-Like Peptide-2 Receptor/agonists , Receptors, Gastrointestinal Hormone/agonists , Adult , Animals , COS Cells , Chlorocebus aethiops , Cross-Over Studies , Female , Gastric Inhibitory Polypeptide/blood , Gastric Inhibitory Polypeptide/pharmacokinetics , Glucagon-Like Peptide 2/blood , Glucagon-Like Peptide 2/pharmacokinetics , Glucagon-Like Peptide-2 Receptor/genetics , Humans , Male , Mice, Inbred C57BL , Osteoporosis/drug therapy , Receptors, Gastrointestinal Hormone/genetics , Single-Blind Method , Young Adult
20.
Fish Shellfish Immunol ; 122: 29-37, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35085736

ABSTRACT

Glucagon-like peptide 2 (GLP2) is a proglucagon-derived peptide produced by intestinal enteroendocrine L-cells. The main biological actions of GLP2 in mammals are related to regulating energy absorption and maintaining the morphology, integrity of intestinal mucosa. However, the in vivo function of fish GLP2 in intestinal barrier and immune defense is essentially unknown. With an aim to elucidate the antimicrobial mechanism of GLP2 in fish, we in this study examined the function of GLP2 from hybrid crucian carp. Hybrid crucian carp GLP2 (WR-GLP2) possesses the conserved glucagon like hormones 2 domain. WR-GLP2 is mainly expressed in the intestine and is significantly upregulated after Aeromonas hydrophila infection. AB-PAS staining analysis showed WR-GLP2 significantly increased the number of goblet cells in intestine. WR-GLP2 induced significant inductions in the expression of the antimicrobial molecules (MUC2, Lyzl-1, Hepcidin-1 and LEAP-2) and tight junctions (ZO-1, Occludin and Claudin-4). In addition, WR-GLP2 significantly alleviated the intestinal apoptosis, thereby enhancing host's resistance against Aeromonas hydrophila infection. Together these results indicate that WR-GLP2 is involved in intestinal mucosal barrier and immune defense against pathogen infection.


Subject(s)
Bacterial Infections , Carps , Fish Diseases , Gram-Negative Bacterial Infections , Aeromonas hydrophila/physiology , Animals , Carps/genetics , Carps/metabolism , Fish Proteins , Glucagon-Like Peptide 2 , Gram-Negative Bacterial Infections/veterinary , Intestinal Mucosa/metabolism , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL