Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.529
Filter
1.
Mol Cell ; 82(10): 1821-1835.e6, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35381197

ABSTRACT

GLS1 orchestrates glutaminolysis and promotes cell proliferation when glutamine is abundant by regenerating TCA cycle intermediates and supporting redox homeostasis. CB-839, an inhibitor of GLS1, is currently under clinical investigation for a variety of cancer types. Here, we show that GLS1 facilitates apoptosis when glutamine is deprived. Mechanistically, the absence of exogenous glutamine sufficiently reduces glutamate levels to convert dimeric GLS1 to a self-assembled, extremely low-Km filamentous polymer. GLS1 filaments possess an enhanced catalytic activity, which further depletes intracellular glutamine. Functionally, filamentous GLS1-dependent glutamine scarcity leads to inadequate synthesis of asparagine and mitogenome-encoded proteins, resulting in ROS-induced apoptosis that can be rescued by asparagine supplementation. Physiologically, we observed GLS1 filaments in solid tumors and validated the tumor-suppressive role of constitutively active, filamentous GLS1 mutants K320A and S482C in xenograft models. Our results change our understanding of GLS1 in cancer metabolism and suggest the therapeutic potential of promoting GLS1 filament formation.


Subject(s)
Glutaminase , Glutamine , Apoptosis , Asparagine/genetics , Glutaminase/genetics , Glutaminase/metabolism , Glutamine/metabolism , Humans , Reactive Oxygen Species
2.
Mol Cell ; 81(11): 2303-2316.e8, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33991485

ABSTRACT

Glutaminase regulates glutaminolysis to promote cancer cell proliferation. However, the mechanism underlying glutaminase activity regulation is largely unknown. Here, we demonstrate that kidney-type glutaminase (GLS) is highly expressed in human pancreatic ductal adenocarcinoma (PDAC) specimens with correspondingly upregulated glutamine dependence for PDAC cell proliferation. Upon oxidative stress, the succinyl-coenzyme A (CoA) synthetase ADP-forming subunit ß (SUCLA2) phosphorylated by p38 mitogen-activated protein kinase (MAPK) at S79 dissociates from GLS, resulting in enhanced GLS K311 succinylation, oligomerization, and activity. Activated GLS increases glutaminolysis and the production of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione, thereby counteracting oxidative stress and promoting tumor cell survival and tumor growth in mice. In addition, the levels of SUCLA2 pS79 and GLS K311 succinylation, which were mutually correlated, were positively associated with advanced stages of PDAC and poor prognosis for patients. Our findings reveal critical regulation of GLS by SUCLA2-coupled GLS succinylation regulation and underscore the regulatory role of metabolites in glutaminolysis and PDAC development.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Glutaminase/genetics , Pancreatic Neoplasms/genetics , Succinate-CoA Ligases/genetics , Animals , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/enzymology , Carcinoma, Pancreatic Ductal/mortality , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glutaminase/metabolism , Glutamine/metabolism , Glutathione/metabolism , Heterografts , Humans , Male , Mice , Mice, Nude , NADP/metabolism , Oxidative Stress , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/mortality , Phosphorylation , Prognosis , Protein Processing, Post-Translational , Signal Transduction , Succinate-CoA Ligases/metabolism , Succinic Acid/metabolism , Survival Analysis , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
3.
PLoS Pathog ; 20(7): e1011909, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976719

ABSTRACT

Viruses are obligate intracellular parasites that rely on host cell metabolism for successful replication. Thus, viruses rewire host cell pathways involved in central carbon metabolism to increase the availability of building blocks for successful propagation. However, the underlying mechanisms of virus-induced alterations to host metabolism are largely unknown. Noroviruses (NoVs) are highly prevalent pathogens that cause sporadic and epidemic viral gastroenteritis. In the present study, we uncovered several strain-specific and shared host cell metabolic requirements of three murine norovirus (MNV) strains, MNV-1, CR3, and CR6. While all three strains required glycolysis, glutaminolysis, and the pentose phosphate pathway for optimal infection of macrophages, only MNV-1 relied on host oxidative phosphorylation. Furthermore, the first metabolic flux analysis of NoV-infected cells revealed that both glycolysis and glutaminolysis are upregulated during MNV-1 infection of macrophages. Glutamine deprivation affected the viral lifecycle at the stage of genome replication, resulting in decreased non-structural and structural protein synthesis, viral assembly, and egress. Mechanistic studies further showed that MNV infection and overexpression of the non-structural protein NS1/2 increased the enzymatic activity of the rate-limiting enzyme glutaminase. In conclusion, the inaugural investigation of NoV-induced alterations to host glutaminolysis identified NS1/2 as the first viral molecule for RNA viruses that regulates glutaminolysis either directly or indirectly. This increases our fundamental understanding of virus-induced metabolic alterations and may lead to improvements in the cultivation of human NoVs.


Subject(s)
Caliciviridae Infections , Glutamine , Norovirus , Viral Nonstructural Proteins , Virus Replication , Norovirus/physiology , Virus Replication/physiology , Mice , Animals , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Glutamine/metabolism , Caliciviridae Infections/virology , Caliciviridae Infections/metabolism , Macrophages/virology , Macrophages/metabolism , Humans , Glutaminase/metabolism , Glycolysis/physiology , RAW 264.7 Cells
4.
Proc Natl Acad Sci U S A ; 119(19): e2120595119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35512101

ABSTRACT

Glutamine is consumed by rapidly proliferating cells and can provide the carbon and nitrogen required for growth through various metabolic pathways. However, delineating the metabolic fate of glutamine is challenging to interrogate in vivo. Hyperpolarized magnetic resonance, by providing high transient nuclear magnetic resonance signals, provides an approach to measure fast biochemical processes in vivo. Aminohydrolysis of glutamine at carbon-5 plays an important role in providing nitrogen and carbon for multiple pathways. Here, we provide a synthetic strategy for isotope-enriched forms of glutamine that prolongs glutamine-C5 relaxation times and thereby reveals in vivo reactions involving carbon-5. We investigate multiple enrichment states, finding [5-13C,4,4-2H2,5-15N]-L-glutamine to be optimal for hyperpolarized measurement of glutamine conversion to glutamate in vivo. Leveraging this compound, we explore pancreatic cancer glutamine metabolism in vivo. Taken together, this work provides a means for studying glutamine metabolic flux in vivo and demonstrates on-target effects of metabolic enzyme inhibitors.


Subject(s)
Glutaminase , Glutamine , Biomarkers/metabolism , Citric Acid Cycle , Glutaminase/metabolism , Glutamine/metabolism , Humans , Metabolomics
5.
Genes Dev ; 31(17): 1738-1753, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28971956

ABSTRACT

Medulloblastoma is the most common solid primary brain tumor in children. Remarkable advancements in the understanding of the genetic and epigenetic basis of these tumors have informed their recent molecular classification. However, the genotype/phenotype correlation of the subgroups remains largely uncharacterized. In particular, the metabolic phenotype is of great interest because of its druggability, which could lead to the development of novel and more tailored therapies for a subset of medulloblastoma. p73 plays a critical role in a range of cellular metabolic processes. We show overexpression of p73 in a proportion of non-WNT medulloblastoma. In these tumors, p73 sustains cell growth and proliferation via regulation of glutamine metabolism. We validated our results in a xenograft model in which we observed an increase in survival time in mice on a glutamine restriction diet. Notably, glutamine starvation has a synergistic effect with cisplatin, a component of the current medulloblastoma chemotherapy. These findings raise the possibility that glutamine depletion can be used as an adjuvant treatment for p73-expressing medulloblastoma.


Subject(s)
Cerebellar Neoplasms/diet therapy , Cerebellar Neoplasms/physiopathology , Glutamine/metabolism , Medulloblastoma/diet therapy , Medulloblastoma/physiopathology , Tumor Protein p73/genetics , Tumor Protein p73/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic/genetics , Glutaminase/genetics , Glutaminase/metabolism , Heterografts , Humans , Mice , Mitochondria/genetics , Mitochondria/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Survival Analysis , TOR Serine-Threonine Kinases/metabolism , Treatment Outcome , Tumor Cells, Cultured
6.
Am J Physiol Cell Physiol ; 327(3): C571-C586, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38981605

ABSTRACT

Glutamine is a critical amino acid that serves as an energy source, building block, and signaling molecule for the heart tissue and the immune system. However, the role of glutamine metabolism in regulating cardiac remodeling following myocardial infarction (MI) is unknown. In this study, we show in adult male mice that glutamine metabolism is altered both in the remote (contractile) area and in infiltrating macrophages in the infarct area after permanent left anterior descending artery occlusion. We found that metabolites related to glutamine metabolism were differentially altered in macrophages at days 1, 3, and 7 after MI using untargeted metabolomics. Glutamine metabolism in live cells was increased after MI relative to no MI controls. Gene expression in the remote area of the heart indicated a loss of glutamine metabolism. Glutamine administration improved left ventricle (LV) function at days 1, 3, and 7 after MI, which was associated with improved contractile and metabolic gene expression. Conversely, administration of BPTES, a pharmacological inhibitor of glutaminase-1, worsened LV function after MI. Neither glutamine nor BPTES administration impacted gene expression or bioenergetics of macrophages isolated from the infarct area. Our results indicate that glutamine metabolism plays a critical role in maintaining LV contractile function following MI and that glutamine administration improves LV function. Glutamine metabolism may also play a role in regulating macrophage function, but macrophages are not responsive to exogenous pharmacological manipulation of glutamine metabolism.NEW & NOTEWORTHY Glutamine metabolism is altered in both infarct macrophages and the remote left ventricle (LV) following myocardial infarction (MI). Supplemental glutamine improves LV function following MI while inhibiting glutamine metabolism with BPTES worsens LV function. Supplemental glutamine or BPTES does not impact macrophage immunometabolic phenotypes after MI.


Subject(s)
Glutamine , Macrophages , Mice, Inbred C57BL , Myocardial Infarction , Ventricular Function, Left , Animals , Glutamine/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Macrophages/metabolism , Macrophages/immunology , Male , Ventricular Function, Left/drug effects , Mice , Ventricular Remodeling/drug effects , Glutaminase/metabolism , Glutaminase/antagonists & inhibitors , Glutaminase/genetics , Myocardium/metabolism , Myocardium/pathology , Myocardium/immunology , Inflammation/metabolism , Inflammation/pathology , Energy Metabolism/drug effects
7.
Mol Med ; 30(1): 64, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760723

ABSTRACT

BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS: Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS: Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION: These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.


Subject(s)
Endometriosis , Glutaminase , Glutamine , RNA Stability , RNA, Long Noncoding , RNA-Binding Proteins , Female , Humans , Glutaminase/metabolism , Glutaminase/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Endometriosis/metabolism , Endometriosis/genetics , Endometriosis/pathology , Glutamine/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Proliferation , Adult , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation , Protein Binding
8.
Microbiology (Reading) ; 170(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38847798

ABSTRACT

Bacillus subtilis is a Gram-positive bacterium that is frequently used in the bioindustry for the production of various proteins, because of its superior protein secretion capacities. To determine optimal conditions for protein secretion by B. subtilis, a quick and sensitive method for measuring protein secretion is crucial. A fast and universal assay is most useful for detecting diverse proteins in a high-throughput manner. In this study, we introduce a split-luciferase-based method for measuring protein secretion by B. subtilis. The NanoBiT system was used to monitor secretion of four different proteins: xylanase A, amylase M, protein glutaminase A, and GFP nanobody. Our findings underscore the split-luciferase system as a quick, sensitive, and user-friendly method.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Luciferases/metabolism , Luciferases/genetics , Endo-1,4-beta Xylanases/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Protein Transport , Amylases/metabolism , Glutaminase/metabolism
9.
Mol Carcinog ; 63(5): 897-911, 2024 May.
Article in English | MEDLINE | ID: mdl-38353358

ABSTRACT

Increasing evidence has demonstrated that glutaminase (GLS) as a key mitochondrial enzyme plays a pivotal role in glutaminolysis, which widely participates in glutamine metabolism serving as main energy sources and building blocks for tumor growth. However, the roles and molecular mechanisms of GLS in esophageal squamous cell carcinoma (ESCC) remains unknown. Here, we found that GLS was highly expressed in ESCC tissues and cells. GLS inhibitor CB-839 significantly suppressed cell proliferation, colony formation, migration and invasion of ESCC cells, whereas GLS overexpression displayed the opposite effects. In addition, CB-839 markedly suppressed glucose consumption and lactate production, coupled with the downregulation of glycolysis-related proteins HK2, PFKM, PKM2 and LDHA, whereas GLS overexpression exhibited the adverse results. In vivo animal experiment revealed that CB-839 dramatically suppressed tumor growth, whereas GLS overexpression promoted tumor growth in ESCC cells xenografted nude mice. Mechanistically, GLS was localized in mitochondria of ESCC cells, which interacted with PDK1 protein. CB-839 attenuated the interaction of GLS and PDK1 in ESCC cells by suppressing PDK1 expression, which further evoked the downregulation of p-PDHA1 (s293), however, GLS overexpression markedly enhanced the level of p-PDHA1 (s293). These findings suggest that interaction of GLS with PDK1 accelerates the glycolysis of ESCC cells by inactivating PDH enzyme, and thus targeting GLS may be a novel therapeutic approach for ESCC patients.


Subject(s)
Benzeneacetamides , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Glutaminase , Glycolysis , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Thiadiazoles , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement , Cell Proliferation , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Regulation, Neoplastic , Glutaminase/genetics , Glutaminase/metabolism , Glycolysis/genetics , Mice, Nude , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
10.
Reproduction ; 168(5)2024 11 01.
Article in English | MEDLINE | ID: mdl-39121036

ABSTRACT

In brief: FSH leads to glutamine dependence, which is required for mTORC1 activation and in consequence Sertoli cell proliferation. Abstract: The spermatogenic capacity of adult individuals depends on, among other factors, the number of Sertoli cells (SCs) that result from the proliferative waves during development. FSH upregulates SC proliferation at least partly, through the activation of the PI3K/Akt/mTORC1 pathway, among other mechanisms. It is widely known that mTORC1 is a sensor of amino acids. Among amino acids, glutamine acquires relevance since it might contribute to cell cycle progression through the modulation of mTORC1 activity. It has not been studied yet whether glutamine intervenes in FSH-mediated regulation of SC proliferation and cell cycle progression, or if FSH has any effect on glutamine metabolism. Eight-day-old rat SCs were incubated in culture media without glutamine or with glutamine in the absence or presence of a glutamine transporter inhibitor or a glutaminase activity inhibitor under basal conditions or stimulated with FSH. The results obtained show that FSH does not promote SC proliferation and mTORC1 activation in the absence of glutamine. Also, FSH modulates glutamine metabolism increasing glutaminase isoform 2 and reducing glutamine synthetaseexpression. FSH did not promote SC proliferation and mTORC1 activation when glutaminase activity was inhibited. The results suggest that glutamine or its metabolites might cooperate with FSH in the upregulation of SC proliferation through mTORC1. In addition, as FSH modulates glutamine metabolism through the induction of glutaminase isoform 2, the hormonal control of glutamine metabolism might be part of the intricate signaling network triggered by FSH, which is crucial to establish the population of mature SCs that supports the reproductive function.


Subject(s)
Cell Proliferation , Follicle Stimulating Hormone , Glutamine , Mechanistic Target of Rapamycin Complex 1 , Sertoli Cells , Animals , Glutamine/metabolism , Glutamine/pharmacology , Male , Sertoli Cells/metabolism , Sertoli Cells/drug effects , Sertoli Cells/cytology , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/metabolism , Cell Proliferation/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Rats , Cells, Cultured , Signal Transduction/drug effects , Glutaminase/metabolism , Rats, Sprague-Dawley , Rats, Wistar
11.
Exp Mol Pathol ; 137: 104896, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703552

ABSTRACT

BACKGROUND: Glutaminase 1 (GLS1), a key enzyme in glutamine metabolism in cancer cells, acts as a tumor promoter and could be a potential therapeutic target. CB-839, a GLS1-specific inhibitor, was developed recently. Herein, we aimed to elucidate the anti-tumor effects and mechanism of action of CB-839 in colorectal cancer (CRC). METHODS: Using the UCSC Xena public database, we evaluated GLS1 expression in various cancers. Immunostaining for GLS1 was performed on 154 surgically resected human CRC specimens. Subsequently, we examined the GLS1 mRNA expression levels in eight CRC cell lines and evaluated the association between GLS1 expression and CB-839 efficacy. To create a reproducible CRC model with abundant stroma and an allogeneic immune response, we co-transplanted CT26 and stem cells into BALB/c mice and treated them with CB-839. Finally, RNA sequencing of mouse tumors was performed. RESULTS: Database analysis showed higher GLS1 expression in CRC tissues than in normal colon tissues. Clinical samples from 114 of the 154 patients with CRC showed positive GLS1 expression. GLS1 expression in clinical CRC tissues correlated with vascular invasion. CB-839 treatment inhibited cancer cell proliferation depending on GLS1 expression in vitro and inhibited tumor growth and metastasis in the CRC mouse model. RNA sequencing revealed that CB-839 treatment inhibited stromal activation, tumor growth, migration, and angiogenesis. These findings were validated through in vitro and in vivo experiments and clinical specimen analysis. CONCLUSIONS: GLS1 expression in CRC plays important roles in tumor progression. CB-839 has inhibitory effects on cancer proliferation and the tumor microenvironment.


Subject(s)
Cell Proliferation , Colorectal Neoplasms , Glutaminase , Mice, Inbred BALB C , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Animals , Glutaminase/antagonists & inhibitors , Glutaminase/metabolism , Glutaminase/genetics , Mice , Cell Proliferation/drug effects , Female , Cell Line, Tumor , Benzeneacetamides/pharmacology , Xenograft Model Antitumor Assays , Male , Stromal Cells/metabolism , Stromal Cells/pathology , Stromal Cells/drug effects , Thiadiazoles/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Tumor Microenvironment/drug effects , Antineoplastic Agents/pharmacology , Middle Aged , Disease Models, Animal
12.
J Gastroenterol Hepatol ; 39(9): 1788-1808, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38763916

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects over 30% of the global population, with a significant risk of advancing to liver cirrhosis and hepatocellular carcinoma. The roles of ammonia and glutamine in MASLD's pathogenesis are increasingly recognized, prompting this systematic review. This systematic review was conducted through a meticulous search of literature on December 21, 2023, across five major databases, focusing on studies that addressed the relationship between ammonia or glutamine and MASLD. The quality of the included studies was evaluated using CASP checklists. This study is officially registered in the PROSPERO database (CRD42023495619) and was conducted without external funding or sponsorship. Following PRISMA guidelines, 13 studies were included in this review. The studies were conducted globally, with varying sample sizes and study designs. The appraisal indicated a mainly low bias, confirming the reliability of the evidence. Glutamine's involvement in MASLD emerged as multifaceted, with its metabolic role being critical for liver function and disease progression. Variable expressions of glutamine synthetase and glutaminase enzymes highlight metabolic complexity whereas ammonia's impact through urea cycle dysfunction suggests avenues for therapeutic intervention. However, human clinical trials are lacking. This review emphasizes the necessity of glutamine and ammonia in understanding MASLD and identifies potential therapeutic targets. The current evidence, while robust, points to the need for human studies to corroborate preclinical findings. A personalized approach to treatment, informed by metabolic differences in MASLD patients, is advocated, alongside future large-scale clinical trials for a deeper exploration into these metabolic pathways.


Subject(s)
Ammonia , Fatty Liver , Glutamate-Ammonia Ligase , Glutaminase , Glutamine , Humans , Ammonia/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/pathology , Disease Progression , Fatty Liver/metabolism , Fatty Liver/etiology , Glutamate-Ammonia Ligase/metabolism , Glutaminase/metabolism , Glutamine/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/etiology , Liver Neoplasms/pathology
13.
Mol Ther ; 31(3): 729-743, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36560881

ABSTRACT

Approximately 50%-55% of high-grade serous ovarian carcinoma (HGSOC) patients have MYC oncogenic pathway activation. Because MYC is not directly targetable, we have analyzed molecular pathways enriched in MYC-high HGSOC tumors to identify potential therapeutic targets. Here, we report that MYC-high HGSOC tumors show enrichment in genes controlled by NRF2, an antioxidant signaling pathway, along with increased thioredoxin redox activity. Treatment of MYC-high HGSOC tumors cells with US Food and Drug Administration (FDA)-approved thioredoxin reductase 1 (TrxR1) inhibitor auranofin resulted in significant growth suppression and apoptosis in MYC-high HGSOC cells in vitro and also significantly reduced tumor growth in an MYC-high HGSOC patient-derived tumor xenograft. We found that auranofin treatment inhibited glycolysis in MYC-high cells via oxidation-induced GAPDH inhibition. Interestingly, in response to auranofin-induced glycolysis inhibition, MYC-high HGSOC cells switched to glutamine metabolism for survival. Depletion of glutamine with either glutamine starvation or glutaminase (GLS1) inhibitor CB-839 exerted synergistic anti-tumor activity with auranofin in HGSOC cells and OVCAR-8 cell line xenograft. These findings suggest that applying a combined therapy of GLS1 inhibitor and TrxR1 inhibitor could effectively treat MYC-high HGSOC patients.


Subject(s)
Auranofin , Genes, myc , Glutamine , Ovarian Neoplasms , Thioredoxin-Disulfide Reductase , Female , Humans , Auranofin/pharmacology , Auranofin/therapeutic use , Cell Line, Tumor , Genes, myc/genetics , Glutaminase/genetics , Glutaminase/metabolism , Glutamine/genetics , Glutamine/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Thioredoxin-Disulfide Reductase/genetics , Thioredoxin-Disulfide Reductase/metabolism , Thioredoxins/antagonists & inhibitors , Thioredoxins/genetics , Thioredoxins/metabolism
14.
J Endocrinol Invest ; 47(8): 1953-1969, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38386265

ABSTRACT

BACKGROUND: Effective treatment for patients with advanced thyroid cancer is lacking. Metabolism reprogramming is required for cancer to undergo oncogenic transformation and rapid tumorigenic growth. Glutamine is frequently used by cancer cells for active bioenergetic and biosynthetic needs. This study aims to investigate whether targeting glutamine metabolism is a promising therapeutic strategy for thyroid cancer. METHODS: The expression of glutaminase (GLS) and glutamate dehydrogenase (GDH) in thyroid cancer tissues was evaluated by immunohistochemistry, and glutamine metabolism-related genes were assessed using real time-qPCR and western blotting. The effects of glutamine metabolism inhibitor 6-diazo-5-oxo-l-norleucine (DON) on thyroid cancer cells were determined by CCK-8, clone formation assay, Edu incorporation assay, flow cytometry, and Transwell assay. The mechanistic study was performed by real time-qPCR, western blotting, Seahorse assay, and gas chromatography-mass spectrometer assay. The effect of DON prodrug (JHU-083) on thyroid cancer in vivo was assessed using xenograft tumor models in BALB/c nude mice. RESULTS: GLS and GDH were over-expressed in thyroid cancer tissues, and GLS expression was positively associated with lymph-node metastasis and TNM stage. The growth of thyroid cancer cells was significantly inhibited when cultured in glutamine-free medium. Targeting glutamine metabolism with DON inhibited the proliferation of thyroid cancer cells. DON treatment did not promote apoptosis, but increased the proportion of cells in the S phase, accompanied by the decreased expression of cyclin-dependent kinase 2 and cyclin A. DON treatment also significantly inhibited the migration and invasion of thyroid cancer cells by reducing the expression of N-cadherin, Vimentin, matrix metalloproteinase-2, and matrix metalloproteinase-9. Non-essential amino acids, including proline, alanine, aspartate, asparagine, and glycine, were reduced in thyroid cancer cells treated with DON, which could explain the decrease of proteins involved in migration, invasion, and cell cycle. The efficacy and safety of DON prodrug (JHU-083) for thyroid cancer treatment were verified in a mouse model. In addition to suppressing the proliferation and metastasis potential of thyroid cancer in vivo, enhanced innate immune response was also observed in JHU-083-treated xenograft tumors as a result of decreased expression of cluster of differentiation 47 and programmed cell death ligand 1. CONCLUSIONS: Thyroid cancer exhibited enhanced glutamine metabolism, as evidenced by the glutamine dependence of thyroid cancer cells and high expression of multiple glutamine metabolism-related genes. Targeting glutamine metabolism with DON prodrug could be a promising therapeutic option for advanced thyroid cancer.


Subject(s)
Cell Proliferation , Diazooxonorleucine , Glutaminase , Glutamine , Thyroid Neoplasms , Xenograft Model Antitumor Assays , Humans , Glutamine/metabolism , Animals , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Mice , Glutaminase/antagonists & inhibitors , Glutaminase/metabolism , Cell Proliferation/drug effects , Diazooxonorleucine/pharmacology , Female , Mice, Nude , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/antagonists & inhibitors , Apoptosis/drug effects , Mice, Inbred BALB C , Male , Cell Line, Tumor , Middle Aged , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
15.
J Enzyme Inhib Med Chem ; 39(1): 2290911, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38078371

ABSTRACT

Alterations in normal metabolic processes are defining features of cancer. Glutamine, an abundant amino acid in the human blood, plays a critical role in regulating several biosynthetic and bioenergetic pathways that support tumour growth. Glutaminolysis is a metabolic pathway that converts glutamine into various metabolites involved in the tricarboxylic acid (TCA) cycle and generates antioxidants that are vital for tumour cell survival. As glutaminase catalyses the initial step of this metabolic pathway, it is of great significance in cancer metabolism and tumour progression. Inhibition of glutaminase and targeting of glutaminolysis have emerged as promising strategies for cancer therapy. This review explores the role of glutaminases in cancer metabolism and discusses various glutaminase inhibitors developed as potential therapies for tumour regression.


Subject(s)
Glutamine , Neoplasms , Humans , Glutamine/metabolism , Glutaminase/metabolism , Neoplasms/drug therapy , Amino Acids
16.
Mar Drugs ; 22(9)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39330272

ABSTRACT

Glioblastoma represents the predominant and a highly aggressive primary neoplasm of the central nervous system that has an abnormal metabolism. Our previous study showed that chrysomycin A (Chr-A) curbed glioblastoma progression in vitro and in vivo. However, whether Chr-A could inhibit orthotopic glioblastoma and how it reshapes metabolism are still unclear. In this study, Chr-A markedly suppressed the development of intracranial U87 gliomas. The results from airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) indicated that Chr-A improved the abnormal metabolism of mice with glioblastoma. Key enzymes including glutaminase (GLS), glutamate dehydrogenases 1 (GDH1), hexokinase 2 (HK2) and glucose-6-phosphate dehydrogenase (G6PD) were regulated by Chr-A. Chr-A further altered the level of nicotinamide adenine dinucleotide phosphate (NADPH), thus causing oxidative stress with the downregulation of Nrf-2 to inhibit glioblastoma. Our study offers a novel perspective for comprehending the anti-glioma mechanism of Chr-A, highlighting its potential as a promising chemotherapeutic agent for glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , Oxidative Stress , Glioblastoma/drug therapy , Glioblastoma/metabolism , Oxidative Stress/drug effects , Animals , Humans , Mice , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Glucosephosphate Dehydrogenase/metabolism , Anthraquinones/pharmacology , Glutaminase/metabolism , NF-E2-Related Factor 2/metabolism , Disease Progression , Glutamate Dehydrogenase/metabolism , NADP/metabolism , Xenograft Model Antitumor Assays , Male , Mice, Nude
17.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33753479

ABSTRACT

Cellular metabolism in cancer is significantly altered to support the uncontrolled tumor growth. How metabolic alterations contribute to hormonal therapy resistance and disease progression in prostate cancer (PCa) remains poorly understood. Here we report a glutaminase isoform switch mechanism that mediates the initial therapeutic effect but eventual failure of hormonal therapy of PCa. Androgen deprivation therapy inhibits the expression of kidney-type glutaminase (KGA), a splicing isoform of glutaminase 1 (GLS1) up-regulated by androgen receptor (AR), to achieve therapeutic effect by suppressing glutaminolysis. Eventually the tumor cells switch to the expression of glutaminase C (GAC), an androgen-independent GLS1 isoform with more potent enzymatic activity, under the androgen-deprived condition. This switch leads to increased glutamine utilization, hyperproliferation, and aggressive behavior of tumor cells. Pharmacological inhibition or RNA interference of GAC shows better treatment effect for castration-resistant PCa than for hormone-sensitive PCa in vitro and in vivo. In summary, we have identified a metabolic function of AR action in PCa and discovered that the GLS1 isoform switch is one of the key mechanisms in therapeutic resistance and disease progression.


Subject(s)
Androgen Antagonists/pharmacology , Drug Resistance, Neoplasm/genetics , Glutaminase/genetics , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Androgen Antagonists/therapeutic use , Animals , Cell Line, Tumor , Computational Biology , Disease Progression , Drug Resistance, Neoplasm/drug effects , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Glutaminase/metabolism , Glutamine/metabolism , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Mice , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Tissue Array Analysis , Xenograft Model Antitumor Assays
18.
Genes Dev ; 30(11): 1255-60, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27298334

ABSTRACT

Various tumors develop addiction to glutamine to support uncontrolled cell proliferation. Here we identify the nuclear receptor liver receptor homolog 1 (LRH-1) as a key regulator in the process of hepatic tumorigenesis through the coordination of a noncanonical glutamine pathway that is reliant on the mitochondrial and cytosolic transaminases glutamate pyruvate transaminase 2 (GPT2) and glutamate oxaloacetate transaminase 1 (GOT1), which fuel anabolic metabolism. In particular, we show that gain and loss of function of hepatic LRH-1 modulate the expression and activity of mitochondrial glutaminase 2 (GLS2), the first and rate-limiting step of this pathway. Acute and chronic deletion of hepatic LRH-1 blunts the deamination of glutamine and reduces glutamine-dependent anaplerosis. The robust reduction in glutaminolysis and the limiting availability of α-ketoglutarate in turn inhibit mTORC1 signaling to eventually block cell growth and proliferation. Collectively, these studies highlight the importance of LRH-1 in coordinating glutamine-induced metabolism and signaling to promote hepatocellular carcinogenesis.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Glutamine/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/physiopathology , Mitochondria/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Carcinogenesis/chemically induced , Diethylnitrosamine , Gene Expression Regulation, Neoplastic , Glutaminase/genetics , Glutaminase/metabolism , Liver/enzymology , Liver/metabolism , Liver/physiopathology , Liver Neoplasms/chemically induced , Liver Neoplasms/enzymology , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Knockout , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
19.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542254

ABSTRACT

Many of the biological processes of the cell, from its structure to signal transduction, involve protein-protein interactions. On this basis, our aim was to identify cellular proteins that interact with ERK5, a serine/threonine protein kinase with a key role in tumor genesis and progression and a promising therapeutic target in many tumor types. Using affinity chromatography, immunoprecipitation, and mass spectrometry techniques, we unveiled an interaction between ERK5 and the mitochondrial glutaminase GLS in pancreatic tumor cells. Subsequent co-immunoprecipitation and immunofluorescence studies supported this interaction in breast and lung tumor cells as well. Genetic approaches using RNA interference techniques and CRISPR/Cas9 technology demonstrated that the loss of ERK5 function led to increased protein levels of GLS isoforms (KGA/GAC) and a concomitant increase in their activity in tumor cells. It is well known that the tumor cell reprograms its intermediary metabolism to meet its increased metabolic needs. In this sense, mitochondrial GLS is involved in the first step of glutamine catabolism, one of the main energy sources in the context of cancer. Our data suggest that ERK5 contributes to the regulation of tumor cell energy metabolism via glutaminolysis.


Subject(s)
Glutaminase , Lung Neoplasms , Humans , Glutaminase/genetics , Glutaminase/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Signal Transduction , RNA Interference , Lung Neoplasms/metabolism , Glutamine/metabolism , Cell Line, Tumor
20.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273225

ABSTRACT

Cancer-associated fibroblast (CAF)s in the tumour microenvironment (TME) modulate the extracellular matrix, interact with cancer cells, and facilitate communication with infiltrating leukocytes, significantly contributing to cancer progression and therapeutic response. In prostate cancer (PCa), CAFs promote malignancy through metabolic rewiring, cancer stem cell regulation, and therapy resistance. Pre-clinical studies indicate that targeting amino acid metabolism, particularly glutamine (Gln) metabolism, reduces cancer proliferation and stemness. However, most studies lack the context of CAF-cancer interaction, focusing on monocultures. This study assesses the influence of CAFs on PCa growth by manipulating Gln metabolism using colour-labelled PCa cell lines (red) and fibroblast (green) in a co-culture system to evaluate CAFs' effects on PCa cell proliferation and clonogenic potential. CAFs increased the proliferation of hormone-sensitive LNCaP cells, whereas the castration-resistant C4-2 cells were unaffected. However, clonogenic growth increased in both cell lines. Gln deprivation and GLS1 inhibition experiments revealed that the increased growth rate of LNCAP cells was associated with increased dependence on Gln, which was confirmed by proteomic analyses. Tissue analysis of PCa patients revealed elevated GLS1 levels in both the PCa epithelium and stroma, suggesting that GLS1 is a therapeutic target. Moreover, the median overall survival analysis of GLS1 expression in the PCa epithelium and stroma identified a "high-risk" patient group that may benefit from GLS1-targeted therapies. Therefore, GLS1 targeting appears promising in castration-resistant PCa patients with high GLS1 epithelium and low GLS1 stromal expression.


Subject(s)
Cancer-Associated Fibroblasts , Cell Proliferation , Coculture Techniques , Glutamine , Prostatic Neoplasms , Tumor Microenvironment , Humans , Glutamine/metabolism , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Glutaminase/metabolism , Fibroblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL