Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.746
Filter
1.
Plant J ; 119(2): 879-894, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923085

ABSTRACT

Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Gossypium/genetics , Gossypium/parasitology , Gossypium/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Animals , Gibberellins/metabolism , Gossypol/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Disease Resistance/genetics , Plant Diseases/parasitology , Plant Diseases/immunology , Moths/physiology , Larva/growth & development
2.
Biochem Biophys Res Commun ; 726: 150306, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38917634

ABSTRACT

The folate metabolism enzyme ALDH1L1 catalyzed 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Non-small cell lung cancer cells (NSCLC) strongly express ALDH1L1. Gossypol binds to an allosteric site and disrupts the folate metabolism by preventing NADP+ binding. The Cryo-EM structures of tetrameric C-terminal aldehyde dehydrogenase human ALDH1L1 complex with gossypol were examined. Gossypol-bound ALDH1L1 interfered with NADP+ by shifting the allosteric site of the structural conformation, producing a closed-form NADP+ binding site. In addition, the inhibition activity of ALDH1L1 was targeted with gossypol in NSCLC. The gossypol treatment had anti-cancer effects on NSCLC by blocking NADPH and ATP production. These findings emphasize the structure characterizing ALDH1L1 with gossypol.


Subject(s)
Gossypol , Humans , Gossypol/chemistry , Gossypol/pharmacology , Gossypol/metabolism , NADP/metabolism , NADP/chemistry , Models, Molecular , Cryoelectron Microscopy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/chemistry , Protein Binding , Binding Sites , Allosteric Site , Protein Conformation , Cell Line, Tumor , Oxidoreductases Acting on CH-NH Group Donors
3.
BMC Microbiol ; 24(1): 15, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183000

ABSTRACT

BACKGROUND: This study aimed to isolate the rumen-derived bacteria with the ability to degrade free gossypol (FG), and to evaluate the probiotic potential in vitro for ensuring safe utilization. METHODS: The strains were anaerobically isolated from fresh rumen fluid of sheep with long-term fed cottonseed meal (CSM) with the screening agar medium containing gossypol as the sole carbon source. Afterwards, the isolated strain incubated with CSM was subjected to the determination of the FG degradation and in vitro evaluation of probiotic characteristics. RESULTS: The target strain labeled Lact. mucosae LLK-XR1 [Accession number: OQ652016.1] was obtained, and its growth on MRS Liquid medium exhibited degradation efficiency of FG up to 69.5% which was significantly greater than its growth on Man-Rogosa-Sharpe medium with glucose free for 24 h (p < 0.01). Meanwhile, LLK-XR1 showed 40.652% degradation rate of FG for unautoclaved, non-pulverized, and no additional nutrients supplementation CSM. Furthermore, LLK-XR1 presented good survivability at pH 3.0 (above 88.6%), and 0.3% bile (78.5%). LLK-XR1 showed sensitivity to broad-spectrum antibiotics except Sulfamethoxazole, Ciprofloxacin and Gentamycin and significantly inhibited E. coli CICC 10,899, Staph. aureus CICC 21,600, and Salmonella. Typhimurium CICC 21,483. LLK-XR1 demonstrated good cell surface hydrophobicity and auto-aggregation ability. CONCLUSIONS: Taken together, this study for the first time noted that rumen-originated Lact. mucosae LLK-XR1 with probiotic properties exhibited substantial FG degradation capacity when it was applied to the solid-state fermentation of CSM.


Subject(s)
Gossypol , Probiotics , Humans , Male , Animals , Sheep , Cottonseed Oil , Escherichia coli , Fermentation , Rumen
4.
New Phytol ; 241(1): 314-328, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37865884

ABSTRACT

Gossypol and the related terpenoids are stored in the pigment gland to protect cotton plants from biotic stresses, but little is known about the synthetic sites of these metabolites. Here, we showed that GoPGF, a key gene regulating gland formation, was expressed in gland cells and roots. The chromatin immunoprecipitation sequencing (ChIP-seq) analysis demonstrated that GoPGF targets GhJUB1 to regulate gland morphogenesis. RNA-sequencing (RNA-seq) showed high accumulation of gossypol biosynthetic genes in gland cells. Moreover, integrated analysis of the ChIP-seq and RNA-seq data revealed that GoPGF binds to the promoter of several gossypol biosynthetic genes. The cotton callus overexpressing GoPGF had dramatically increased the gossypol levels, indicating that GoPGF can directly activate the biosynthesis of gossypol. In addition, the gopgf mutant analysis revealed the existence of both GoPGF-dependent and -independent regulation of gossypol production in cotton roots. Our study revealed that the pigment glands are synthetic sites of gossypol in aerial parts of cotton and that GoPGF plays a dual role in regulating gland morphogenesis and gossypol biosynthesis. The study provides new insights for exploring the complex relationship between glands and the metabolites they store in cotton and other plant species.


Subject(s)
Gossypol , Gossypol/metabolism , Gossypium/genetics , Gossypium/metabolism , Terpenes , Plant Components, Aerial
5.
Fish Shellfish Immunol ; 151: 109727, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936520

ABSTRACT

Gossypol, a naturally occurring compound found in cottonseed meal, shows promising therapeutic potential for human diseases. However, within the aquaculture industry, it is considered an antinutritional factor. The incorporation of cottonseed meal into fish feed introduces gossypol, which induces intracellular stresses and hinders overall health of farmed fish. The aim of this study is to determine the role of General control nonderepressible 2 (gcn2), a sensor for intracellular stresses in gossypol-induced stress responses in fish. In the present study, we established two gcn2 knockout zebrafish lines. A feeding trial was conducted to assess the growth-inhibitory effect of gossypol in both wild type and gcn2 knockout zebrafish. The results showed that in the absence of gcn2, zebrafish exhibited increased oxidative stress and apoptosis when exposed to gossypol, resulting in higher mortality rates. In feeding trial, dietary gossypol intensified liver inflammation in gcn2-/- zebrafish, diminishing their growth and feed conversion. Remarkably, administering the antioxidant N-acetylcysteine (NAC) was effective in reversing the gossypol induced oxidative stress and apoptosis, thereby increasing the gossypol tolerance of gcn2-/- zebrafish. Exposure to gossypol induces more severe mitochondrial stress in gcn2-/- zebrafish, thereby inducing metabolic disorders. These results reveal that gcn2 plays a protective role in reducing gossypol-induced oxidative stress and apoptosis, attenuating inflammation responses, and enhancing the survivability of zebrafish in gossypol-challenged conditions. Therefore, maintaining appropriate activation of Gcn2 may be beneficial for fish fed diets containing gossypol.


Subject(s)
Apoptosis , Gossypol , Inflammation , Oxidative Stress , Zebrafish , Animals , Gossypol/toxicity , Gossypol/pharmacology , Gossypol/administration & dosage , Oxidative Stress/drug effects , Apoptosis/drug effects , Inflammation/chemically induced , Animal Feed/analysis , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Diet/veterinary , Fish Diseases/chemically induced , Fish Diseases/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
6.
Fish Shellfish Immunol ; 151: 109744, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960107

ABSTRACT

MicroRNAs (miRNAs) have been demonstrated to act as crucial modulators with considerable impacts on the immune system. Cottonseed meal is often used as a protein source in aqua feed, cottonseed meal contains gossypol, which is harmful to animals. However, there is a lack of research on the role of miRNAs in fish exposed to gossypol stress. To determine the regulatory effects of miRNAs on gossypol toxicity, Cyprinus carpio were given to oral administration of 20 mg/kg gossypol for 7 days, and the gossypol concentration in the tissues was tested. Then, we detected spleen index, histology, immune enzyme activities of fish induced by gossypol. The results of miRNA sequencing revealed 8 differentially expressed miRNAs in gossypol group, and miR-214_L-1R+4 was found involved in immune response induced by gossypol. The potential targets of miR-214_L-1R+4 were predicted, and found a putative miR-214_L-1R+4 binding site in the 3'UTR of MyD88a. Furthermore, dual-luciferase reporter assays displayed miR-214_L-1R+4 decreased MyD88a expression through binding to the 3'UTR of MyD88a. Moreover, miR-214_L-1R+4 antagomir were intraperitoneally administered to C. carpio, down-regulated miR-214_L-1R+4 could increase MyD88a expression, as well as inflammatory cytokines and anti-inflammatory cytokines expression. These findings revealed that miR-214_L-1R+4 via the MyD88-dependent signaling pathway modulate the immune response to gossypol in C. carpio spleen.


Subject(s)
Carps , Fish Proteins , Gossypol , MicroRNAs , Myeloid Differentiation Factor 88 , Signal Transduction , Animals , Carps/immunology , Carps/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Gossypol/pharmacology , Gossypol/administration & dosage , Signal Transduction/drug effects , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Immunity, Innate/drug effects , Immunity, Innate/genetics
7.
J Dairy Sci ; 107(5): 2916-2929, 2024 May.
Article in English | MEDLINE | ID: mdl-38101747

ABSTRACT

Dietary fat is fed to increase energy intake and provide fatty acids (FA) to support milk fat production. Oilseeds contain unsaturated FA that increase the risk for biohydrogenation-induced milk fat depression, but FA in whole cottonseed (WCS) are expected to be slowly released in the rumen and thus have a lower risk for biohydrogenation-induced milk fat depression. Our hypothesis was that increasing dietary WCS would increase milk fat yield by providing additional dietary FA without induction of milk fat depression. Four primiparous and 8 multiparous lactating Holstein cows, 136 ± 35 and 127 ± 4 DIM, respectively, were arranged in a replicated 4 × 4 Latin square design with 21-d periods. Treatments were WCS provided at 0%, 3.4%, 6.8%, and 9.9% of dietary dry matter, and WCS was substituted for cottonseed hulls and soybean meal to maintain dietary fiber and protein. Treatment did not change milk yield. There was a treatment-by-parity interaction for milk fat percent and yield with a quadratic decreased in primiparous cows but no effect of WCS in multiparous cows. Cottonseed linearly increased milk fat trans-10 18:1 in primiparous cows but not in multiparous cows. Increasing WCS increased milk preformed (18C) FA yield and partially overcame the trans-10 18:1 inhibition of de novo FA synthesis in the primiparous cows. Apparent transfer of 18C FA from feed to milk decreased in all cows as WCS increased, but the magnitude of the change was greater in primiparous cows. Increasing WCS decreased total-tract apparent dry matter, organic matter, and neutral detergent fiber digestibility. There was no change in total FA digestibility. However, 18C FA digestibility tended to be decreased in both parities and 16C FA digestibility was quadratically increased in multiparous cows but not changed in primiparous cows. Total fecal flow of intact WCS increased as WCS level increased, but fecal flow of intact seeds as a percentage consumed was similar across treatments. Fecal flow of intact seeds was greater in multiparous cows (4.3% vs. 1.1% of consumed). Plasma concentrations of glucose, nonesterified FA, triglycerides, and insulin were not changed. However, plasma urea-N increased with increasing WCS. Plasma gossypol increased with WCS (0.08-1.15 µg/mL) but was well below expected toxic levels. In conclusion, WCS maintained milk and milk component yield when fed at up to 9.9% of the diet to multiparous cows without concerns of gossypol toxicity, but primiparous cows were more susceptible to biohydrogenation-induced milk fat depression in the current trial. This highlights the interactions of parity with diet composition when feeding rumen-available unsaturated fat to dairy cows.


Subject(s)
Gossypol , Milk , Female , Cattle , Animals , Milk/metabolism , Fatty Acids/metabolism , Cottonseed Oil/metabolism , Lactation/physiology , Gossypol/metabolism , Gossypol/pharmacology , Digestion , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Rumen/metabolism
8.
Pestic Biochem Physiol ; 199: 105774, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458681

ABSTRACT

Aphis gossypii, a globally distributed and economically significant pest of several crops, is known to infest a wide range of host plants. Heat shock proteins (Hsps), acting as molecular chaperones, are essential for the insect's environmental stress responses. The present study investigated the molecular characteristics and expression patterns of AgHsp70, a heat shock protein gene, in Aphis gossypii. Our phylogenetic analysis revealed that AgHsp70 shared high similarity with homologs from other insects, suggesting a conserved function across species. The developmental expression profiles of AgHsp70 in A. gossypii showed that the highest transcript levels were observed in the fourth instar nymphs, while the lowest levels were detected in the third instar nymphs. Heat stress and exposure to four different xenobiotics (2-tridecanone, tannic acid, gossypol, and flupyradifurone (4-[(2,2-difluoroethyl)amino]-2(5H)-furanone)) significantly up-regulated AgHsp70 expression. Knockdown of AgHsp70 using RNAi obviously increased the susceptibility of cotton aphids to 2-tridecanone, gossypol and flupyradifurone. Dual-luciferase reporter assays revealed that gossypol and flupyradifurone significantly enhanced the promoter activity of AgHsp70 at a concentration of 10 mg/L. Furthermore, we identified the transcription factor heat shock factor (HSF) as a regulator of AgHsp70, as silencing AgHSF reduced AgHsp70 expression. Our results shed light on the role of AgHsp70 in xenobiotic adaptation and thermo-tolerance.


Subject(s)
4-Butyrolactone/analogs & derivatives , Aphids , Gossypol , Ketones , Polyphenols , Pyridines , Animals , Aphids/genetics , Aphids/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Gossypol/metabolism , Phylogeny , Xenobiotics/pharmacology , Xenobiotics/metabolism
9.
Funct Integr Genomics ; 23(2): 197, 2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37270747

ABSTRACT

Cottonseed is an invaluable resource, providing protein, oil, and abundant minerals that significantly contribute to the well-being and nutritional needs of both humans and livestock. However, cottonseed also contains a toxic substance called gossypol, a secondary metabolite in Gossypium species that plays an important role in cotton plant development and self-protection. Herein, genome-wide analysis and characterization of the terpene synthase (TPS) gene family identified 304 TPS genes in Gossypium. Bioinformatics analysis revealed that the gene family was grouped into six subgroups TPS-a, TPS-b, TPS-c, TPS-e, TPS-f, and TPS-g. Whole-genome, segmental, and tandem duplication contributed to the evolution of TPS genes. According to the analysis of selection pressure, it was predicted that TPS genes experience predominantly negative selection, with positive selection occurring subsequently. RT-qPCR analysis in TM-1 and CRI-12 lines revealed GhTPS48 gene as the candidate gene for silencing experiments. To summarize, comprehensive genome-wide studies, RT-qPCR, and gene silencing experiments have collectively demonstrated the involvement of the TPS gene family in the biosynthesis of gossypol in cotton.


Subject(s)
Alkyl and Aryl Transferases , Gossypol , Humans , Gossypol/metabolism , Gossypium/genetics , Cottonseed Oil/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant
10.
BMC Plant Biol ; 23(1): 37, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36642721

ABSTRACT

BACKGROUND: Gossypol is a unique secondary metabolite and sesquiterpene in cotton, which is mainly synthesized in the root system of cotton and exhibits many biological activities. Previous research found that grafting affected the density of pigment glands and the gossypol content in cotton. RESULTS: This study performed a transcriptome analysis on cotton rootstocks and scions of four grafting methods. The gene expression of mutual grafting and self-grafting was compared to explore the potential genes involved in gossypol biosynthesis. A total of six differentially expressed enzymes were found in the main pathway of gossypol synthesis-sesquiterpene and triterpene biosynthesis (map00909): lupeol synthase (LUP1, EC:5.4.99.41), beta-amyrin synthase (LUP2, EC:5.4.99.39), squalene monooxygenase (SQLE, EC:1.14.14.17), squalene synthase (FDFT1, EC:2.5.1.21), (-)-germacrene D synthase (GERD, EC:4.2.3.75), ( +)-delta-cadinene synthase (CADS, EC:4.2.3.13). By comparing the results of the gossypol content and the density of the pigment gland, we speculated that these six enzymes might affect the biosynthesis of gossypol. It was verified by qRT-PCR analysis that grafting could influence gene expression of scion and stock. After suppressing the expression of the LUP1, FDFT1, and CAD genes by VIGS technology, the gossypol content in plants was significantly down-regulated. CONCLUSIONS: These results indicate the potential molecular mechanism of gossypol synthesis during the grafting process and provide a theoretical foundation for further research on gossypol biosynthesis.


Subject(s)
Gossypol , Sesquiterpenes , Gossypol/metabolism , Sesquiterpenes/metabolism , Gene Expression Profiling , Gossypium/genetics , Gossypium/metabolism
11.
Mol Genet Genomics ; 298(3): 755-766, 2023 May.
Article in English | MEDLINE | ID: mdl-37027022

ABSTRACT

Myeloblastosis (MYB) transcription factors (TFs) form a large gene family involved in a variety of biological processes in plants. Little is known about their roles in the development of cotton pigment glands. In this study, 646 MYB members were identified in Gossypium hirsutum genome and phylogenetic classification was analyzed. Evolution analysis revealed assymetric evolution of GhMYBs during polyploidization and sequence divergence of MYBs in G. hirustum was preferentially happend in D sub-genome. WGCNA (weighted gene co-expression network analysis) showed that four modules had potential relationship with gland development or gossypol biosynthesis in cotton. Eight differentially expressed GhMYB genes were identified by screening transcriptome data of three pairs of glanded and glandless cotton lines. Of these, four were selected as candidate genes for cotton pigment gland formation or gossypol biosynthesis by qRT-PCR assay. Silencing of GH_A11G1361 (GhMYB4) downregulated expression of multiple genes in gossypol biosynthesis pathway, indicating it could be involved in gossypol biosynthesis. The potential protein interaction network suggests that several MYBs may have indirect interaction with GhMYC2-like, a key regulator of pigment gland formation. Our study was the systematic analysis of MYB genes in cotton pigment gland development, providing candidate genes for further study on the roles of cotton MYB genes in pigment gland formation, gossypol biosynthesis and future crop plant improvement.


Subject(s)
Gossypium , Gossypol , Gossypium/metabolism , Gossypol/metabolism , Phylogeny , Genes, myb/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant
12.
Small ; 19(34): e2300104, 2023 08.
Article in English | MEDLINE | ID: mdl-37186509

ABSTRACT

Gossypol is a chemotherapeutic drug that can inhibit the anti-apoptotic protein Bcl-2, but the existing gossypol-related nanocarriers cannot well solve the problem of chemotherapy resistance. Based on the observation that gossypol becomes black upon Fe3+ coordination, it is hypothesized that encasing gossypol in glyceryl monooleate (GMO) and making it coordinate cobalt ferrite will not only improve its photothermal conversion efficiency (PCE) but also help it enter tumor cells. As the drug loading content and drug encapsulation efficiency of gossypol are 10.67% (w/w) and 96.20%, the PCE of cobalt ferrite rises from 14.71% to 36.00%. The synergistic therapeutic effect finally induces tumor apoptosis with a tumor inhibition rate of 96.56%, which is 2.99 and 1.47 times higher than chemotherapy or photothermal therapy (PTT) alone. PTT generated by the GMO nanocarriers under the irradiation of 808 nm laser can weaken tumor hypoxia, thereby assisting gossypol to inhibit Bcl-2. In addition, the efficacy of nanocarriers is also evaluated through T2 -weighted magnetic resonance imaging. Observations of gossypol-induced apoptosis in tissue slices provide definitive proof of chemotherapy sensitization, indicating that such coordination nanocarriers can be used as an effective preclinical agent to enhance chemotherapy.


Subject(s)
Cobalt , Gossypol , Neoplasms , Humans , Apoptosis , Cell Line, Tumor , Cobalt/pharmacology , Cobalt/therapeutic use , Gossypol/pharmacology , Gossypol/therapeutic use , Neoplasms/drug therapy
13.
Arch Toxicol ; 97(7): 1997-2014, 2023 07.
Article in English | MEDLINE | ID: mdl-37210688

ABSTRACT

Cutaneous basal and squamous cell carcinoma reflect the first and second most common type of non-melanoma skin cancer, respectively. Especially cutaneous squamous cell carcinoma has the tendency to metastasize, finally resulting in a rather poor prognosis. Therapeutic options comprise surgery, radiation therapy, and a systemic or targeted chemotherapy. There are some good treatment results, but overall, the response rate of newly developed drugs is still modest. Drug repurposing represents an alternative approach where already available and clinically approved substances are used, which originally intended for other clinical benefits. In this context, we tested the effect of the naturally occurring polyphenolic aldehyde (±) gossypol with concentrations between 1 and 5 µM on the invasive squamous cell carcinoma cell line SCL-1 and normal human epidermal keratinocytes. Gossypol treatment up to 96 h resulted in a selective cytotoxicity of SCL-1 cells (IC50: 1.7 µM, 96 h) compared with normal keratinocytes (IC50: ≥ 5.4 µM, 96 h) which is mediated by mitochondrial dysfunction and finally leading to necroptotic cell death. Taken together, gossypol shows a high potential as an alternative anticancer drug for the treatment of cutaneous squamous cell carcinoma.


Subject(s)
Carcinoma, Squamous Cell , Gossypol , Skin Neoplasms , Humans , Gossypol/pharmacology , Carcinoma, Squamous Cell/drug therapy , Necroptosis , Skin Neoplasms/drug therapy , Cell Line, Tumor
14.
Curr Microbiol ; 80(5): 163, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37012483

ABSTRACT

Cottonseed meal is an important source of plant protein for the meal fodder materials. But its usage in animal breeding industry is limited by a type of toxic phenol, gossypol, that has toxic effects on animal health. Microbial degradation is a promising way to lower down gossypol in cottonseed meal. However, the molecular mechanisms of bio-degradation of gossypol is still unclear. In this study we isolated a gossypol-degrading bacterial strain, YL01, and sequenced its complete genome via Oxford Nanopore sequencing method. There is a chromosome (5,737,005 bp) and a plasmid (136,446 bp) in YL01. 5489 protein coding genes in total were functionally annotated. 16S rRNA analysis showed that YL01 taxonomically belongs to the genus of Raoultella. YL01 is the first published complete genome sequence of microbes capable of gossypol degradation. Gene function annotation showed that 126 protein coding genes may involve in gossypol catabolism. Sequence similarity analysis showed that, as the only gossypol-degrading strain in the genus of Raoultella, YL01 uniquely holds 260 genes that are not possessed by other Raoultella strains. Our work gives a preliminary list for genes responsible for gossypol degradation but further investigations are needed to completely disclose this molecular processes.


Subject(s)
Enterobacteriaceae , Genome, Bacterial , Gossypol , Genome, Bacterial/genetics , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/metabolism , Gossypol/metabolism , Phylogeny , Species Specificity , Gene Expression Profiling
15.
BMC Biol ; 20(1): 143, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35706035

ABSTRACT

BACKGROUND: Zika virus (ZIKV) and dengue virus (DENV) cause microcephaly and dengue hemorrhagic fever, respectively, leading to severe problems. No effective antiviral agents are approved against infections of these flaviviruses, calling for the need to develop potent therapeutics. We previously identified gossypol as an effective inhibitor against ZIKV and DENV infections, but this compound is toxic and not suitable for in vivo treatment. RESULTS: In this study, we showed that gossypol derivative ST087010 exhibited potent and broad-spectrum in vitro inhibitory activity against infections of at least ten ZIKV strains isolated from different hosts, time periods, and countries, as well as DENV-1-4 serotypes, and significantly reduced cytotoxicity compared to gossypol. It presented broad-spectrum in vivo protective efficacy, protecting ZIKV-infected Ifnar1-/- mice from lethal challenge, with increased survival and reduced weight loss. Ifnar1-/- mice treated with this gossypol derivative decreased viral titers in various tissues, including the brain and testis, after infection with ZIKV at different human isolates. Moreover, ST087010 potently blocked ZIKV vertical transmission in pregnant Ifnar1-/- mice, preventing ZIKV-caused fetal death, and it was safe for pregnant mice and their pups. It also protected DENV-2-challenged Ifnar1-/- mice against viral replication by reducing the viral titers in the brain, kidney, heart, and sera. CONCLUSIONS: Overall, our data indicate the potential for further development of this gossypol derivative as an effective and safe broad-spectrum therapeutic agent to treat ZIKV and DENV diseases.


Subject(s)
Dengue Virus , Dengue , Gossypol , Zika Virus Infection , Zika Virus , Animals , Cross Reactions , Dengue/drug therapy , Dengue/prevention & control , Female , Gossypol/pharmacology , Gossypol/therapeutic use , Male , Mice , Pregnancy , Zika Virus Infection/drug therapy , Zika Virus Infection/prevention & control
16.
Int J Toxicol ; 42(3_suppl): 27S-28S, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37769692

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety reviewed newly available studies since their original assessment in 2001, along with updated information regarding product types and concentrations of use, and confirmed that Cottonseed Glyceride and Hydrogenated Cottonseed Glyceride are safe as cosmetic ingredients in the practices of use and concentration as described in this report, provided that established and imposed limits on gossypol, heavy metals, and pesticide concentrations are not exceeded.


Subject(s)
Cosmetics , Gossypol , Cottonseed Oil , Consumer Product Safety , Toxicity Tests , Glycerides
17.
Genomics ; 114(2): 110267, 2022 03.
Article in English | MEDLINE | ID: mdl-35032617

ABSTRACT

Gossypol and tannin are involved in important chemical defense processes in cotton plants. In this study, we used transcriptomics and proteomics to explore the changes in salivary gland functional genes and oral secretion (OS) proteins after feeding with artificial diet (containing gossypols and tannins) and cotton plant leaves. We found that dietary cotton plant leaves, gossypols and tannins exerted adverse impacts on the genes that regulated the functions of peptidase, GTPase, glycosyl hydrolases in the salivary glands of the Helicoverpa armigera (H. armigera). However, GST, UGT, hydrolases, and lipase genes were up-regulated to participate in the detoxification and digestive of H. armigera. The oral secretory proteins of H. armigera were significantly inhibited under the stress of gossypol and tannin, such as enzyme activity, but some proteins (such as PZC71358.1) were up-regulated and involved in immune and digestive functions. The combined analysis of transcriptomics and metabolomics showed a weak correlation, and the genes and proteins involved were mainly in digestive enzyme activities. Our work clarifies the deleterious physiological impacts of gossypols and tannins on H. armigera and reveals the mechanism by which H. armigera effectively mitigate the phytotoxic effects through detoxification and immune systems.


Subject(s)
Gossypol , Moths , Animals , Gossypium/genetics , Gossypium/metabolism , Gossypol/metabolism , Gossypol/toxicity , Hydrolases/genetics , Hydrolases/metabolism , Hydrolases/pharmacology , Insect Proteins/genetics , Larva/genetics , Moths/genetics , Moths/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Proteomics , Salivary Glands/metabolism , Tannins/metabolism , Tannins/pharmacology , Transcriptome
18.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240419

ABSTRACT

Glioblastoma (GBM) is a poorly treatable disease due to the fast development of tumor recurrences and high resistance to chemo- and radiotherapy. To overcome the highly adaptive behavior of GBMs, especially multimodal therapeutic approaches also including natural adjuvants have been investigated. However, despite increased efficiency, some GBM cells are still able to survive these advanced treatment regimens. Given this, the present study evaluates representative chemoresistance mechanisms of surviving human GBM primary cells in a complex in vitro co-culture model upon sequential application of temozolomide (TMZ) combined with AT101, the R(-) enantiomer of the naturally occurring cottonseed-derived gossypol. Treatment with TMZ+AT101/AT101, although highly efficient, yielded a predominance of phosphatidylserine-positive GBM cells over time. Analysis of the intracellular effects revealed phosphorylation of AKT, mTOR, and GSK3ß, resulting in the induction of various pro-tumorigenic genes in surviving GBM cells. A Torin2-mediated mTOR inhibition combined with TMZ+AT101/AT101 partly counteracted the observed TMZ+AT101/AT101-associated effects. Interestingly, treatment with TMZ+AT101/AT101 concomitantly changed the amount and composition of extracellular vesicles released from surviving GBM cells. Taken together, our analyses revealed that even when chemotherapeutic agents with different effector mechanisms are combined, a variety of chemoresistance mechanisms of surviving GBM cells must be taken into account.


Subject(s)
Brain Neoplasms , Glioblastoma , Gossypol , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Gossypol/pharmacology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Neoplasm Recurrence, Local/drug therapy , TOR Serine-Threonine Kinases , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
19.
Plant J ; 108(3): 781-792, 2021 11.
Article in English | MEDLINE | ID: mdl-34492144

ABSTRACT

The cotton (Gossypium hirsutum) pigment gland is a distinctive structure that functions as the main deposit organ of gossypol and its derivatives. It is also an ideal system in which to study cell differentiation and organogenesis. However, only a few genes that determine the process of gland formation have been reported, including GoPGF, CGP1, and CGFs; the molecular mechanisms underlying gland initiation are still largely unclear. Here, we report the discovery of the novel stem pigment gland-forming gene GoSPGF by map-based cloning; annotated as a GRAS transcription factor, this gene is responsible for the glandless trait specifically on the stem. In the stem glandless mutant T582, a point mutation (C to A) was found to create a premature stop codon and truncate the protein. Similarly, virus-induced gene silencing of GoSPGF resulted in glandless stems and dramatically reduced gossypol content. Comparative transcriptomic data showed that loss of GoSPGF significantly suppressed expression of many genes involved in gossypol biosynthesis and altered expression of genes involved in gibberellic acid signaling/biosynthesis. Overall, these findings provide more insight into the networks regulating glandular structure differentiation and formation in cotton, which will be helpful for understanding other plants bearing special gland structures such as tobacco (Nicotiana benthamiana), artemisia annua, mint (Mentha spp.), and rubber (Hevea brasiliensis).


Subject(s)
Gossypium/genetics , Plant Proteins/genetics , Cloning, Molecular , Gene Expression Regulation, Plant , Gene Silencing , Gibberellins/metabolism , Gossypium/growth & development , Gossypium/metabolism , Gossypol/metabolism , Plant Proteins/metabolism , Plant Stems/genetics , Plant Stems/growth & development , Plants, Genetically Modified , Signal Transduction , Nicotiana/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Nat Prod Rep ; 39(6): 1282-1304, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35587693

ABSTRACT

Covering up to 2022Gossypol is a polyphenolic compound isolated from cottonseed. There are two optical enantiomers of gossypol, (-)-gossypol and (+)-gossypol. Gossypol exists as three different tautomers, aldehyde, ketone and lactol. Gossypol is toxic and provides a protective mechanism for cotton plants against pests. Gossypol was used as a male contraceptive in China in the 1970s. It was eventually abandoned due to noticeable side effects, disruption of potassium uptake and incomplete reversibility. Gossypol has gained considerable research interest due to its attractive biological activities, especially antitumor and antivirus. Gossypol derivatives are prepared by a structural modification to reduce toxicity and improve their therapeutic effect. This review depicts the bioactivity and regulation mechanisms of gossypol and its derivatives as drug lead compounds, with emphasis on its antitumor mechanism. The design and synthesis of pharmacologically active derivatives based on the structure of gossypol, such as gossypol Schiff bases, apogossypol, gossypolone, are thoroughly discussed. This review aims to serve as a reference for gossypol-based drug discovery and drug design.


Subject(s)
Gossypol , Drug Design , Drug Discovery , Gossypol/chemistry , Gossypol/pharmacology , Humans , Male , Schiff Bases/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL