Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Proc Natl Acad Sci U S A ; 117(36): 22436-22442, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32820072

ABSTRACT

Cholesterol-PIE12-trimer (CPT31) is a potent d-peptide HIV entry inhibitor that targets the highly conserved gp41 N-peptide pocket region. CPT31 exhibited strong inhibitory breadth against diverse panels of primary virus isolates. In a simian-HIV chimeric virus AD8 (SHIVAD8) macaque model, CPT31 prevented infection from a single high-dose rectal challenge. In chronically infected animals, CPT31 monotherapy rapidly reduced viral load by ∼2 logs before rebound occurred due to the emergence of drug resistance. In chronically infected animals with viremia initially controlled by combination antiretroviral therapy (cART), CPT31 monotherapy prevented viral rebound after discontinuation of cART. These data establish CPT31 as a promising candidate for HIV prevention and treatment.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV , Simian Immunodeficiency Virus , Virus Internalization/drug effects , Animals , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Drug Evaluation, Preclinical , Female , HIV/drug effects , HIV/genetics , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Infections/drug therapy , HIV Infections/prevention & control , HIV Infections/virology , Macaca mulatta , Male , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/genetics
2.
J Virol ; 95(15): e0235020, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33980592

ABSTRACT

HIV-1 infection is initiated by the viral glycoprotein Env, which, after interaction with cellular coreceptors, adopts a transient conformation known as the prehairpin intermediate (PHI). The N-heptad repeat (NHR) is a highly conserved region of gp41 exposed in the PHI; it is the target of the FDA-approved drug enfuvirtide and of neutralizing monoclonal antibodies (mAbs). However, to date, these mAbs have only been weakly effective against tier-1 HIV-1 strains, which are most sensitive to neutralizing antibodies. Here, we engineered and tested 11 IgG variants of D5, an anti-NHR mAb, by recombining previously described mutations in four of D5's six antibody complementarity-determining regions. One variant, D5_AR, demonstrated 6-fold enhancement in the 50% inhibitory dose (ID50) against lentivirus pseudotyped with HXB2 Env. D5_AR exhibited weak cross-clade neutralizing activity against a diverse set of tier-2 HIV-1 viruses, which are less sensitive to neutralizing antibodies than tier-1 viruses and are the target of current antibody-based vaccine efforts. In addition, the neutralization potency of D5_AR IgG was greatly enhanced in target cells expressing FcγRI, with ID50 values of <0.1 µg/ml; this immunoglobulin receptor is expressed on macrophages and dendritic cells, which are implicated in the early stages of HIV-1 infection of mucosal surfaces. D5 and D5_AR have equivalent neutralization potency in IgG, Fab, and single-chain variable-fragment (scFv) formats, indicating that neutralization is not impacted by steric hindrance. Taken together, these results provide support for vaccine strategies that target the PHI by eliciting antibodies against the gp41 NHR and support investigation of anti-NHR mAbs in nonhuman primate passive immunization studies. IMPORTANCE Despite advances in antiretroviral therapy, HIV remains a global epidemic and has claimed more than 32 million lives. Accordingly, developing an effective HIV vaccine remains an urgent public health need. The gp41 N-heptad repeat (NHR) of the HIV-1 prehairpin intermediate (PHI) is highly conserved (>90%) and is inhibited by the FDA-approved drug enfuvirtide, making it an attractive vaccine target. However, to date, anti-NHR antibodies have not been potent. Here, we engineered D5_AR, a more potent variant of the anti-NHR antibody D5, and established its ability to inhibit HIV-1 strains that are more difficult to neutralize and are more representative of circulating strains (tier-2 strains). The neutralizing activity of D5_AR was greatly potentiated in cells expressing FcγRI; FcγRI is expressed on cells that are implicated at the earliest stages of sexual HIV-1 transmission. Taken together, these results bolster efforts to target the gp41 NHR and the PHI for vaccine development.


Subject(s)
Anti-HIV Agents/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , HIV Envelope Protein gp41/antagonists & inhibitors , HIV-1/immunology , Antibodies, Monoclonal/immunology , Cell Line , Enfuvirtide/pharmacology , HEK293 Cells , HIV Envelope Protein gp41/immunology , HIV Infections/immunology , HIV Infections/prevention & control , Humans , Protein Domains/immunology
3.
PLoS Pathog ; 16(5): e1008577, 2020 05.
Article in English | MEDLINE | ID: mdl-32392227

ABSTRACT

The HIV-1 envelope glycoprotein (Env) mediates viral entry via conformational changes associated with binding the cell surface receptor (CD4) and coreceptor (CCR5/CXCR4), resulting in subsequent fusion of the viral and cellular membranes. While the gp120 Env surface subunit has been extensively studied for its role in viral entry and evasion of the host immune response, the gp41 transmembrane glycoprotein and its role in natural infection are less well characterized. Here, we identified a primary HIV-1 Env variant that consistently supports >300% increased viral infectivity in the presence of autologous or heterologous HIV-positive plasma. However, in the absence of HIV-positive plasma, viruses with this Env exhibited reduced infectivity that was not due to decreased CD4 binding. Using Env chimeras and sequence analysis, we mapped this phenotype to a change Q563R, in the gp41 heptad repeat 1 (HR1) region. We demonstrate that Q563R reduces viral infection by disrupting formation of the gp41 six-helix bundle required for virus-cell membrane fusion. Intriguingly, antibodies that bind cluster I epitopes on gp41 overcome this inhibitory effect, restoring infectivity to wild-type levels. We further demonstrate that the Q563R change increases HIV-1 sensitivity to broadly neutralizing antibodies (bNAbs) targeting the gp41 membrane-proximal external region (MPER). In summary, we identify an HIV-1 Env variant with impaired infectivity whose Env functionality is restored through the binding of host antibodies. These data contribute to our understanding of gp41 residues involved in membrane fusion and identify a mechanism by which host factors can alleviate a viral defect.


Subject(s)
Antibodies, Neutralizing/pharmacology , HIV Antibodies/pharmacology , HIV Envelope Protein gp41 , HIV Infections/immunology , HIV-1/immunology , Virus Internalization/drug effects , Antibodies, Neutralizing/immunology , CD4 Antigens/immunology , HEK293 Cells , HIV Antibodies/immunology , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Envelope Protein gp41/immunology , HIV Infections/drug therapy , HIV Infections/pathology , Humans
4.
Chembiochem ; 22(24): 3443-3451, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34605595

ABSTRACT

With the emergence of novel viruses, the development of new antivirals is more urgent than ever. A key step in human immunodeficiency virus type 1 (HIV-1) infection is six-helix bundle formation within the envelope protein subunit gp41. Selective disruption of bundle formation by peptides has been shown to be effective; however, these drugs, exemplified by T20, are prone to rapid clearance from the patient. The incorporation of non-natural amino acids is known to improve these pharmacokinetic properties. Here, we evaluate a peptide inhibitor in which a critical Ile residue is replaced by fluorinated analogues. We characterized the influence of the fluorinated analogues on the biophysical properties of the peptide. Furthermore, we show that the fluorinated peptides can block HIV-1 infection of target cells at nanomolar levels. These findings demonstrate that fluorinated amino acids are appropriate tools for the development of novel peptide therapeutics.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Fusion Inhibitors/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Peptides/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , HIV Envelope Protein gp41/metabolism , HIV Fusion Inhibitors/chemical synthesis , HIV Fusion Inhibitors/chemistry , HIV Infections/metabolism , HIV-1/metabolism , Halogenation , Humans , Microbial Sensitivity Tests , Peptides/chemical synthesis , Peptides/chemistry
5.
Molecules ; 26(7)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807292

ABSTRACT

Acquired immune deficiency syndrome (AIDS) has prevailed over the last 30 years. Although highly active antiretroviral therapy (HAART) has decreased mortality and efficiently controlled the progression of disease, no vaccine or curative drugs have been approved until now. A viral inactivator is expected to inactivate cell-free virions in the absence of target cells. Previously, we identified a gp120-binding protein, mD1.22, which can inactivate laboratory-adapted HIV-1. In this study, we have found that the gp41 N-terminal heptad repeat (NHR)-binding antibody D5 single-chain variable fragment (scFv) alone cannot inactivate HIV-1 at the high concentration tested. However, D5 scFv in the combination could enhance inactivation activity of mD1.22 against divergent HIV-1 strains, including HIV-1 laboratory-adapted strains, primary HIV-1 isolates, T20- and AZT-resistant strains, and LRA-reactivated virions. Combining mD1.22 and D5 scFv exhibited synergistic effect on inhibition of infection by divergent HIV-1 strains. These results suggest good potential to develop the strategy of combining a gp120-binding protein and a gp41-binding antibody for the treatment of HIV-1 infection.


Subject(s)
Acquired Immunodeficiency Syndrome/virology , Carrier Proteins/pharmacology , HIV Envelope Protein gp120/antagonists & inhibitors , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Fusion Inhibitors/pharmacology , Recombinant Proteins/pharmacology , Virion/drug effects , Antibodies, Viral/immunology , Binding Sites , Cell Line , HIV-1/immunology , Humans , Single-Chain Antibodies/immunology
6.
J Virol ; 94(1)2019 12 12.
Article in English | MEDLINE | ID: mdl-31619552

ABSTRACT

Refolding of the HIV-1 gp41 N- and C-terminal heptad repeats (NHR and CHR, respectively) into a six-helix bundle (6-HB) juxtaposes viral and cellular membranes for fusion. The CHR-derived peptide T20 is the only clinically approved viral fusion inhibitor and has potent anti-HIV activity; however, its mechanism of action is not fully understood. In this study, we surprisingly found that T20 disrupted the α-helical conformation of the NHR-derived peptide N54 through its C-terminal tryptophan-rich motif (TRM) and that synthetic short peptides containing the TRM sequence, TRM8 and TRM12, disrupted the N54 helix in a dose-dependent manner. Interestingly, TRM8 efficiently interfered with the secondary structures of three overlapping NHR peptides (N44, N38, and N28) and interacted with N28, which contains mainly the deep NHR pocket-forming sequence, with high affinity, suggesting that TRM targeted the NHR pocket site to mediate the disruption. Unlike TRM8, the short peptide corresponding to the pocket-binding domain (PBD) of the CHR helix had no such disruptive effect, and the CHR peptide C34 could form a stable 6-HB with the NHR helix; however, addition of the TRM to the C terminus of C34 resulted in a peptide (C46) that destroyed the NHR helix. Although the TRM peptides alone had no anti-HIV activity and could not block the formation of 6-HB conformation, substitution of the TRM for the PBD in C34 resulted in a mutant inhibitor (C34TRM) with high binding and inhibitory capacities. Combined, the present data inform a new mode of action of T20 and the structure-function relationship of gp41.IMPORTANCE The HIV-1 Env glycoprotein mediates membrane fusion and is conformationally labile. Despite extensive efforts, the structural property of the native fusion protein gp41 is largely unknown, and the mechanism of action of the gp41-derived fusion inhibitor T20 remains elusive. Here, we report that T20 and its C-terminal tryptophan-rich motif (TRM) can efficiently impair the conformation of the gp41 N-terminal heptad repeat (NHR) coiled coil by interacting with the deep NHR pocket site. The TRM sequence has been verified to possess the ability to replace the pocket-binding domain of C34, a fusion inhibitor peptide with high anti-HIV potency. Therefore, our studies have not only facilitated understanding of the mechanism of action of T20 and developed novel HIV-1 fusion inhibitors but also provided new insights into the structural property of the prefusion state of gp41.


Subject(s)
Enfuvirtide/metabolism , HIV Envelope Protein gp41/chemistry , HIV Fusion Inhibitors/metabolism , HIV-1/chemistry , Tryptophan/chemistry , Amino Acid Motifs , Binding Sites , Circular Dichroism , Enfuvirtide/chemical synthesis , HEK293 Cells , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Envelope Protein gp41/metabolism , HIV Fusion Inhibitors/chemical synthesis , HIV-1/metabolism , Humans , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Structure-Activity Relationship , Tryptophan/metabolism
7.
J Chem Inf Model ; 60(1): 162-174, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31845803

ABSTRACT

The HIV-1 infection is triggered by the binding of the viral envelope glycoprotein (Env) gp120-gp41 trimer to host-cell receptor CD4 and co-receptor CCR5/CXCR4, which leads to substantial conformational changes of Env, that is, structural transition of gp120 from a closed to an open state followed by gp41 refolding from pre-fusion to post-fusion states. The latter finally promotes membrane fusion, likely via visiting a critical pre-hairpin state of gp41. The complete conformational dynamics of the pre-hairpin formation at atomic resolution, however, is still unknown. Here, by constructing a Markov state model based on the all-atom molecular dynamics (MD) with an aggregated simulation time of ∼24 µs, we reveal the gp41 refolding dynamics from pre-fusion to pre-hairpin state and the key metastable states involved. Moreover, we further explored the drug resistance mechanism of two C-terminal heptad repeat-derived gp41 inhibitors, T20 and sifuvirtide, based on the constructed inhibitor-bound gp41 pre-hairpin complexes. The results indicate that these two inhibitors have distinct binding sites on gp41 but share a common drug resistance region that usually exhibits a helical structure in the pre-hairpin state yet adopts various secondary structures in other metastable states. Moreover, we conducted several mutant MD simulations to further investigate the mechanisms of how some drug-resistant mutations might affect the pre-hairpin formation, which in turn prevent the inhibitor recognition. Our findings provide deep structural insights into the molecular mechanisms of the pre-hairpin formation for gp41, which helps to guide future anti-HIV drug design.


Subject(s)
HIV Envelope Protein gp41/chemistry , HIV-1/physiology , Virus Internalization , Anti-HIV Agents/pharmacology , Cryoelectron Microscopy , Crystallography, X-Ray , HIV Envelope Protein gp41/antagonists & inhibitors , Molecular Dynamics Simulation , Protein Conformation , Protein Refolding , Reproducibility of Results
8.
Chembiochem ; 20(16): 2101-2108, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31012222

ABSTRACT

C34, a 34-mer fragment peptide, is contained in the HIV-1 envelope protein gp41. A dimeric derivative of C34 linked through a disulfide bridge at its C terminus was synthesized and found to display potent anti-HIV activity, comparable with that of a previously reported PEGylated dimer of C34REG. The reduction in the size of the linker moiety for dimerization was thus successful, and this result might shed some light on the mechanism of the suppression of six-helix bundle formation by these C34 dimeric derivatives. Addition of a Gly-Cys(CH2 CONH2 )-Gly-Gly motif at the N-terminal position of a C34 monomeric derivative significantly increased the anti-HIV-1 activity. This moiety functions as a new pharmacophore, and this might provide a useful insight into the design of potent HIV-1 fusion inhibitors.


Subject(s)
Anti-HIV Agents/pharmacology , Disulfides/pharmacology , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Fusion Inhibitors/pharmacology , HIV-1/drug effects , Peptide Fragments/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Dimerization , Disulfides/chemistry , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/pharmacology , HIV Fusion Inhibitors/chemical synthesis , HIV Fusion Inhibitors/chemistry , Humans , Microbial Sensitivity Tests , Molecular Conformation , Peptide Fragments/chemistry
9.
J Virol ; 92(8)2018 04 15.
Article in English | MEDLINE | ID: mdl-29386285

ABSTRACT

The 10E8 antibody targets a helical epitope in the membrane-proximal external region (MPER) and transmembrane domain (TMD) of the envelope glycoprotein (Env) subunit gp41 and is among the broadest known neutralizing antibodies against HIV-1. Accordingly, this antibody and its mechanism of action valuably inform the design of effective vaccines and immunotherapies. 10E8 exhibits unusual adaptations to attain specific, high-affinity binding to the MPER at the viral membrane interface. Reversing the charge of the basic paratope surface (from net positive to net negative) reportedly lowered its neutralization potency. Here, we hypothesized that by increasing the net positive charge in similar polar surface patches, the neutralization potency of the antibody may be enhanced. We found that an increased positive charge at this paratope surface strengthened an electrostatic interaction between the antibody and lipid bilayers, enabling 10E8 to interact spontaneously with membranes. Notably, the modified 10E8 antibody did not gain any apparent polyreactivity and neutralized virus with a significantly greater potency. Binding analyses indicated that the optimized 10E8 antibody bound with a higher affinity to the epitope peptide anchored in lipid bilayers and to Env spikes on virions. Overall, our data provide a proof of principle for the rational optimization of 10E8 via manipulation of its interaction with the membrane element of its epitope. However, the observation that a similar mutation strategy did not affect the potency of the first-generation anti-MPER antibody 4E10 shows possible limitations of this principle. Altogether, our results emphasize the crucial role played by the viral membrane in the antigenicity of the MPER-TMD of HIV-1.IMPORTANCE The broadly neutralizing antibody 10E8 blocks infection by nearly all HIV-1 isolates, a capacity which vaccine design seeks to reproduce. Engineered versions of this antibody also represent a promising treatment for HIV infection by passive immunization. Understanding its mechanism of action is therefore important to help in developing effective vaccines and biologics to combat HIV/AIDS. 10E8 engages its helical MPER epitope where the base of the envelope spike submerges into the viral membrane. To enable this interaction, this antibody evolved an unusual property: the ability to interact with the membrane surface. Here, we provide evidence that 10E8 can be made more effective by enhancing its interactions with membranes. Our findings strengthen the idea that to elicit antibodies similar to 10E8, vaccines must reproduce the membrane environment where these antibodies perform their function.


Subject(s)
Antibodies, Neutralizing/immunology , Cell Membrane/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Infections/immunology , HIV-1/immunology , Antibodies, Neutralizing/pharmacology , Cell Line , HIV Antibodies/pharmacology , HIV Envelope Protein gp41/immunology , HIV Infections/drug therapy , HIV Infections/pathology , Humans
10.
Nat Chem Biol ; 13(10): 1115-1122, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28825711

ABSTRACT

The HIV-1 envelope (Env) spike is a conformational machine that transitions between prefusion (closed, CD4- and CCR5-bound) and postfusion states to facilitate HIV-1 entry into cells. Although the prefusion closed conformation is a potential target for inhibition, development of small-molecule leads has been stymied by difficulties in obtaining structural information. Here, we report crystal structures at 3.8-Å resolution of an HIV-1-Env trimer with BMS-378806 and a derivative BMS-626529 for which a prodrug version is currently in Phase III clinical trials. Both lead candidates recognized an induced binding pocket that was mostly excluded from solvent and comprised of Env elements from a conserved helix and the ß20-21 hairpin. In both structures, the ß20-21 region assumed a conformation distinct from prefusion-closed and CD4-bound states. Together with biophysical and antigenicity characterizations, the structures illuminate the allosteric and competitive mechanisms by which these small-molecule leads inhibit CD4-induced structural changes in Env.


Subject(s)
HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp41/chemistry , Piperazines/chemistry , Small Molecule Libraries/chemistry , Triazoles/chemistry , Virus Internalization/drug effects , Crystallography, X-Ray , HIV Envelope Protein gp120/antagonists & inhibitors , HIV Envelope Protein gp41/antagonists & inhibitors , Models, Molecular , Piperazines/pharmacology , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Triazoles/pharmacology
11.
J Biol Chem ; 292(24): 10197-10219, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28446609

ABSTRACT

The gp120 subunit of the HIV-1 envelope (Env) protein is heavily glycosylated at ∼25 glycosylation sites, of which ∼7-8 are located in the V1/V2 and V3 variable loops and the others in the remaining core gp120 region. Glycans partially shield Env from recognition by the host immune system and also are believed to be indispensable for proper folding of gp120 and for viral infectivity. Previous attempts to alter glycosylation sites in Env typically involved mutating the glycosylated asparagine residues to structurally similar glutamines or alanines. Here, we confirmed that such mutations at multiple glycosylation sites greatly diminish viral infectivity and result in significantly reduced binding to both neutralizing and non-neutralizing antibodies. Therefore, using an alternative approach, we combined evolutionary information with structure-guided design and yeast surface display to produce properly cleaved HIV-1 Env variants that lack all 15 core gp120 glycans, yet retain conformational integrity and multiple-cycle viral infectivity and bind to several broadly neutralizing antibodies (bNAbs), including trimer-specific antibodies and a germline-reverted version of the bNAb VRC01. Our observations demonstrate that core gp120 glycans are not essential for folding, and hence their likely primary role is enabling immune evasion. We also show that our glycan removal approach is not strain restricted. Glycan-deficient Env derivatives can be used as priming immunogens because they should engage and activate a more divergent set of germlines than fully glycosylated Env. In conclusion, these results clarify the role of core gp120 glycosylation and illustrate a general method for designing glycan-free folded protein derivatives.


Subject(s)
HIV Envelope Protein gp120/metabolism , HIV-1/metabolism , Immune Evasion , Models, Molecular , Protein Processing, Post-Translational , Amino Acid Substitution , Antibodies, Neutralizing/metabolism , Antibodies, Viral , Antibody Specificity , Asparagine/metabolism , Glycosylation , HIV Envelope Protein gp120/antagonists & inhibitors , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/metabolism , HIV-1/immunology , HIV-1/pathogenicity , Humans , Mutagenesis, Site-Directed , Mutation , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Engineering , Protein Folding , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
12.
J Virol ; 91(1)2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27795437

ABSTRACT

Human immunodeficiency virus type 2 (HIV-2) has already spread to different regions worldwide, and currently about 1 to 2 million people have been infected, calling for new antiviral agents that are effective on both HIV-1 and HIV-2 isolates. T20 (enfuvirtide), a 36-mer peptide derived from the C-terminal heptad repeat region (CHR) of gp41, is the only clinically approved HIV-1 fusion inhibitor, but it easily induces drug resistance and is not active on HIV-2. In this study, we first demonstrated that the M-T hook structure was also vital to enhancing the binding stability and inhibitory activity of diverse CHR-based peptide inhibitors. We then designed a novel short peptide (23-mer), termed 2P23, by introducing the M-T hook structure, HIV-2 sequences, and salt bridge-forming residues. Promisingly, 2P23 was a highly stable helical peptide with high binding to the surrogate targets derived from HIV-1, HIV-2, and simian immunodeficiency virus (SIV). Consistent with this, 2P23 exhibited potent activity in inhibiting diverse subtypes of HIV-1 isolates, T20-resistant HIV-1 mutants, and a panel of primary HIV-2 isolates, HIV-2 mutants, and SIV isolates. Therefore, we conclude that 2P23 has high potential to be further developed for clinical use, and it is also an ideal tool for exploring the mechanisms of HIV-1/2- and SIV-mediated membrane fusion. IMPORTANCE: The peptide drug T20 is the only approved HIV-1 fusion inhibitor, but it is not active on HIV-2 isolates, which have currently infected 1 to 2 million people and continue to spread worldwide. Recent studies have demonstrated that the M-T hook structure can greatly enhance the binding and antiviral activities of gp41 CHR-derived inhibitors, especially for short peptides that are otherwise inactive. By combining the hook structure, HIV-2 sequence, and salt bridge-based strategies, the short peptide 2P23 has been successfully designed. 2P23 exhibits prominent advantages over many other peptide fusion inhibitors, including its potent and broad activity on HIV-1, HIV-2, and even SIV isolates, its stability as a helical, oligomeric peptide, and its high binding to diverse targets. The small size of 2P23 would benefit its synthesis and significantly reduce production cost. Therefore, 2P23 is an ideal candidate for further development, and it also provides a novel tool for studying HIV-1/2- and SIV-mediated cell fusion.


Subject(s)
HIV Envelope Protein gp41/antagonists & inhibitors , HIV Fusion Inhibitors/pharmacology , HIV-1/drug effects , HIV-2/drug effects , Peptides/pharmacology , Simian Immunodeficiency Virus/drug effects , Binding Sites , Drug Design , Drug Resistance, Viral/drug effects , Enfuvirtide , HIV Envelope Protein gp41/metabolism , HIV Envelope Protein gp41/pharmacology , HIV Fusion Inhibitors/chemical synthesis , HIV-1/chemistry , HIV-1/metabolism , HIV-2/chemistry , HIV-2/metabolism , Humans , Peptide Fragments/pharmacology , Peptides/chemical synthesis , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Simian Immunodeficiency Virus/chemistry , Simian Immunodeficiency Virus/metabolism , Structure-Activity Relationship , Virus Internalization/drug effects
13.
Mol Pharm ; 15(11): 5005-5018, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30226777

ABSTRACT

New therapeutic alternatives to fight against the spread of HIV-1 are based on peptides designed to inhibit the early steps of HIV-1 fusion in target cells. However, drawbacks, such as bioavailability, short half-life, rapid clearance, and poor ability to cross the physiological barriers, make such peptides unattractive for the pharmaceutical industry. Here we developed, optimized, and characterized polymeric nanoparticles (NPs) coated with glycol chitosan to incorporate and release an HIV-1 fusion inhibitor peptide (E1) inside the vaginal mucosa. The NPs were prepared by a modified double emulsion method, and optimization was carried out by a factorial design. In vitro, ex vivo, and in vivo studies were carried out to evaluate the optimized formulation. The results indicate that the physicochemical features of these NPs enable them to incorporate and release HIV fusion inhibitor peptides to the vaginal mucosa before the fusion step takes place.


Subject(s)
Drug Carriers/chemistry , HIV-1/drug effects , Peptides/administration & dosage , Viral Fusion Protein Inhibitors/administration & dosage , Administration, Intravaginal , Animals , Chitosan/chemistry , Drug Design , Female , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/physiology , Models, Animal , Mucous Membrane/drug effects , Mucous Membrane/metabolism , Mucous Membrane/virology , Nanoparticles/chemistry , Particle Size , Peptides/chemistry , Peptides/pharmacokinetics , Swine , Vagina/drug effects , Vagina/metabolism , Vagina/virology , Viral Envelope Proteins/chemistry , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/pharmacokinetics , Virus Internalization/drug effects
14.
Bioorg Med Chem Lett ; 28(10): 1842-1845, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29680665

ABSTRACT

DNA helix-based HIV-1 fusion inhibitors have been discovered as potent drug candidates. Introduction of hydrophobic groups to a nucleobase provides an opportunity to design inhibitors with novel structures and mechanisms of action. In this work, two novel nucleoside analogues (1 and 2) were synthesized and incorporated into four DNA duplex- and quadruplex-based inhibitors. All the molecules showed anti-HIV-1 fusion activity. The effect of the p-benzyloxyphenyl group and the attached linker on the helix formation and thermal stability were fully compared and discussed. Surface plasmon resonance analysis further indicated that inhibitors with the same DNA helix may still have variable reaction targets, mainly attributed to the different hydrophobic modifications.


Subject(s)
DNA/metabolism , HIV Fusion Inhibitors/chemical synthesis , Nucleosides/chemistry , Circular Dichroism , DNA/chemistry , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Envelope Protein gp41/metabolism , HIV Fusion Inhibitors/metabolism , HIV Fusion Inhibitors/pharmacology , HIV-1/drug effects , Humans , Kinetics , Surface Plasmon Resonance , Transition Temperature
15.
Bioorg Med Chem Lett ; 28(1): 49-52, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29162455

ABSTRACT

A series of novel or known water-soluble derivatives of chiral gossypol were synthesized and screened in vitro for their anti-HIV-1 activity. (-)-gossypol derivative was more active against HIV-1 than the corresponding (+)-gossypol derivative, respectively. Among these derivatives, d-glucosamine derivative of (-)-gossypol, oligopeptide derivative of (-)-gossypol and taurine derivative of (-)-gossypol, such as compounds 1a, 3a and 14a, showed significant inhibitory activities against HIV-1 replication, HIV-1 mediated cell-cell fusion and HIV gp41 6-helix bundle formation as some amino acid derivatives of (-)-gossypol.


Subject(s)
Gossypol/chemistry , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Fusion Inhibitors/chemical synthesis , HIV-1/physiology , Binding Sites , Drug Design , Gossypol/metabolism , Gossypol/pharmacology , HIV Envelope Protein gp41/metabolism , HIV Fusion Inhibitors/metabolism , HIV Fusion Inhibitors/pharmacology , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Structure, Tertiary , Solubility , Stereoisomerism , Virus Replication/drug effects , Water/chemistry
16.
Bioorg Med Chem Lett ; 28(5): 910-914, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29433929

ABSTRACT

Fusion inhibitors of HIV prevent the virus from entering into the target cell via the interaction with gp41, which stops the process of spatial rearrangement of the viral envelope protein. A series of peptides have been designed and screened to obtain a highly potent novel sequence. Among them, CT105 possesses the most potent anti-viral ability at low nanomolar IC50 values against a panel of HIV-1 pseudoviruses from A, B, C and A1/D subtypes, whereas T20 shows much weaker potency. CT105 also shows excellent inhibitory activity at 260 pico molar IC50 against HIV-1 replication. As a fusion inhibitor, CT105 has a strong ability to interrupt gp41 core formation. The terminal half-life of CT105 possesses 1.72-fold longer than that of T20 as determined by developing an indirect competitive ELISA method. The results suggest that this artificial peptide CT105 could be a favorable architype for further optimization and modification.


Subject(s)
Anti-HIV Agents/pharmacology , HIV Envelope Protein gp41/antagonists & inhibitors , HIV-1/drug effects , Peptides/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Peptides/chemical synthesis , Peptides/chemistry , Structure-Activity Relationship , Virus Replication/drug effects
17.
Chem Biodivers ; 15(10): e1800159, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30027572

ABSTRACT

The HIV-1 life cycle consists of different events, such as cell entry and fusion, virus replication, assembly and release of the newly formed virions. The more logical way to inhibit HIV transmission among individuals is to inhibit its entry into the immune host cells rather than targeting the intracellular viral enzymes. Both viral and host cell surface receptors and co-receptors are regarded as potential targets in anti-HIV-1 drug design process. Because of the importance of this topic it was decided to summarize recent reports on small-molecule HIV-1 entry inhibitors that have not been considered in the latest released reviews. All the computational studies reported in the literature regarding HIV-1 entry inhibitors since 2014 was also considered in this review.


Subject(s)
Drug Design , HIV Fusion Inhibitors/chemistry , HIV Fusion Inhibitors/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , HIV Envelope Protein gp120/antagonists & inhibitors , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Envelope Protein gp41/metabolism , HIV Fusion Inhibitors/therapeutic use , HIV Infections/metabolism , HIV-1/physiology , Humans , Receptors, CCR5/metabolism , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Small Molecule Libraries/therapeutic use , Virus Internalization/drug effects
18.
Bioorg Med Chem Lett ; 27(14): 3177-3184, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28558972

ABSTRACT

The viral protein HIVgp41 is an attractive and validated drug target that proceeds through a sequence of conformational changes crucial for membrane fusion, which facilitates viral entry. Prior work has identified inhibitors that interfere with the formation of a required six-helix bundle, composed of trimeric C-heptad (CHR) and N-heptad (NHR) repeat elements, through blocking association of an outer CHR helix or obstructing formation of the inner NHR trimer itself. In this work, we employed similarity-based scoring to identify and experimentally characterize 113 compounds, related to 2 small-molecule inhibitors recently reported by Allen et al. (Bioorg. Med. Chem Lett.2015, 25 2853-59), proposed to act via the NHR trimer obstruction mechanism. The compounds were first tested in an HIV cell-cell fusion assay with the most promising evaluated in a second, more biologically relevant viral entry assay. Of the candidates, compound #11 emerged as the most promising hit (IC50=37.81µM), as a result of exhibiting activity in both assays with low cytotoxicity, as was similarly seen with the known control peptide inhibitor C34. The compound also showed no inhibition of VSV-G pseudotyped HIV entry compared to a control inhibitor suggesting it was specific for HIVgp41. Molecular dynamics simulations showed the predicted DOCK pose of #11 interacts with HIVgp41 in an energetic fashion (per-residue footprints) similar to the four native NHR residues (IQLT) which candidate inhibitors were intended to mimic.


Subject(s)
Drug Design , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Fusion Inhibitors/chemistry , HIV/metabolism , Amino Acid Sequence , Binding Sites , Cell Line , Cell Survival/drug effects , HIV Envelope Protein gp41/metabolism , HIV Fusion Inhibitors/metabolism , HIV Fusion Inhibitors/toxicity , Humans , Molecular Docking Simulation , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Protein Structure, Tertiary , Virus Internalization/drug effects
19.
Org Biomol Chem ; 15(24): 5210-5219, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28590477

ABSTRACT

Small molecule inhibitors of glycoprotein-41 (gp41) are able to prevent HIV infection by binding to a hydrophobic pocket (HP) contained within the gp41 ectodomain, and preventing progression of fusion. There is little structural information on gp41-ligand complexes, owing to hydrophobicity of the ligands, occlusion of the HP in folded gp41 ectodomain, and failure to form crystals of complexes. Here we used an engineered gp41 ectodomain protein containing an exposed HP and a small molecule designed to bind with weak affinity to the HP. We evaluated NMR methods, including WaterLOGSY, Saturation Transfer Difference spectroscopy (STD-NMR) and 1H relaxation rate difference spectroscopy with and without target irradiation (DIRECTION) for their ability to probe complex formation and structure. WaterLOGSY was the most sensitive technique for monitoring formation of the complex. STD-NMR and DIRECTION experiments gave similar pharmacophore mapping profiles, although the low dynamic range of the DIRECTION experiment limited its discrimination and sensitivity. A unique binding pose was identified from the STD data and provided clues for future optimization. Advantages and disadvantages of the techniques are discussed. This is the first example of the use of STD for structural analysis of a gp41-small molecule complex.


Subject(s)
HIV Envelope Protein gp41/antagonists & inhibitors , Magnetic Resonance Spectroscopy , Small Molecule Libraries/pharmacology , Binding Sites/drug effects , Ligands , Molecular Docking Simulation , Molecular Structure , Small Molecule Libraries/chemistry , Structure-Activity Relationship
20.
Bioorg Med Chem ; 25(1): 408-420, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27908751

ABSTRACT

Low molecular weight peptidomimetic inhibitors with hydrophobic pocket binding properties and moderate fusion inhibitory activity against HIV-1 gp41-mediated cell fusion were elaborated by increasing the available surface area for interacting with the heptad repeat-1 (HR1) coiled coil on gp41. Two types of modifications were tested: 1) increasing the overall hydrophobicity of the molecules with an extension that could interact in the HR1 groove, and 2) forming symmetrical dimers with two peptidomimetic motifs that could potentially interact simultaneously in two hydrophobic pockets on the HR1 trimer. The latter approach was more successful, yielding 40-60times improved potency against HIV fusion over the monomers. Biophysical characterization, including equilibrium binding studies by fluorescence and kinetic analysis by Surface Plasmon Resonance, revealed that inhibitor potency was better correlated to off-rates than to binding affinity. Binding and kinetic data could be fit to a model of bidentate interaction of dimers with the HR1 trimer as an explanation for the slow off-rate, albeit with minimal cooperativity due to the highly flexible ligand structures. The strong cooperativity observed in fusion inhibitory activity of the dimers implied accentuated potency due to the transient nature of the targeted intermediate. Optimization of monomer, dimer or higher order structures has the potential to lead to highly potent non-peptide fusion inhibitors by targeting multiple hydrophobic pockets.


Subject(s)
HIV Envelope Protein gp41/antagonists & inhibitors , HIV Fusion Inhibitors/pharmacology , Peptidomimetics/pharmacology , Binding Sites , Cell Fusion , HIV Fusion Inhibitors/chemical synthesis , HeLa Cells , Humans , Kinetics , Models, Chemical , Peptidomimetics/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL