Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 293
Filter
1.
PLoS Pathog ; 20(2): e1011981, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38354122

ABSTRACT

Lysosomes are acidic organelles that mediate the degradation and recycling of cellular waste materials. Damage to lysosomes can cause lysosomal membrane permeabilization (LMP) and trigger different types of cell death, including apoptosis. Newcastle disease virus (NDV) can naturally infect most birds. Additionally, it serves as a promising oncolytic virus known for its effective infection of tumor cells and induction of intensive apoptotic responses. However, the involvement of lysosomes in NDV-induced apoptosis remains poorly understood. Here, we demonstrate that NDV infection profoundly triggers LMP, leading to the translocation of cathepsin B and D and subsequent mitochondria-dependent apoptosis in various tumor and avian cells. Notably, the released cathepsin B and D exacerbate NDV-induced LMP by inducing the generation of reactive oxygen species. Additionally, we uncover that the viral Hemagglutinin neuraminidase (HN) protein induces the deglycosylation and degradation of lysosome-associated membrane protein 1 (LAMP1) and LAMP2 dependent on its sialidase activity, which finally contributes to NDV-induced LMP and cellular apoptosis. Overall, our findings elucidate the role of LMP in NDV-induced cell apoptosis and provide novel insights into the function of HN during NDV-induced LMP, which provide innovative approaches for the development of NDV-based oncolytic agents.


Subject(s)
HN Protein , Newcastle disease virus , Animals , Newcastle disease virus/metabolism , HN Protein/metabolism , Cathepsin B , Apoptosis , Lysosomes/metabolism
2.
PLoS Pathog ; 19(3): e1011273, 2023 03.
Article in English | MEDLINE | ID: mdl-36972304

ABSTRACT

Many viruses initiate infection by binding to sialoglycan receptors at the cell surface. Binding to such receptors comes at a cost, however, as the sheer abundance of sialoglycans e.g. in mucus, may immobilize virions to non-functional decoy receptors. As a solution, sialoglycan-binding as well as sialoglycan-cleavage activities are often present in these viruses, which for paramyxoviruses are combined in the hemagglutinin-neuraminidase (HN) protein. The dynamic interactions of sialoglycan-binding paramyxoviruses with their receptors are thought to be key determinants of species tropism, replication and pathogenesis. Here we used biolayer interferometry to perform kinetic analyses of receptor interactions of animal and human paramyxoviruses (Newcastle disease virus, Sendai virus, and human parainfluenza virus 3). We show that these viruses display strikingly different receptor interaction dynamics, which correlated with their receptor-binding and -cleavage activities and the presence of a second sialic acid binding site. Virion binding was followed by sialidase-driven release, during which virions cleaved sialoglycans until a virus-specific density was reached, which was largely independent of virion concentration. Sialidase-driven virion release was furthermore shown to be a cooperative process and to be affected by pH. We propose that paramyxoviruses display sialidase-driven virion motility on a receptor-coated surface, until a threshold receptor density is reached at which virions start to dissociate. Similar motility has previously been observed for influenza viruses and is likely to also apply to sialoglycan-interacting embecoviruses. Analysis of the balance between receptor-binding and -cleavage increases our understanding of host species tropism determinants and zoonotic potential of viruses.


Subject(s)
Neuraminidase , Viral Proteins , Animals , Humans , Neuraminidase/metabolism , Kinetics , Protein Binding , Viral Proteins/metabolism , Virion/metabolism , HN Protein/genetics , HN Protein/metabolism
3.
PLoS Pathog ; 18(6): e1010564, 2022 06.
Article in English | MEDLINE | ID: mdl-35679257

ABSTRACT

The development of thermostable vaccines can relieve the bottleneck of existing vaccines caused by thermal instability and subsequent poor efficacy, which is one of the predominant reasons for the millions of deaths caused by vaccine-preventable diseases. Research into the mechanism of viral thermostability may provide strategies for developing thermostable vaccines. Using Newcastle disease virus (NDV) as model, we identified the negative surface charge of attachment glycoprotein as a novel determinant of viral thermostability. It prevented the temperature-induced aggregation of glycoprotein and subsequent detachment from virion surface. Then structural stability of virion surface was improved and virus could bind to and infect cells efficiently after heat-treatment. Employing the approach of surface charge engineering, thermal stability of NDV and influenza A virus (IAV) vaccines was successfully improved. The increase in the level of vaccine thermal stability was determined by the value-added in the negative surface charge of the attachment glycoprotein. The engineered live and inactivated vaccines could be used efficiently after storage at 37°C for at least 10 and 60 days, respectively. Thus, our results revealed a novel surface-charge-mediated link between HN protein and NDV thermostability, which could be used to design thermal stable NDV and IAV vaccines rationally.


Subject(s)
Newcastle Disease , Viral Vaccines , Animals , Chickens/metabolism , Glycoproteins , HN Protein/metabolism , Newcastle Disease/prevention & control , Newcastle disease virus/metabolism
4.
Virol J ; 21(1): 7, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38178138

ABSTRACT

BACKGROUND: Oncolytic viruses are being studied and developed as novel cancer treatments. Using directed evolution technology, structural modification of the viral surface protein increases the specificity of the oncolytic virus for a particular cancer cell. Newcastle disease virus (NDV) does not show specificity for certain types of cancer cells during infection; therefore, it has low cancer cell specificity. Hemagglutinin is an NDV receptor-binding protein on the cell surface that determines host cell tropism. NDV selectivity for specific cancer cells can be increased by artificial amino acid changes in hemagglutinin neuraminidase HN proteins via directed evolution, leading to improved therapeutic effects. METHODS: Sialic acid-binding sites (H domains) of the HN protein mutant library were generated using error-prone PCR. Variants of the H domain protein were screened by enzyme-linked immunosorbent assay using HCT 116 cancer cell surface molecules. The mutant S519G H domain protein showed the highest affinity for the surface protein of HCT 116 cells compared to that of different types of cancer cells. This showed that the S519G mutant H domain protein gene replaced the same part of the original HN protein gene, and S519G mutant recombinant NDV (rNDV) was constructed and recovered. S519G rNDV cancer cell killing effects were tested using the MTT assay with various cancer cell types, and the tumor suppression effect of the S519G mutant rNDV was tested in a xenograft mouse model implanted with cancer cells, including HCT 116 cells. RESULTS: S519G rNDV showed increased specificity and enhanced killing ability of HCT 116 cells among various cancer cells and a stronger suppressive effect on tumor growth than the original recombinant NDV. Directed evolution using an artificial amino acid change in the NDV HN (S519G mutant) protein increased its specificity and oncolytic effect in colorectal cancer without changing its virulence. CONCLUSION: These results provide a new methodology for the use of directed evolution technology for more effective oncolytic virus development.


Subject(s)
Colorectal Neoplasms , Oncolytic Viruses , Humans , Animals , Mice , Newcastle disease virus/genetics , Newcastle disease virus/metabolism , HN Protein/genetics , HN Protein/metabolism , Neuraminidase/genetics , Neuraminidase/metabolism , Hemagglutinins , N-Acetylneuraminic Acid/metabolism , HCT116 Cells , Oncolytic Viruses/genetics , Disease Models, Animal , Membrane Proteins , Colorectal Neoplasms/therapy
5.
Vet Res ; 55(1): 58, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715081

ABSTRACT

The haemagglutinin-neuraminidase (HN) protein, a vital membrane glycoprotein, plays a pivotal role in the pathogenesis of Newcastle disease virus (NDV). Previously, we demonstrated that a mutation in the HN protein is essential for the enhanced virulence of JS/7/05/Ch, a velogenic variant NDV strain originating from the mesogenic vaccine strain Mukteswar. Here, we explored the effects of the HN protein during viral infection in vitro using three viruses: JS/7/05/Ch, Mukteswar, and an HN-replacement chimeric NDV, JS/MukHN. Through microscopic observation, CCK-8, and LDH release assays, we demonstrated that compared with Mukteswar and JS/MukHN, JS/7/05/Ch intensified the cellular damage and mortality attributed to the mutant HN protein. Furthermore, JS/7/05/Ch induced greater levels of apoptosis, as evidenced by the activation of caspase-3/8/9. Moreover, JS/7/05/Ch promoted autophagy, leading to increased autophagosome formation and autophagic flux. Subsequent pharmacological experiments revealed that inhibition of apoptosis and autophagy significantly impacted virus replication and cell viability in the JS/7/05/Ch-infected group, whereas less significant effects were observed in the other two infected groups. Notably, the mutant HN protein enhanced JS/7/05/Ch-induced apoptosis and autophagy by suppressing NF-κB activation, while it mitigated the effects of NF-κB on NDV infection. Overall, our study offers novel insights into the mechanisms underlying the increased virulence of NDV and serves as a reference for the development of vaccines.


Subject(s)
Apoptosis , HN Protein , NF-kappa B , Newcastle Disease , Newcastle disease virus , Newcastle disease virus/physiology , Newcastle disease virus/genetics , Newcastle disease virus/pathogenicity , Animals , HN Protein/genetics , HN Protein/metabolism , Newcastle Disease/virology , NF-kappa B/metabolism , Poultry Diseases/virology , Chickens , Chick Embryo
6.
Arch Virol ; 168(8): 203, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37418014

ABSTRACT

The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a multifunctional protein with receptor recognition ability that plays an important role in the infection of cells by NDV. An alignment of NDV HN protein sequences of different genotypes showed that vaccine strains of NDV, such as the LaSota strain, generally have an HN protein of 577 amino acids. In comparison, the HN protein of the V4 strain has 616 amino acids, with 39 more amino acids at the C-terminus. In this study, we generated a recombinant NDV (rNDV) with a 39-amino-acid truncation at the HN C-terminus based on the full-length cDNA clone of the V4 strain. This rNDV, named rV4-HN-tr, displayed thermostability similar to that of the parental V4 strain. However, growth kinetics and pathogenicity analysis suggested that rV4-HN-tr is more virulent than the V4 strain. Notably, the C-terminus of HN affected the ability of the virus to adsorb onto cells. Structural predictions further suggested that the C-terminus of HN may obstruct the sialic acid binding site. Immunization of chickens with rV4-HN-tr induced a 3.5-fold higher level of NDV-specific antibodies than that obtained with the V4 strain and provided 100% immune protection against NDV challenge. Our study suggests that rV4-HN-tr is a thermostable, safe, and highly efficient vaccine candidate against Newcastle disease.


Subject(s)
Newcastle Disease , Viral Vaccines , Animals , Newcastle disease virus , Chickens , Virulence , Neuraminidase/genetics , Hemagglutinins/genetics , HN Protein/genetics , HN Protein/metabolism , Viral Vaccines/genetics , Antibodies, Viral , Amino Acids
7.
Biophys J ; 121(6): 956-965, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35150620

ABSTRACT

Sendai virus (SeV, formally murine respirovirus) is a membrane-enveloped, negative-sense RNA virus in the Paramyxoviridae family and is closely related to human parainfluenza viruses. SeV has long been utilized as a model paramyxovirus and has recently gained attention as a viral vector candidate for both laboratory and clinical applications. To infect host cells, SeV must first bind to sialic acid glycolipid or glycoprotein receptors on the host cell surface via its hemagglutinin-neuraminidase (HN) protein. Receptor binding induces a conformational change in HN, which allosterically triggers the viral fusion (F) protein to catalyze membrane fusion. While it is known that SeV binds to α2,3-linked sialic acid receptors, and there has been some study into the chemical requirements of those receptors, key mechanistic features of SeV binding remain unknown, in part because traditional approaches often convolve binding and fusion. Here, we develop and employ a fluorescence microscopy-based assay to observe SeV binding to supported lipid bilayers (SLBs) at the single-particle level, which easily disentangles binding from fusion. Using this assay, we investigate mechanistic questions of SeV binding. We identify chemical structural features of ganglioside receptors that influence viral binding and demonstrate that binding is cooperative with respect to receptor density. We measure the characteristic decay time of unbinding and provide evidence supporting a "rolling" mechanism of viral mobility following receptor binding. We also study the dependence of binding on target cholesterol concentration. Interestingly, we find that although SeV binding shows striking parallels in cooperative binding with a prior report of Influenza A virus, it does not demonstrate a similar sensitivity to cholesterol concentration and receptor nanocluster formation.


Subject(s)
HN Protein , Virus Attachment , Animals , Cell Line , HN Protein/genetics , HN Protein/metabolism , Humans , Mice , Sendai virus/metabolism , Viral Fusion Proteins/chemistry , Viral Proteins
8.
PLoS Pathog ; 16(9): e1008883, 2020 09.
Article in English | MEDLINE | ID: mdl-32956394

ABSTRACT

Infection by human parainfluenza viruses (HPIVs) causes widespread lower respiratory diseases, including croup, bronchiolitis, and pneumonia, and there are no vaccines or effective treatments for these viruses. HPIV3 is a member of the Respirovirus species of the Paramyxoviridae family. These viruses are pleomorphic, enveloped viruses with genomes composed of single-stranded negative-sense RNA. During viral entry, the first step of infection, the viral fusion complex, comprised of the receptor-binding glycoprotein hemagglutinin-neuraminidase (HN) and the fusion glycoprotein (F), mediates fusion upon receptor binding. The HPIV3 transmembrane protein HN, like the receptor-binding proteins of other related viruses that enter host cells using membrane fusion, binds to a receptor molecule on the host cell plasma membrane, which triggers the F glycoprotein to undergo major conformational rearrangements, promoting viral entry. Subsequent fusion of the viral and host membranes allows delivery of the viral genetic material into the host cell. The intermediate states in viral entry are transient and thermodynamically unstable, making it impossible to understand these transitions using standard methods, yet understanding these transition states is important for expanding our knowledge of the viral entry process. In this study, we use cryo-electron tomography (cryo-ET) to dissect the stepwise process by which the receptor-binding protein triggers F-mediated fusion, when forming a complex with receptor-bearing membranes. Using an on-grid antibody capture method that facilitates examination of fresh, biologically active strains of virus directly from supernatant fluids and a series of biological tools that permit the capture of intermediate states in the fusion process, we visualize the series of events that occur when a pristine, authentic viral particle interacts with target receptors and proceeds from the viral entry steps of receptor engagement to membrane fusion.


Subject(s)
Cell Membrane/metabolism , HN Protein/metabolism , Parainfluenza Virus 3, Human/metabolism , Viral Fusion Proteins/metabolism , Virus Internalization , Animals , Cell Membrane/ultrastructure , Chlorocebus aethiops , Humans , Parainfluenza Virus 3, Human/ultrastructure , Vero Cells
9.
FASEB J ; 35(2): e21358, 2021 02.
Article in English | MEDLINE | ID: mdl-33538061

ABSTRACT

Treatment of respiratory viral infections remains a global health concern, mainly due to the inefficacy of available drugs. Therefore, the discovery of novel antiviral compounds is needed; in this context, antimicrobial peptides (AMPs) like temporins hold great promise. Here, we discovered that the harmless temporin G (TG) significantly inhibited the early life-cycle phases of influenza virus. The in vitro hemagglutinating test revealed the existence of TG interaction with the viral hemagglutinin (HA) protein. Furthermore, the hemolysis inhibition assay and the molecular docking studies confirmed a TG/HA complex formation at the level of the conserved hydrophobic stem groove of HA. Remarkably, these findings highlight the ability of TG to block the conformational rearrangements of HA2 subunit, which are essential for the viral envelope fusion with intracellular endocytic vesicles, thereby neutralizing the virus entry into the host cell. In comparison, in the case of parainfluenza virus, which penetrates host cells upon a membrane-fusion process, addition of TG to infected cells provoked ~1.2 log reduction of viral titer released in the supernatant. Nevertheless, at the same condition, an immunofluorescent assay showed that the expression of viral hemagglutinin/neuraminidase protein was not significantly reduced. This suggested a peptide-mediated block of some late steps of viral replication and therefore the impairment of the extracellular release of viral particles. Overall, our results are the first demonstration of the ability of an AMP to interfere with the replication of respiratory viruses with a different mechanism of cell entry and will open a new avenue for the development of novel therapeutic approaches against a large variety of respiratory viruses, including the recent SARS-CoV2.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Parainfluenza Virus 1, Human/drug effects , A549 Cells , Animals , Antimicrobial Cationic Peptides/chemistry , Antiviral Agents/chemistry , Binding Sites , Dogs , HN Protein/chemistry , HN Protein/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/physiology , Madin Darby Canine Kidney Cells , Molecular Docking Simulation , Parainfluenza Virus 1, Human/physiology , Protein Binding , Virus Internalization , Virus Replication
10.
Transgenic Res ; 31(2): 201-213, 2022 04.
Article in English | MEDLINE | ID: mdl-35006541

ABSTRACT

Newcastle disease virus (NDV) is a lethal virus in avian species with a disastrous effect on the poultry industry. NDV is enveloped by a host-derived membrane with two glycosylated haemagglutinin-neuraminidase (HN) and Fusion (F) proteins. NDV infection usually leads to death within 2-6 days, so the preexisting antibodies provide the most critical protection for this infection. The HN and F glycoproteins are considered the main targets of the immune system. In the present study, two constructs harboring the HN or F epitopes are sub-cloned separately under the control of a root-specific promoter NtREL1 or CaMV35S (35S Cauliflower Mosaic Virus promoter) as a constitutive promoter. The recombinant vectors were transformed into the Agrobacterium tumefaciens strain LBA4404 and then introduced to tobacco (Nicotiana tabacum L.) leaf disk explants. PCR with specific primers was performed to confirm the presence of the hn and f genes in the genome of the regenerated plants. Then, the positive lines were transformed via non-recombinant A. rhizogenes (strain ATCC15834) to develop hairy roots.HN and F were expressed at 0.37% and 0.33% of TSP using the CaMV35S promoter and at 0.75% and 0.54% of TSP using the NtREL1 promoter, respectively. Furthermore, the mice fed transgenic hairy roots showed a high level of antibody responses (IgG and IgA) against rHN and rF proteins.


Subject(s)
HN Protein , Nicotiana , Animals , Chickens , Glycoproteins/genetics , HN Protein/genetics , HN Protein/metabolism , Mice , Newcastle disease virus/genetics , Newcastle disease virus/metabolism , Nicotiana/genetics , Nicotiana/metabolism
11.
Proc Natl Acad Sci U S A ; 116(43): 21514-21520, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31591233

ABSTRACT

The bat-borne paramyxovirus, Sosuga virus (SosV), is one of many paramyxoviruses recently identified and classified within the newly established genus Pararubulavirus, family Paramyxoviridae The envelope surface of SosV presents a receptor-binding protein (RBP), SosV-RBP, which facilitates host-cell attachment and entry. Unlike closely related hemagglutinin neuraminidase RBPs from other genera of the Paramyxoviridae, SosV-RBP and other pararubulavirus RBPs lack many of the stringently conserved residues required for sialic acid recognition and hydrolysis. We determined the crystal structure of the globular head region of SosV-RBP, revealing that while the glycoprotein presents a classical paramyxoviral six-bladed ß-propeller fold and structurally classifies in close proximity to paramyxoviral RBPs with hemagglutinin-neuraminidase (HN) functionality, it presents a receptor-binding face incongruent with sialic acid recognition. Hemadsorption and neuraminidase activity analysis confirms the limited capacity of SosV-RBP to interact with sialic acid in vitro and indicates that SosV-RBP undergoes a nonclassical route of host-cell entry. The close overall structural conservation of SosV-RBP with other classical HN RBPs supports a model by which pararubulaviruses only recently diverged from sialic acid binding functionality.


Subject(s)
HN Protein/chemistry , Paramyxoviridae Infections/virology , Paramyxoviridae/physiology , Viral Proteins/chemistry , Virus Internalization , HN Protein/genetics , HN Protein/metabolism , Humans , N-Acetylneuraminic Acid/metabolism , Paramyxoviridae/chemistry , Paramyxoviridae/genetics , Paramyxoviridae Infections/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Attachment
12.
J Gen Virol ; 102(1)2021 01.
Article in English | MEDLINE | ID: mdl-33090092

ABSTRACT

Upregulation of matrix metalloproteinase (MMP)-14, a major driven force of extracellular-matrix (ECM) remodelling and cell migration, correlates with ECM breakdown and pathologic manifestation of genotype VII Newcastle disease virus (NDV) in chickens. However, the functional relevance between MMP-14 and pathogenesis of genotype VII NDV remains to be investigated. In this study, expression, biofunction and regulation of MMP-14 induced by genotype VII NDV were analysed in chicken peripheral blood mononuclear cells (PBMCs). The results showed that JS5/05 significantly increased expression and membrane accumulation of MMP-14 in PBMCs, correlating to enhanced collagen degradation and cell migration. Specific MMP-14 inhibition significantly impaired collagen degradation and migration of JS5/05-infected cells, suggesting dependence of these features on MMP-14. In addition, MMP-14 upregulation correlated with activation of the extracellular signal-regulated kinase (ERK) pathway upon JS5/05 infection, and blockage of the ERK signalling significantly suppressed MMP-14-mediated collagen degradation and migration of JS5/05-infected cells. Using a panel of chimeric NDVs derived from gene exchange between genotype VII and IV NDV, the fusion and haemagglutinin-neuraminidase genes were identified as the major viral determinants for MMP-14 expression and activity. In conclusion, MMP-14 was defined as a critical regulator of collagen degradation and cell migration of chicken PBMCs infected with genotype VII NDV, which may contribute to pathology of the virus. Our findings add novel information to the body of knowledge regarding virus-host biology and NDV pathogenesis.


Subject(s)
Cell Movement , Collagen/metabolism , Leukocytes, Mononuclear/virology , Matrix Metalloproteinase 14/metabolism , Newcastle disease virus/pathogenicity , Animals , Cell Membrane/metabolism , Chickens , Extracellular Signal-Regulated MAP Kinases/metabolism , Genotype , HN Protein/genetics , HN Protein/metabolism , Host-Pathogen Interactions , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , MAP Kinase Signaling System , Newcastle disease virus/genetics , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism , Virus Replication
13.
J Virol ; 94(12)2020 06 01.
Article in English | MEDLINE | ID: mdl-32295904

ABSTRACT

Mumps virus (MuV), an enveloped RNA virus of the Paramyxoviridae family and the causative agent of mumps, affects the salivary glands and other glandular tissues as well as the central nervous system. The virus enters the cell by inducing the fusion of its envelope with the plasma membrane of the target cell. Membrane fusion is mediated by MuV envelope proteins: the hemagglutinin-neuraminidase and fusion (F) protein. Cleavage of the MuV F protein (MuV-F) into two subunits by the cellular protease furin is a prerequisite for fusion and virus infectivity. Here, we show that 293T (a derivative of HEK293) cells do not produce syncytia upon expression of MuV envelope proteins or MuV infection. This failure is caused by the inefficient MuV-F cleavage despite the presence of functional furin in 293T cells. An expression cloning strategy revealed that overexpression of lysosome-associated membrane proteins (LAMPs) confers on 293T cells the ability to produce syncytia upon expression of MuV envelope proteins. The LAMP family comprises the ubiquitously expressed LAMP1 and LAMP2, the interferon-stimulated gene product LAMP3, and the cell type-specific proteins. The expression level of the LAMP3 gene, but not of LAMP1 and LAMP2 genes, differed markedly between 293T and HEK293 cells. Overexpression of LAMP1, LAMP2, or LAMP3 allowed 293T cells to process MuV-F efficiently. Furthermore, these LAMPs were found to interact with both MuV-F and furin. Our results indicate that LAMPs support the furin-mediated cleavage of MuV-F and that, among them, LAMP3 may be critical for the process, at least in certain cells.IMPORTANCE The cellular protease furin mediates proteolytic cleavage of many host and pathogen proteins and plays an important role in viral envelope glycoprotein maturation. MuV, an enveloped RNA virus of the Paramyxoviridae family and an important human pathogen, enters the cell through the fusion of its envelope with the plasma membrane of the target cell. Membrane fusion is mediated by the viral attachment protein and the F protein. Cleavage of MuV-F into two subunits by furin is a prerequisite for fusion and virus infectivity. Here, we show that LAMPs support the furin-mediated cleavage of MuV-F. Expression levels of LAMPs affect the processing of MuV-F and MuV-mediated membrane fusion. Among LAMPs, the interferon-stimulated gene product LAMP3 is most critical in certain cells. Our study provides potential targets for anti-MuV therapeutics.


Subject(s)
Furin/genetics , Host-Pathogen Interactions/genetics , Lysosomal Membrane Proteins/genetics , Lysosomes/virology , Mumps virus/genetics , Neoplasm Proteins/genetics , Viral Fusion Proteins/genetics , A549 Cells , Animals , Cell Membrane/metabolism , Cell Membrane/virology , Chlorocebus aethiops , Furin/metabolism , Gene Expression Regulation , Giant Cells/chemistry , Giant Cells/metabolism , HEK293 Cells , HN Protein/genetics , HN Protein/metabolism , HeLa Cells , Humans , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomal-Associated Membrane Protein 2/metabolism , Lysosomal Membrane Proteins/metabolism , Lysosomes/metabolism , Mumps virus/metabolism , Neoplasm Proteins/metabolism , Protein Binding , Proteolysis , Signal Transduction , Vero Cells , Viral Fusion Proteins/metabolism , Virus Internalization
14.
Microb Pathog ; 158: 105053, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34147587

ABSTRACT

Human parainfluenza virus type 3 (hPIV-3) entry and intrahost spread through membrane fusion are initiated by two envelope glycoproteins, hemagglutinin-neuraminidase (HN) and fusion (F) protein. Binding of HN protein to the cellular receptor via its receptor-binding sites triggers conformational changes in the F protein leading to virus-cell fusion. However, little is known about the roles of individual amino acids that comprise the receptor-binding sites in the fusion process. Here, residues R192, D216, E409, R424, R502, Y530 and E549 located within the receptor-binding site Ⅰ, and residues N551 and H552 at the putative site Ⅱ were replaced by alanine with site-directed mutagenesis. All mutants except N551A displayed statistically lower hemadsorption activities ranging from 16.4% to 80.2% of the wild-type (wt) level. With standardization of the number of bound erythrocytes, similarly, other than N551A, all mutants showed reduced fusogenic activity at three successive stages: lipid mixing (hemifusion), content mixing (full fusion) and syncytium development. Kinetic measurements of the hemifusion process showed that the initial hemifusion extent for R192A, D216A, E409A, R424A, R502A, Y530A, E549A and H552A was decreased to 69.9%, 80.6%, 71.3%, 67.3%, 50.6%, 87.4%, 84.9% and 25.1%, respectively, relative to the wt, while the initial rate of hemifusion for the E409A, R424A, R502A and H552A mutants was reduced to 69.0%, 35.4%, 62.3%, 37.0%, respectively. In addition, four mutants with reduced initial hemifusion rates also showed decreased percentages of F protein cleavage from 43.4% to 56.3% of the wt. Taken together, Mutants R192A, D216A, E409A, R424A, R502A, Y530A, E549A and H552A may lead to damage on the fusion activity at initial stage of hemifusion, of which decreased extent and rate may be associated with impaired receptor binding activity resulting in the increased activation barrier of F protein and the cleavage of it, respectively.


Subject(s)
HN Protein , Parainfluenza Virus 3, Human , Binding Sites , HN Protein/genetics , HN Protein/metabolism , Humans , Mutagenesis, Site-Directed , Parainfluenza Virus 3, Human/genetics , Protein Binding , Viral Fusion Proteins/genetics , Virus Internalization
15.
J Virol ; 93(15)2019 08 01.
Article in English | MEDLINE | ID: mdl-31118251

ABSTRACT

Mumps virus (MuV) is an important aerosol-transmitted human pathogen causing epidemic parotitis, meningitis, encephalitis, and deafness. MuV preferentially uses a trisaccharide containing α2,3-linked sialic acid as a receptor. However, given the MuV tropism toward glandular tissues and the central nervous system, an additional glycan motif(s) may also serve as a receptor. Here, we performed a large-scale glycan array screen with MuV hemagglutinin-neuraminidase (MuV-HN) attachment proteins by using 600 types of glycans from The Consortium for Functional Glycomics Protein-Glycan Interaction Core in an effort to find new glycan receptor motif(s). According to the results of the glycan array, we successfully determined the crystal structures of MuV-HN proteins bound to newly identified glycan motifs, sialyl LewisX (SLeX) and the oligosaccharide portion of the GM2 ganglioside (GM2-glycan). Interestingly, the complex structures showed that SLeX and GM2-glycan share the same configuration with the reported trisaccharide motif, 3'-sialyllactose (3'-SL), at the binding site of MuV-HN, while SLeX and GM2-glycan have several unique interactions compared with those of 3'-SL. Thus, MuV-HN protein can allow an additional spatial modification in GM2-glycan and SLeX at the second and third carbohydrates from the nonreducing terminus of the core trisaccharide structure, respectively. Importantly, MuV entry was efficiently inhibited in the presence of 3'-SL, SLeX, or GM2-glycan derivatives, which indicates that these motifs can serve as MuV receptors. The α2,3-sialylated oligosaccharides, such as SLeX and 3'-sialyllactosamine, are broadly expressed in various tissues, and GM2 exists mainly in neural tissues and the adrenal gland. The distribution of these glycan motifs in human tissues/organs may have bearing on MuV tropism.IMPORTANCE Mumps virus (MuV) infection is characterized by parotid gland swelling and can cause pancreatitis, orchitis, meningitis, and encephalitis. MuV-related hearing loss is also a serious complication because it is usually irreversible. MuV outbreaks have been reported in many countries, even in high-vaccine-coverage areas. MuV has tropism toward glandular tissues and the central nervous system. To understand the unique MuV tropism, revealing the mechanism of receptor recognition by MuV is very important. Here, using a large-scale glycan array and X-ray crystallography, we show that MuV recognizes sialyl LewisX and GM2 ganglioside as receptors, in addition to a previously reported MuV receptor, a trisaccharide containing an α2,3-linked sialic acid. The flexible recognition of these glycan receptors by MuV may explain the unique tropism and pathogenesis of MuV. Structures will also provide a template for the development of effective entry inhibitors targeting the receptor-binding site of MuV.


Subject(s)
HN Protein/metabolism , Lewis Blood Group Antigens/metabolism , Mumps virus/physiology , Receptors, Virus/metabolism , Sialic Acids/metabolism , Viral Tropism , Virus Attachment , Crystallography, X-Ray , HN Protein/chemistry , Lewis Blood Group Antigens/chemistry , Microarray Analysis , Protein Binding , Protein Conformation , Sialic Acids/chemistry
16.
Virus Genes ; 56(1): 37-48, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31768710

ABSTRACT

Human parainfluenza virus type 3 (HPIV3) causes the majority of childhood viral pneumonia around the world. Fusing the viral and target cell membranes is crucial for its entry into target cells, and the fusion process requires the concerted actions of two viral glycoproteins: hemagglutinin-neuraminidase (HN) and fusion (F) protein. After binding to the cell surface receptor, sialic acids, HN triggers F to undergo large conformational rearrangements to execute the fusion process. Although it has been reported that several domains of F had important impacts on regulating the membrane fusion activity, what role the DI-DII linker (residues 369-374, namely L1 linker) of the HPIV3 F protein plays in the fusion process still remains confused. We have obtained three chimeric mutant proteins (Ch-NDV-L1, Ch-MV-L1, Ch-HPIV1-L1) containing the full length of HPIV3 F protein but their corresponding DI-DII linker derived from the F protein of Newcastle disease virus (NDV), Measles virus (MV), and Human parainfluenza virus type 1 (HPIV1), respectively. One deletion mutant protein (De-L1), whose DI-DII linker was deleted, has been established simultaneously. Then vaccinia virus-T7 RNA polymerase transient expression system and standard plasmid system were utilized to express the mutant F proteins in BHK-21 cells. These four mutants were determined for membrane fusogenic activity, cell surface expression level, and total mutant F protein expression. All of them resulted in a significant reduction in fusogenic activity in all steps of cell-cell membrane fusion process. There was no significant difference in cell surface protein expression level for the mutants compared with wild-type F. The mutant proteins with inability in fusogenic activity were all at the form of precursor protein, F0, which were not hydrolyzed by intracellular protease furin. The results above suggest that the involvement of the DI-DII linker region is necessary for the complete fusion of the membranes.


Subject(s)
Parainfluenza Virus 3, Human/metabolism , Respirovirus Infections/virology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Virus Internalization , Animals , Cell Line , Cell Membrane/virology , HN Protein/genetics , HN Protein/metabolism , Humans , Membrane Fusion , Newcastle disease virus/genetics , Newcastle disease virus/metabolism , Parainfluenza Virus 3, Human/chemistry , Parainfluenza Virus 3, Human/genetics , Protein Domains , Viral Fusion Proteins/genetics
17.
Virol J ; 16(1): 164, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31881976

ABSTRACT

BACKGROUND: The paramyxovirus haemagglutinin-neuraminidase (HN) is a multifunctional protein that is responsible for attachment to receptors, removal of receptors from infected cells to prevent viral self-aggregation (neuraminidase, NA) and fusion promotion. It is commonly accepted that there are two receptor binding sites in the globular head of HN, and the second receptor binding site is only involved in the function of receptor binding and fusion promotion. METHODS: 10 conserved residues in the second receptor binding site of Newcastle disease virus (NDV) HN were chosen and substituted to alanine (A). The desired mutants were examined to detect the functional change in hemadsorption (HAD) ability, NA activity and fusion promotion ability. RESULTS: The HAD and fusion promotion ability of mutants C172A, R174A, C196A, D198A, Y526A and E547A were abolished. Compared with wild-type (wt) HN, the HAD of mutants T167A, S202A and R516A decreased to 55.81, 44.53, 69.02%, respectively, and the fusion promotion ability of these three mutants decreased to 54.74, 49.46, 65.26%, respectively; however, mutant G171A still maintained fusion promotion ability comparable with wt HN but had impaired HAD ability. All the site-directed mutations altered the NA activity of NDV HN without affecting protein cell surface expression. CONCLUSIONS: The data suggest that mutants C172A, R174A, C196A, D198A, Y526A and E547A do not allow the conformational change that is required for fusion promotion ability and HAD activity, while the other mutants only affect the conformational change to a limited extent, except mutant G171A with intact fusion promotion ability. Overall, the conserved amino acids in the second receptor binding site, especially residues C172, R174, C196, D198, Y526 and E547, are crucial to normal NDV HN protein function.


Subject(s)
Amino Acids/metabolism , HN Protein/metabolism , Newcastle disease virus/physiology , Virus Attachment , Amino Acid Substitution , Amino Acids/genetics , Animals , Binding Sites , Cell Line , Cricetinae , DNA Mutational Analysis , HN Protein/genetics , Mutation, Missense , Newcastle disease virus/genetics , Virus Internalization
18.
J Biol Chem ; 292(49): 20141-20161, 2017 12 08.
Article in English | MEDLINE | ID: mdl-28978647

ABSTRACT

Galectin-1 is an important immunoregulatory factor and can mediate the host-pathogen interaction via binding glycans on the surface of various viruses. We previously reported that avian respiratory viruses, including lentogenic Newcastle disease virus (NDV), can induce up-regulation of chicken galectin (CG)-1B in the primary target organ. In this study, we investigated whether CG-1B participated in the infectious process of NDV in chickens. We demonstrated that velogenic NDV induced up-regulation of CG-1B in target organs. We also found that CG-1B directly bound to NDV virions and inhibited their hemagglutination activity in vitro We confirmed that CG-1B interacted with NDV hemagglutinin-neuraminidase (HN) glycoprotein, in which the specific G4 N-glycans significantly contributed to the interaction between CG-1B and HN glycoprotein. The presence of extracellular CG-1B, rather than the internalization process, inhibited adsorption of NDV. The interaction between intracellular CG-1B and NDV HN glycoproteins inhibited cell-surface expression of HN glycoprotein and reduced the titer of progeny virus in NDV-infected DF-1 cells. Significantly, the replication of parental and HN glycosylation mutant viruses in CG-1B knockdown and overexpression cells demonstrated that the replication of NDV was correlated with the expression of CG-1B in a specific glycan-dependent manner. Collectively, our results indicate that CG-1B has anti-NDV activity by binding to N-glycans on HN glycoprotein.


Subject(s)
Galectin 1/metabolism , HN Protein/metabolism , Host-Pathogen Interactions/immunology , Newcastle disease virus/physiology , Virus Replication , Adsorption , Animals , Binding Sites , Chickens , Galectin 1/immunology , Polysaccharides/analysis , Polysaccharides/metabolism , Protein Binding
19.
Gene Ther ; 25(5): 345-358, 2018 08.
Article in English | MEDLINE | ID: mdl-30022127

ABSTRACT

We have shown that a lentiviral vector (rSIV.F/HN) pseudotyped with the F and HN proteins from Sendai virus generates high levels of intracellular proteins after lung transduction. Here, we evaluate the use of rSIV.F/HN for production of secreted proteins. We assessed whether rSIV.F/HN transduction of the lung generates therapeutically relevant levels of secreted proteins in the lung and systemic circulation using human α1-anti-trypsin (hAAT) and factor VIII (hFVIII) as exemplars. Sedated mice were transduced with rSIV.F/HN carrying either the secreted reporter gene Gaussia luciferase or the hAAT or hFVIII cDNAs by nasal sniffing. rSIV.F/HN-hAAT transduction lead to therapeutically relevant hAAT levels (70 µg/ml) in epithelial lining fluid, with stable expression persisting for at least 19 months from a single application. Secreted proteins produced in the lung were released into the circulation and stable expression was detectable in blood. The levels of hFVIII in murine blood approached therapeutically relevant targets. rSIV.F/HN was also able to produce secreted hAAT and hFVIII in transduced human primary airway cells. rSIV.F/HN transduction of the murine lungs leads to long-lasting and therapeutically relevant levels of secreted proteins in the lung and systemic circulation. These data broaden the use of this vector platform for a large range of disease indications.


Subject(s)
HN Protein/metabolism , Transfection/methods , Viral Fusion Proteins/metabolism , Animals , DNA, Complementary/metabolism , Factor VIII , Gene Transfer Techniques , Genes, Reporter , Genetic Therapy , Genetic Vectors , Humans , Lentivirus Infections , Lung/immunology , Lung/metabolism , Lung/physiology , Mice , Protein Translocation Systems/genetics , Sendai virus/metabolism , Transduction, Genetic/methods
20.
J Virol ; 91(16)2017 08 15.
Article in English | MEDLINE | ID: mdl-28592535

ABSTRACT

Newcastle disease virus (NDV) is an oncolytic virus being developed for the treatment of cancer. Following infection of a human ovarian cancer cell line (OVCAR3) with a recombinant low-pathogenic NDV, persistent infection was established in a subset of tumor cells. Persistently infected (PI) cells exhibited resistance to superinfection with NDV and established an antiviral state, as demonstrated by upregulation of interferon and interferon-induced genes such as myxoma resistance gene 1 (Mx1) and retinoic acid-inducing gene-I (RIG-I). Viruses released from PI cells induced higher cell-to-cell fusion than the parental virus following infection in two tumor cell lines tested, HT1080 and HeLa, and remained attenuated in chickens. Two mutations, one in the fusion (F) protein cleavage site, F117S (F117S), and another in hemagglutinin-neuraminidase (HN), G169R (HN169R), located in the second sialic acid binding region, were responsible for the hyperfusogenic phenotype. F117S improves F protein cleavage efficiency, facilitating cell-to-cell fusion, while HN169R possesses a multifaceted role in contributing to higher fusion, reduced receptor binding, and lower neuraminidase activity, which together result in increased fusion and reduced viral replication. Thus, establishment of persistent infection in vitro involves viral genetic changes that facilitate efficient viral spread from cell to cell as a potential mechanism to escape host antiviral responses. The results of our study also demonstrate a critical role in the viral life cycle for the second receptor binding region of the HN protein, which is conserved in several paramyxoviruses.IMPORTANCE Oncolytic Newcastle disease virus (NDV) could establish persistent infection in a tumor cell line, resulting in a steady antiviral state reflected by constitutively expressed interferon. Viruses isolated from persistently infected cells are highly fusogenic, and this phenotype has been mapped to two mutations, one each in the fusion (F) and hemagglutinin-neuraminidase (HN) proteins. The F117S mutation in the F protein cleavage site improved F protein cleavage efficiency while the HN169R mutation located at the second receptor binding site of the HN protein contributed to a complex phenotype consisting of a modest increase in fusion and cell killing, lower neuraminidase activity, and reduced viral growth. This study highlights the intricate nature of these two mutations in the glycoproteins of NDV in the establishment of persistent infection. The data also shed light on the critical balance between the F and HN proteins required for efficient NDV infection and their role in avian pathogenicity.


Subject(s)
HN Protein/metabolism , Newcastle disease virus/growth & development , Viral Fusion Proteins/metabolism , Animals , Binding Sites , Cell Fusion , Cell Line, Tumor , Chickens , HN Protein/genetics , Humans , Mutation, Missense , N-Acetylneuraminic Acid/metabolism , Protein Binding , Viral Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL