Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.067
Filter
1.
Annu Rev Biochem ; 85: 599-630, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27145845

ABSTRACT

Glycoscience research has been significantly impeded by the complex compositions of the glycans present in biological molecules and the lack of convenient tools suitable for studying the glycosylation process and its function. Polysaccharides and glycoconjugates are not encoded directly by genes; instead, their biosynthesis relies on the differential expression of carbohydrate enzymes, resulting in heterogeneous mixtures of glycoforms, each with a distinct physiological activity. Access to well-defined structures is required for functional study, and this has been provided by chemical and enzymatic synthesis and by the engineering of glycosylation pathways. This review covers general methods for preparing glycans commonly found in mammalian systems and applying them to the synthesis of therapeutically significant glycoconjugates (glycosaminoglycans, glycoproteins, glycolipids, glycosylphosphatidylinositol-anchored proteins) and the development of carbohydrate-based vaccines.


Subject(s)
Glycoconjugates/chemical synthesis , Glycoproteins/chemical synthesis , Glycosaminoglycans/chemical synthesis , Haemophilus Infections/prevention & control , Haemophilus Vaccines/administration & dosage , Polysaccharides/chemical synthesis , Amino Acid Sequence , Carbohydrate Conformation , Carbohydrate Sequence , Glycoconjugates/immunology , Glycolipids/chemical synthesis , Glycolipids/immunology , Glycoproteins/immunology , Glycosaminoglycans/immunology , Glycosylation , Glycosylphosphatidylinositols/chemical synthesis , Glycosylphosphatidylinositols/immunology , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Haemophilus Vaccines/chemical synthesis , Haemophilus influenzae type b/drug effects , Haemophilus influenzae type b/growth & development , Haemophilus influenzae type b/pathogenicity , Humans , Polysaccharides/immunology
2.
Nat Immunol ; 17(12): 1373-1380, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27695001

ABSTRACT

The respiratory tract is heavily populated with innate immune cells, but the mechanisms that control such cells are poorly defined. Here we found that the E3 ubiquitin ligase TRIM29 was a selective regulator of the activation of alveolar macrophages, the expression of type I interferons and the production of proinflammatory cytokines in the lungs. We found that deletion of TRIM29 enhanced macrophage production of type I interferons and protected mice from infection with influenza virus, while challenge of Trim29-/- mice with Haemophilus influenzae resulted in lethal lung inflammation due to massive production of proinflammatory cytokines by macrophages. Mechanistically, we demonstrated that TRIM29 inhibited interferon-regulatory factors and signaling via the transcription factor NF-κB by degrading the adaptor NEMO and that TRIM29 directly bound NEMO and subsequently induced its ubiquitination and proteolytic degradation. These data identify TRIM29 as a key negative regulator of alveolar macrophages and might have important clinical implications for local immunity and immunopathology.


Subject(s)
Haemophilus Infections/immunology , Haemophilus influenzae/immunology , Influenza A virus/immunology , Macrophages/immunology , Orthomyxoviridae Infections/immunology , Respiratory System/immunology , Transcription Factors/metabolism , Animals , Cells, Cultured , Immunity, Innate , Interferon Type I/genetics , Interferon Type I/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/microbiology , Macrophages/virology , Mice , Mice, Knockout , NF-kappa B/metabolism , Proteolysis , Signal Transduction , Transcription Factors/genetics , Ubiquitination
3.
Nat Immunol ; 17(6): 626-35, 2016 06.
Article in English | MEDLINE | ID: mdl-27111143

ABSTRACT

Innate lymphoid cells (ILCs) are critical mediators of mucosal immunity, and group 1 ILCs (ILC1 cells) and group 3 ILCs (ILC3 cells) have been shown to be functionally plastic. Here we found that group 2 ILCs (ILC2 cells) also exhibited phenotypic plasticity in response to infectious or noxious agents, characterized by substantially lower expression of the transcription factor GATA-3 and a concomitant switch to being ILC1 cells that produced interferon-γ (IFN-γ). Interleukin 12 (IL-12) and IL-18 regulated this conversion, and during viral infection, ILC2 cells clustered within inflamed areas and acquired an ILC1-like phenotype. Mechanistically, these ILC1 cells augmented virus-induced inflammation in a manner dependent on the transcription factor T-bet. Notably, IL-12 converted human ILC2 cells into ILC1 cells, and the frequency of ILC1 cells in patients with chronic obstructive pulmonary disease (COPD) correlated with disease severity and susceptibility to exacerbations. Thus, functional plasticity of ILC2 cells exacerbates anti-viral immunity, which may have adverse consequences in respiratory diseases such as COPD.


Subject(s)
Haemophilus Infections/immunology , Haemophilus influenzae/immunology , Influenza A virus/immunology , Lung/immunology , Lymphocytes/immunology , Orthomyxoviridae Infections/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Aged , Animals , Cell Differentiation , Cell Plasticity/immunology , Cells, Cultured , Cytokines/metabolism , Female , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Gene Expression Regulation , Humans , Immunity, Innate , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Phenotype , Smoking/adverse effects , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
4.
J Infect Dis ; 229(6): 1674-1678, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38114092

ABSTRACT

Biofilm formation has been suggested to be associated with phenotype changes compared with the planktonic form. We screened 1092 Haemophilus influenzae isolates for their genetic relationships and then selected 29 isolates from different genotypes and phenotypes and tested their ability to form biofilm. Our data showed a higher capacity of nontypable isolates, particularly isolates from respiratory and genital infections to form biofilm, compared with typable isolates. This ability to form biofilm was also correlated with reduced deposition of the complement component C3b on biofilm-involved bacteria. These data suggest that the biofilm formation contributes to the virulence of nontypable H. influenzae.


Subject(s)
Biofilms , Haemophilus Infections , Haemophilus influenzae , Haemophilus influenzae/genetics , Haemophilus influenzae/physiology , Haemophilus influenzae/pathogenicity , Biofilms/growth & development , Humans , Haemophilus Infections/microbiology , Haemophilus Infections/immunology , Complement System Proteins/immunology , Genotype , Virulence , Phenotype
5.
Microb Pathog ; 192: 106685, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750774

ABSTRACT

QseC is a membrane sensor kinase that enables bacteria to perceive autoinducers -3, adrenaline, and norepinephrine to initiate downstream gene transcription. In this study, we found that the QseC protein of Glaesserella parasuis can serve as an effective antigen to activate the host's immune response. Therefore, we investigated the immunogenicity and host protective effect of this protein. ELISA and indirect immunofluorescence results showed that QseC protein can induce high titer levels of humoral immunity in mice and regularly generate specific serum antibodies. We used MTS reagents to detect lymphocyte proliferation levels and found that QseC protein can cause splenic lymphocyte proliferation with memory and specificity. Further immunological analysis of the spleen cell supernatant revealed significant upregulation of levels of IL-1ß, IL-4 and IFN-γ in the QseC + adjuvant group. In the mouse challenge experiment, it was found that QseC + adjuvant can provide effective protection. The results of this study demonstrate that QseC protein provides effective protection in a mouse model and has the potential to serve as a candidate antigen for a novel subunit vaccine for further research.


Subject(s)
Antibodies, Bacterial , Haemophilus Infections , Interferon-gamma , Interleukin-4 , Animals , Mice , Interleukin-4/metabolism , Interleukin-4/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus Infections/microbiology , Interferon-gamma/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Histidine Kinase/immunology , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Immunity, Humoral , Mice, Inbred BALB C , Spleen/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Cell Proliferation , Female , Adjuvants, Immunologic , Haemophilus parasuis/immunology , Haemophilus parasuis/genetics , Cytokines/metabolism , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Disease Models, Animal , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Lymphocytes/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics
6.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34344825

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is a common cause of localized respiratory tract disease and results in significant morbidity. The pathogenesis of NTHi disease begins with nasopharyngeal colonization, and therefore, the prevention of colonization represents a strategy to prevent disease. The NTHi HMW1 and HMW2 proteins are a family of conserved adhesins that are present in 75 to 80% of strains and have been demonstrated to play a critical role in colonization of the upper respiratory tract in rhesus macaques. In this study, we examined the vaccine potential of HMW1 and HMW2 using a mouse model of nasopharyngeal colonization. Immunization with HMW1 and HMW2 by either the subcutaneous or the intranasal route resulted in a strain-specific antibody response associated with agglutination of bacteria and restriction of bacterial adherence. Despite the specificity of the antibody response, immunization resulted in protection against colonization by both the parent NTHi strain and heterologous strains expressing distinct HMW1 and HMW2 proteins. Pretreatment with antibody against IL-17A eliminated protection against heterologous strains, indicating that heterologous protection is IL-17A dependent. This work demonstrates the vaccine potential of the HMW1 and HMW2 proteins and highlights the importance of IL-17A in protection against diverse NTHi strains.


Subject(s)
Adhesins, Bacterial/immunology , Haemophilus Infections/microbiology , Haemophilus influenzae/pathogenicity , Adhesins, Bacterial/genetics , Agglutination Tests , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Bacterial Adhesion , Female , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus influenzae/genetics , Haemophilus influenzae/immunology , Immunization , Interleukin-17/blood , Mice, Inbred BALB C , Nasopharynx/microbiology
7.
J Immunol ; 206(6): 1348-1360, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33558371

ABSTRACT

Cigarette smoke is a potent proinflammatory trigger contributing to acute lung injury and the development of chronic lung diseases via mechanisms that include the impairment of inflammation resolution. We have previously demonstrated that secondhand smoke (SHS) exposure exacerbates bacterial infection-induced pulmonary inflammation and suppresses immune responses. It is now recognized that resolution of inflammation is a bioactive process mediated by lipid-derived specialized proresolving mediators that counterregulate proinflammatory signaling and promote resolution pathways. We therefore hypothesized that proresolving mediators could reduce the burden of inflammation due to chronic lung infection following SHS exposure and restore normal immune responses to respiratory pathogens. To address this question, we exposed mice to SHS followed by chronic infection with nontypeable Haemophilus influenzae (NTHI). Some groups of mice were treated with aspirin-triggered resolvin D1 (AT-RvD1) during the latter half of the smoke exposure period or during a period of smoking cessation and before infection. Treatment with AT-RvD1 markedly reduced the recruitment of neutrophils, macrophages, and T cells in lung tissue and bronchoalveolar lavage and levels of proinflammatory cytokines in the bronchoalveolar lavage. Additionally, treatment with AT-RvD1 improved Ab titers against the NTHI outer membrane lipoprotein Ag P6 following infection. Furthermore, treatment with AT-RvD1 prior to classically adjuvanted immunization with P6 increased Ag-specific Ab titers, resulting in rapid clearance of NTHI from the lungs after acute challenge. Collectively, we have demonstrated that AT-RvD1 potently reverses the detrimental effects of SHS on pulmonary inflammation and immunity and thus could be beneficial in reducing lung injury associated with smoke exposure and infection.


Subject(s)
Docosahexaenoic Acids/pharmacology , Haemophilus Infections/drug therapy , Pneumonia/drug therapy , Tobacco Smoke Pollution/adverse effects , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Disease Models, Animal , Docosahexaenoic Acids/therapeutic use , Female , Haemophilus Infections/blood , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Haemophilus influenzae/immunology , Humans , Lung/drug effects , Lung/immunology , Lung/microbiology , Mice , Pneumonia/blood , Pneumonia/immunology , Pneumonia/microbiology
8.
J Immunol ; 207(6): 1566-1577, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34433620

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative human pathogen that causes infections mainly in the upper and lower respiratory tract. The bacterium is associated with bronchitis and exacerbations in patients suffering from chronic obstructive pulmonary disease and frequently causes acute otitis media in preschool children. We have previously demonstrated that the binding of C4b binding protein (C4BP) is important for NTHi complement evasion. In this study, we identified outer membrane protein 5 (P5) of NTHi as a novel ligand of C4BP. Importantly, we observed significantly lower C4BP binding and decreased serum resistance in P5-deficient NTHi mutants. Surface expression of recombinant P5 on Escherichia coli conferred C4BP binding and consequently increased serum resistance. Moreover, P5 expression was positively correlated with C4BP binding in a series of clinical isolates. We revealed higher levels of P5 surface expression and consequently more C4BP binding in isolates from the lower respiratory tract of chronic obstructive pulmonary disease patients and tonsil specimens compared with isolates from the upper respiratory tract and the bloodstream (invasive strains). Our results highlight P5 as an important protein for protecting NTHi against complement-mediated killing.


Subject(s)
Bacteremia/immunology , Bacterial Outer Membrane Proteins/metabolism , Complement C4b-Binding Protein/metabolism , Haemophilus Infections/immunology , Haemophilus influenzae/metabolism , Pulmonary Disease, Chronic Obstructive/immunology , Tonsillitis/immunology , Aged , Aged, 80 and over , Bacteremia/genetics , Bacterial Outer Membrane Proteins/genetics , Child , Complement System Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Haemophilus Infections/microbiology , Haemophilus influenzae/genetics , Humans , Ligands , Male , Middle Aged , Organisms, Genetically Modified , Protein Binding/genetics , Pulmonary Disease, Chronic Obstructive/microbiology , Recombinant Proteins/metabolism , Signal Transduction/genetics , Tonsillitis/microbiology
9.
J Immunol ; 205(11): 3205-3217, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33115852

ABSTRACT

Tobacco smoke exposure is associated with multiple diseases including, respiratory diseases like asthma and chronic obstructive pulmonary disease. Tobacco smoke is a potent inflammatory trigger and is immunosuppressive, contributing to increased susceptibility to pulmonary infections in smokers, ex-smokers, and vulnerable populations exposed to secondhand smoke. Tobacco smoke exposure also reduces vaccine efficacy. Therefore, mitigating the immunosuppressive effects of chronic smoke exposure and improving the efficacy of vaccinations in individuals exposed to tobacco smoke, is a critical unmet clinical problem. We hypothesized that specialized proresolving mediators (SPMs), a class of immune regulators promoting resolution of inflammation, without being immunosuppressive, and enhancing B cell Ab responses, could reverse the immunosuppressive effects resulting from tobacco smoke exposure. We exposed mice to secondhand smoke for 8 wk, followed by a period of smoke exposure cessation, and the mice were immunized with the P6 lipoprotein from nontypeable Haemophilus influenzae, using 17-HDHA and aspirin-triggered-resolvin D1 (AT-RvD1) as adjuvants. 17-HDHA and AT-RvD1 used as adjuvants resulted in elevated serum and bronchoalveolar lavage levels of anti-P6-specific IgG and IgA that were protective, with immunized mice exhibiting more rapid bacterial clearance upon challenge, reduced pulmonary immune cell infiltrates, reduced production of proinflammatory cytokines, and less lung-epithelial cell damage. Furthermore, the treatment of mice with AT-RvD1 during a period of smoke-cessation further enhanced the efficacy of SPM-adjuvanted P6 vaccination. Overall, SPMs show promise as novel vaccine adjuvants with the ability to overcome the tobacco smoke-induced immunosuppressive effects.


Subject(s)
Immune Tolerance/immunology , Tobacco Smoke Pollution/adverse effects , Animals , Antibodies/immunology , Aspirin/immunology , Asthma/immunology , Asthma/microbiology , B-Lymphocytes/immunology , Bronchoalveolar Lavage Fluid/immunology , Cytokines/immunology , Docosahexaenoic Acids/immunology , Epithelial Cells/immunology , Epithelial Cells/microbiology , Female , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Haemophilus influenzae/immunology , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Inflammation/immunology , Inflammation/microbiology , Lipoproteins/immunology , Lung/immunology , Mice , Mice, Inbred C57BL , Pneumonia/immunology , Pneumonia/microbiology , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/microbiology
10.
Biochem J ; 478(8): 1485-1509, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33881487

ABSTRACT

Carbohydrate-binding antibodies play diverse and critical roles in human health. Endogenous carbohydrate-binding antibodies that recognize bacterial, fungal, and other microbial carbohydrates prevent systemic infections and help maintain microbiome homeostasis. Anti-glycan antibodies can have both beneficial and detrimental effects. For example, alloantibodies to ABO blood group carbohydrates can help reduce the spread of some infectious diseases, but they also impose limitations for blood transfusions. Antibodies that recognize self-glycans can contribute to autoimmune diseases, such as Guillain-Barre syndrome. In addition to endogenous antibodies that arise through natural processes, a variety of vaccines induce anti-glycan antibodies as a primary mechanism of protection. Some examples of approved carbohydrate-based vaccines that have had a major impact on human health are against pneumococcus, Haemophilus influeanza type b, and Neisseria meningitidis. Monoclonal antibodies specifically targeting pathogen associated or tumor associated carbohydrate antigens (TACAs) are used clinically for both diagnostic and therapeutic purposes. This review aims to highlight some of the well-studied and critically important applications of anti-carbohydrate antibodies.


Subject(s)
Guillain-Barre Syndrome/immunology , Haemophilus Infections/immunology , Meningitis, Meningococcal/immunology , Pneumonia, Pneumococcal/immunology , Polysaccharides/immunology , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/therapeutic use , Autoantibodies/biosynthesis , Autoantibodies/blood , Bacterial Vaccines/biosynthesis , Bacterial Vaccines/therapeutic use , Carbohydrate Sequence , Guillain-Barre Syndrome/pathology , Haemophilus Infections/microbiology , Haemophilus Infections/prevention & control , Haemophilus Vaccines/biosynthesis , Haemophilus Vaccines/therapeutic use , Haemophilus influenzae/immunology , Humans , Meningitis, Meningococcal/microbiology , Meningitis, Meningococcal/prevention & control , Neisseria meningitidis/immunology , Pneumococcal Vaccines/biosynthesis , Pneumococcal Vaccines/therapeutic use , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/prevention & control , Polysaccharides/antagonists & inhibitors , Polysaccharides/chemistry , Streptococcus pneumoniae/immunology
11.
J Infect Dis ; 223(2): 326-332, 2021 02 03.
Article in English | MEDLINE | ID: mdl-32594132

ABSTRACT

BACKGROUND: Haemophilus influenzae bacteria can cause asymptomatic carriage and invasive disease. Haemophilus influenzae serotype a (Hia) is an emerging cause of invasive disease in Alaska, with greatest burden occurring among rural Alaska Native (AN) children. The first case of invasive Hia (iHia) in Alaska was reported in 2002; however, it is unclear how long the pathogen has been in Alaska. METHODS: We quantified immunoglobulin G antibodies against Hia (anti-Hia) in 839 banked serum samples from Alaska residents, comparing antibody concentrations in samples drawn in the decades before (1980s and 1990s) and after (2000s) the emergence of iHia. We also assessed serum antibody concentration by age group, region of residence, and race. RESULTS: The anti-Hia was >0.1 µg/mL in 88.1% (348 of 395) and 91.0% (404 of 444) of samples from the decades prior and after the emergence of Hia, respectively (P = .17). No significant differences in antibody levels were detected between people from rural and urban regions (1.55 vs 2.08 µg/mL, P = .91 for age ≥5) or between AN and non-AN people (2.50 vs 2.60 µg/mL, P = .26). CONCLUSIONS: Our results are consistent with widespread Hia exposure in Alaska predating the first iHia case. No difference in Hia antibody prevalence was detected between populations with differing levels of invasive disease.


Subject(s)
Antibodies, Bacterial/immunology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/immunology , Haemophilus Infections/epidemiology , Haemophilus Infections/immunology , Haemophilus influenzae/immunology , Alaska/epidemiology , Communicable Diseases, Emerging/history , Communicable Diseases, Emerging/microbiology , Haemophilus Infections/history , Haemophilus Infections/microbiology , History, 20th Century , History, 21st Century , Humans , Immunoglobulin G/immunology , Prevalence , Public Health Surveillance , Seroepidemiologic Studies , Serogroup
12.
Infect Immun ; 89(6)2021 05 17.
Article in English | MEDLINE | ID: mdl-33782153

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi), a common inhabitant of the human nasopharynx and upper airways, causes opportunistic respiratory tract infections that are frequently recurring and chronic. NTHi utilizes sialic acid from the host to evade antibacterial defenses and persist in mucosal tissues; however, the role of sialic acid scavenged by NTHi during infection is not fully understood. We previously showed that sialylation protects specific epitopes on NTHi lipooligosaccharide (LOS) targeted by bactericidal IgM in normal human serum. Here, we evaluated the importance of immune evasion mediated by LOS sialylation in the mouse respiratory tract using wild-type H. influenzae and an isogenic siaB mutant incapable of sialylating the LOS. Sialylation protected common NTHi glycan structures recognized by human and murine IgM and protected NTHi from complement-mediated killing directed by IgM against these structures. Protection from IgM binding by sialylated LOS correlated with decreased survival of the siaB mutant versus the wild type in the murine lung. Complement depletion with cobra venom factor increased survival of the siaB mutant in the nasopharynx but not in the lungs, suggesting differing roles of sialylation at these sites. Prior infection increased IgM against H. influenzae but not against sialic acid-protected epitopes, consistent with sialic acid-mediated immune evasion during infection. These results provide mechanistic insight into an NTHi evasive strategy against an immune defense conserved across host species, highlighting the potential of the mouse model for development of anti-infective strategies targeting LOS antigens of NTHi.


Subject(s)
Antibodies, Bacterial/immunology , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Haemophilus influenzae/drug effects , Haemophilus influenzae/immunology , Immunoglobulin M/immunology , N-Acetylneuraminic Acid/pharmacology , Animals , Disease Models, Animal , Lipopolysaccharides/immunology , Mice , Microbial Viability/drug effects , Microbial Viability/immunology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology
13.
Vet Res ; 52(1): 100, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34225787

ABSTRACT

Glässer's disease is caused by the agent Glaesserella parasuis and is difficult to prevent and control. Candidate screening for subunit vaccines contributes to the prevention of this disease. Therefore, in this study, the inactivated G. parasuis reference serovar 5 strain (G. parasuis-5) was used to generate specific monoclonal antibodies (mAbs) to screen subunit vaccine candidates. Six mAbs (1A12, 3E3, 4C6, 2D1, 3E6, and 4B2) were screened, and they all reacted with the G. parasuis serovar 5 strain according to laser confocal microscopy and flow cytometry (FCM). Indirect enzyme-linked immunosorbent assay (ELISA) showed that one mAb 2D1, can react with all 15 reference serovars of G. parasuis. Protein mass spectrometry and Western blot analysis demonstrated that mAb 2D1 specifically reacts with Fe (3+) ABC transporter substrate-binding protein. A complement killing assay found that the colony numbers of bacteria were significantly reduced in the G. parasuis-5 group incubated with mAb 2D1 (p < 0.01) in comparison with the control group. Opsonophagocytic assays demonstrated that mAb 2D1 significantly enhanced the phagocytosis of 3D4/21 cells by G. parasuis (p < 0.05). RAW264.7 cells with stronger phagocytic ability were also used for the opsonophagocytic assay, and the difference was highly significant (p < 0.01). Passive immunization of mice revealed that mAb 2D1 can eliminate the bacteria in the blood and provide protection against G. parasuis-5. Our study found one mAb that can be used to prevent and control G. parasuis infection in vivo and in vitro, which may suggest that Fe (3+) ABC transporter substrate-binding protein is an immunodominant antigen and a promising candidate for subunit vaccine development.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Bacterial Vaccines/immunology , Haemophilus Infections/veterinary , Haemophilus parasuis/immunology , Animals , Antibodies, Bacterial/blood , Antibodies, Monoclonal/blood , Female , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Vaccines, Subunit/immunology
14.
BMC Infect Dis ; 21(1): 715, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34330228

ABSTRACT

BACKGROUND: Haemophilus influenzae serotype b (Hib) conjugate vaccine was introduced in France in 1992 as a 3 + 1 scheme at 2, 3, and 4 months (primary vaccination) with a booster at the age of 16-18 months. The vaccination was simplified in 2013 to a 2 + 1 scheme at 2 and 4 months (primary immunization) and a booster at the age of 11 months. The coverage was 95.4% in France at 24 months in 2017. During the period 2017-2019 the number of Hib invasive infections increased with several cases of vaccine failure. METHODS: The numbers and proportions of Hib invasive isolates during the period 2017-2019 were compared and vaccine failure cases were explored. A seroprevalence study was performed by measuring anti-polyribosyl-ribitol phosphate (PRP) IgG concentrations by ELISA among children < 5 years of age at the time of sampling covering the periods of the 3 + 1 or 2 + 1 schemes of Hib vaccination. A collection of residual 232 sera was tested (group 3 + 1 n = 130) and (group 2 + 1, n = 102) was used. RESULTS: Anti-PRP IgG concentrations were significantly higher in toddlers of 2 years (median 2.9 µg/ml) in the 3 + 1 group while these concentrations showed a median of 0.58 µg/ml among children in 2 + 1 group. The proportion of children of 2 years of age who achieved 1 µg/ml threshold (56%) was higher in the 3 + 1 group than that observed in the 2 + 1 group (25%). All the detected cases of vaccine failure received the 2 + 1 scheme and anti-PRP IgG levels were less than 1 µg/ml at the admission. However, these levels increased significantly 1 month after the admission suggesting a secondary immune response to the Hib infection. CONCLUSIONS: The simplification of the vaccination to a 2 + 1 scheme seems to reduce the level of anti PRP IgG. Hib antibodies wane rapidly after the 11 months booster and may not be enough to ensure long term protection. Surveillance of cases and monitoring of titres need to be continued to inform future vaccination policy.


Subject(s)
Haemophilus Infections/epidemiology , Haemophilus Vaccines , Haemophilus influenzae type b/immunology , Adult , Antibodies, Bacterial/blood , Child, Preschool , France/epidemiology , Haemophilus Infections/immunology , Haemophilus Vaccines/administration & dosage , Haemophilus influenzae type b/isolation & purification , Humans , Immunization Schedule , Immunization, Secondary , Immunologic Memory , Infant , Polysaccharides/immunology , Seroepidemiologic Studies , Treatment Failure , Vaccination
15.
Proc Natl Acad Sci U S A ; 115(30): E7149-E7157, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29987031

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is a major cause of community acquired pneumonia and exacerbation of chronic obstructive pulmonary disease. A current effort in NTHi vaccine development has focused on generating humoral responses and has been greatly impeded by antigenic variation among the numerous circulating NTHi strains. In this study, we showed that pulmonary immunization of mice with killed NTHi generated broad protection against lung infection by different strains. While passive transfer of immune antibodies protected only against the homologous strain, transfer of immune T cells conferred protection against both homologous and heterologous strains. Further characterization revealed a strong Th17 response that was cross-reactive with different NTHi strains. Responding Th17 cells recognized both cytosolic and membrane-associated antigens, while immune antibodies preferentially responded to surface antigens and were highly strain specific. We further identified several conserved proteins recognized by lung Th17 cells during NTHi infection. Two proteins yielding the strongest responses were tested as vaccine candidates by immunization of mice with purified proteins plus an adjuvant. Immunization induced antigen-specific Th17 cells that recognized different strains and, upon adoptive transfer, conferred protection. Furthermore, immunized mice were protected against challenge with not only NTHi strains but also a fully virulent, encapsulated strain. Together, these results show that the immune mechanism of cross-protection against pneumonia involves Th17 cells, which respond to a broad spectrum of antigens, including those that are highly conserved among NTHi strains. These mechanistic insights suggest that inclusion of Th17 antigens in subunit vaccines offers the advantage of inducing broad protection and complements the current antibody-based approaches.


Subject(s)
Antigens, Bacterial/immunology , Haemophilus Infections/immunology , Haemophilus Vaccines/immunology , Haemophilus influenzae/immunology , Pneumonia, Bacterial/immunology , Th17 Cells/immunology , Animals , Cross Reactions , Haemophilus Infections/pathology , Haemophilus Infections/prevention & control , Mice , Mice, Knockout , Pneumonia, Bacterial/pathology , Pneumonia, Bacterial/prevention & control , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/prevention & control , Th17 Cells/pathology
16.
Infect Immun ; 88(10)2020 09 18.
Article in English | MEDLINE | ID: mdl-32719154

ABSTRACT

Haemophilus influenzae is a Gram-negative bacterium that can be classified into typeable (types a through f) and nontypeable (NTHi) groups. This opportunistic pathogen asymptomatically colonizes the mucosal epithelium of the upper respiratory tract, from where it spreads to other neighboring regions, potentially leading to disease. Infection with NTHi can cause otitis media, sinusitis, conjunctivitis, exacerbations of chronic obstructive pulmonary disease, and pneumonia, but it is increasingly causing invasive disease, including bacteremia and meningitis. Invasive NTHi strains are more resistant to complement-mediated killing. However, the mechanisms of complement resistance have never been studied in large numbers of invasive NTHi strains. In this study, we determined the relationship between binding of IgG or IgM and the bacterial survival in normal human serum for 267 invasive H. influenzae strains from Spain, Portugal, and the Netherlands, of which the majority (200 [75%]) were NTHi. NTHi bacteria opsonized with high levels of IgM had the lowest survival in human serum. IgM binding to the bacterial surface, but not IgG binding, was shown to be associated with complement-mediated killing of NTHi strains. We conclude that evasion of IgM binding by NTHi strains increases survival in blood, thereby potentially contributing to their ability to cause severe invasive diseases.


Subject(s)
Complement System Proteins/immunology , Haemophilus Infections/immunology , Haemophilus influenzae/immunology , Immunoglobulin M/immunology , Adult , Aged , Complement Activation , Europe/epidemiology , Female , Haemophilus Infections/epidemiology , Haemophilus Infections/microbiology , Haemophilus influenzae/isolation & purification , Haemophilus influenzae/pathogenicity , Humans , Immune Evasion , Immunoglobulin G/immunology , Male , Microbial Viability , Middle Aged , Serum/microbiology
17.
Eur J Immunol ; 49(3): 490-499, 2019 03.
Article in English | MEDLINE | ID: mdl-30566236

ABSTRACT

Non-typeable Haemophilus influenzae (NTHi) is a pathogen that commonly colonizes the nasopharynx of preschool children, causing opportunistic infections including acute otitis media (AOM). Patients suffering from chronic obstructive pulmonary disease (COPD) are persistently colonized with NTHi and occasionally suffer from exacerbations by the bacterium leading to increased morbidity. Elongation-factor thermo unstable (EF-Tu), a protein critical for bacterial protein synthesis, has been found to moonlight on the surface of several bacteria. Here, we show that antibodies against NTHi EF-Tu were present in children already at 18 months of age, and that the IgG antibody titers increased with age. Children harboring NTHi in the nasopharynx also displayed significantly higher IgG concentrations. Interestingly, children suffering from AOM had significantly higher anti-EF-Tu IgG levels when NTHi was the causative agent. Human sera recognized mainly the central and C-terminal part of the EF-Tu molecule and peptide-based epitope mapping confirmed similar binding patterns for sera from humans and immunized mice. Immunization of BALB/c and otitis-prone Junbo (C3H/HeH) mice promoted lower infection rates in the nasopharynx and middle ear, respectively. In conclusion, our results suggest that IgG directed against NTHi EF-Tu may play an important role in the host immune response against NTHi.


Subject(s)
Antibodies, Bacterial/immunology , Haemophilus Infections/immunology , Haemophilus influenzae/immunology , Immunoglobulin G/immunology , Peptide Elongation Factor Tu/immunology , Adult , Age Factors , Animals , Antibodies, Bacterial/administration & dosage , Antibodies, Bacterial/metabolism , Child , Child, Preschool , Haemophilus Infections/microbiology , Haemophilus Infections/prevention & control , Haemophilus influenzae/drug effects , Haemophilus influenzae/physiology , Humans , Immunization , Immunoglobulin G/administration & dosage , Immunoglobulin G/metabolism , Infant , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Otitis Media/immunology , Otitis Media/microbiology , Peptide Elongation Factor Tu/metabolism , Respiratory System/drug effects , Respiratory System/immunology , Respiratory System/microbiology
18.
Cytokine ; 136: 155287, 2020 12.
Article in English | MEDLINE | ID: mdl-32950027

ABSTRACT

Haemophilus parasuis induces severe acute systemic infection in pigs, characterized by fibrinous polyserositis, polyarthritis and meningitis. Our previous study demonstrated that H. parasuis induced the activation of p38 mitogen-activated protein kinase (MAPK) pathway, increasing the expression of proinflammatory genes and mediating H. parasuis-induced inflammation. Moreover, Wnt/ß-catenin signaling activation induced by H. parasuis disrupts the adherens junction between epithelial cells and initiates the epithelial-mesenchymal transition (EMT). In the present study, p38 MAPK was found to be involved in the accumulation of nuclear location of ß-catenin during H. parasuis infection in PK-15 and NPTr cells, via modulating the expression of dickkofp-1 (DKK-1), a negative regulator of Wnt/ß-catenin signaling. We generated DKK-1 knockout cell lines by CRISPR/Cas9-mediated genome editing in PK-15 and NPTr cells, and found that knockout of DKK-1 led to the dysfunction of p38 MAPK in regulating Wnt/ß-catenin signaling activity in H. parasuis-infected cells. Furthermore, p38 MAPK activity was independent of the activation of Wnt/ß-catenin signaling during H. parasuis infection. This is the first study to explore the crosstalk between p38 MAPK and Wnt/ß-catenin signaling during H. parasuis infection. It provides a more comprehensive view of intracellular signaling pathways during pathogenic bacteria-induced acute inflammation.


Subject(s)
Haemophilus Infections , Haemophilus parasuis/immunology , Intercellular Signaling Peptides and Proteins/immunology , Swine Diseases , Swine/immunology , Wnt Signaling Pathway/immunology , p38 Mitogen-Activated Protein Kinases/immunology , Animals , Cell Line , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Haemophilus Infections/veterinary , Swine/microbiology , Swine Diseases/immunology , Swine Diseases/microbiology
19.
Vet Res ; 51(1): 123, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32977847

ABSTRACT

Infectious coryza (IC), an upper respiratory tract disease affecting chickens, is caused by Avibacterium paragallinarum. The clinical manifestations of IC include nasal discharge, facial swelling, and lacrimation. This acute disease results in high morbidity and low mortality, while the course of the disease is prolonged and mortality rates are increased in cases with secondary infections. Studies regarding the immune response in infected chickens are scarce, and the local immune response is the focal point of investigation. However, a large body of work has demonstrated that severe infections can impact the systemic immune response. The objective of this study was to evaluate the systemic effects of Avibacterium paragallinarum (serovar B-1) infection on immune cells in specific pathogen-free (SPF) chickens. The current study revealed the presence of a transient circulating monocyte population endowed with high phagocytic ability and clear downregulation of major histocompatibility complex class II (MHC-II) surface expression. In human and mouse studies, this monocyte population (identified as tolerant monocytes) has been correlated with a dysfunctional immune response, increasing the risk of secondary infections and mortality. Consistent with this dysfunctional immune response, we demonstrate that B cells from infected chickens produced fewer antibodies than those from control chickens. Moreover, T cells isolated from the peripheral blood of infected chickens had a lower ability to proliferate in response to concanavalin A than those isolated from control chickens. These findings could be related to the severe clinical signs observed in complicated IC caused by the presence of secondary infections.


Subject(s)
Chickens , Haemophilus Infections/veterinary , Haemophilus paragallinarum/physiology , Monocytes/immunology , Poultry Diseases/immunology , Animals , Haemophilus Infections/immunology , Haemophilus Infections/microbiology , Histocompatibility Antigens Class II/immunology , Poultry Diseases/microbiology , Specific Pathogen-Free Organisms
20.
J Immunol ; 200(8): 2927-2940, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29555783

ABSTRACT

Despite advocacy to reduce smoking-related diseases, >1 billion people worldwide continue to smoke. Smoking is immunosuppressive and an important etiological factor in the development of several human disorders including respiratory diseases like chronic obstructive pulmonary disease. However, there is a critical gap in the knowledge of the role of secondhand smoke (SHS) in inflammation and immunity. We therefore studied the influence of SHS on pulmonary inflammation and immune responses to respiratory infection by nontypeable Haemophilus influenzae (NTHI) recurrently found in chronic obstructive pulmonary disease patients. Chronic SHS-exposed mice were chronically infected with NTHI and pulmonary inflammation was evaluated by histology. Immune cell numbers and cytokines were measured by flow cytometry and ELISA, respectively. Chronic SHS exposure impaired NTHI P6 Ag-specific B and T cell responses following chronic NTHI infection as measured by ELISPOT assays, reduced the production of Abs in serum and bronchoalveolar lavage, and enhanced albumin leak into the bronchoalveolar lavage as determined by ELISA. Histopathological examination of lungs revealed lymphocytic accumulation surrounding airways and bronchovasculature following chronic SHS exposure and chronic infection. Chronic SHS exposure enhanced the levels of inflammatory cytokines IL-17A, IL-6, IL-1ß, and TNF-α in the lungs, and impaired the generation of adaptive immunity following either chronic infection or P6 vaccination. Chronic SHS exposure diminished bacterial clearance from the lungs after acute NTHI challenge, whereas P6 vaccination improved clearance equivalent to the level seen in air-exposed, non-vaccinated mice. Our study provides unequivocal evidence that SHS exposure has long-term detrimental effects on the pulmonary inflammatory microenvironment and immunity to infection and vaccination.


Subject(s)
Haemophilus Infections/immunology , Inflammation/immunology , Respiratory Tract Infections/immunology , Tobacco Smoke Pollution/adverse effects , Animals , Haemophilus influenzae , Inflammation/chemically induced , Mice
SELECTION OF CITATIONS
SEARCH DETAIL