Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
Proc Natl Acad Sci U S A ; 119(12): e2200065119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35286211

ABSTRACT

SignificanceConcern has increased about the pandemic potential of Nipah virus (NiV). Similar to SARS-CoV-2, NiV is an RNA virus that is transmitted by respiratory droplets. There are currently no NiV vaccines licensed for human use. While several preventive vaccines have shown promise in protecting animals against lethal NiV disease, most studies have assessed protection 1 mo after vaccination. However, in order to contain and control outbreaks, vaccines that can rapidly confer protection in days rather than months are needed. Here, we show that a recombinant vesicular stomatitis virus vector expressing the NiV glycoprotein can completely protect monkeys vaccinated 7 d prior to NiV exposure and 67% of animals vaccinated 3 d before NiV challenge.


Subject(s)
Henipavirus Infections/veterinary , Nipah Virus/immunology , Primate Diseases/prevention & control , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral/immunology , Biomarkers , Genetic Vectors , Kaplan-Meier Estimate , Neutralization Tests , Outcome Assessment, Health Care , Primate Diseases/diagnosis , Primate Diseases/mortality , Primate Diseases/virology , Vaccination , Viral Load
2.
Emerg Infect Dis ; 29(2): 393-396, 2023 02.
Article in English | MEDLINE | ID: mdl-36692447

ABSTRACT

Spillovers of Nipah virus (NiV) from Pteropus bats to humans occurs frequently in Bangladesh, but the risk for spillover into other animals is poorly understood. We detected NiV antibodies in cattle, dogs, and cats from 6 sites where spillover human NiV infection cases occurred during 2013-2015.


Subject(s)
Chiroptera , Henipavirus Infections , Nipah Virus , Humans , Animals , Dogs , Cattle , Bangladesh/epidemiology , Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary , Disease Outbreaks
3.
Proc Natl Acad Sci U S A ; 117(46): 29190-29201, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33139552

ABSTRACT

Nipah virus (NiV) is an emerging bat-borne zoonotic virus that causes near-annual outbreaks of fatal encephalitis in South Asia-one of the most populous regions on Earth. In Bangladesh, infection occurs when people drink date-palm sap contaminated with bat excreta. Outbreaks are sporadic, and the influence of viral dynamics in bats on their temporal and spatial distribution is poorly understood. We analyzed data on host ecology, molecular epidemiology, serological dynamics, and viral genetics to characterize spatiotemporal patterns of NiV dynamics in its wildlife reservoir, Pteropus medius bats, in Bangladesh. We found that NiV transmission occurred throughout the country and throughout the year. Model results indicated that local transmission dynamics were modulated by density-dependent transmission, acquired immunity that is lost over time, and recrudescence. Increased transmission followed multiyear periods of declining seroprevalence due to bat-population turnover and individual loss of humoral immunity. Individual bats had smaller host ranges than other Pteropus species (spp.), although movement data and the discovery of a Malaysia-clade NiV strain in eastern Bangladesh suggest connectivity with bats east of Bangladesh. These data suggest that discrete multiannual local epizootics in bat populations contribute to the sporadic nature of NiV outbreaks in South Asia. At the same time, the broad spatial and temporal extent of NiV transmission, including the recent outbreak in Kerala, India, highlights the continued risk of spillover to humans wherever they may interact with pteropid bats and the importance of limiting opportunities for spillover throughout Pteropus's range.


Subject(s)
Chiroptera/virology , Henipavirus Infections/epidemiology , Henipavirus Infections/transmission , Henipavirus Infections/veterinary , Henipavirus Infections/virology , Nipah Virus/classification , Nipah Virus/genetics , Animals , Asia , Bangladesh/epidemiology , Disease Outbreaks , Female , Host Specificity , Humans , Immunity , Male , Models, Biological , Molecular Epidemiology , Nipah Virus/immunology , Phylogeny , Zoonoses/epidemiology , Zoonoses/immunology , Zoonoses/transmission , Zoonoses/virology
4.
Vet Clin North Am Equine Pract ; 39(1): 89-98, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36737284

ABSTRACT

Hendra virus (HeV) emerged as a zoonotic pathogen in the 1990s, causing low morbidity but high mortality in humans and horses. Pteropid bats are the natural reservoir of HeV and other important zoonotic viruses such as Nipah and Ebola viruses. Equivac HeV, manufactured by Zoetis (Parkville, Victoria, Australia), is the only commercially available vaccine for horses. There is no commercial vaccine for humans. The epidemiology, clinical features, pathology, diagnosis, management, and prevention of HeV will be reviewed.


Subject(s)
Chiroptera , Hendra Virus , Henipavirus Infections , Horse Diseases , Vaccines , Humans , Animals , Horses , Biosecurity , Horse Diseases/prevention & control , Vaccination/veterinary , Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary
5.
Emerg Infect Dis ; 28(5): 1043-1047, 2022 05.
Article in English | MEDLINE | ID: mdl-35447052

ABSTRACT

A novel Hendra virus variant, genotype 2, was recently discovered in a horse that died after acute illness and in Pteropus flying fox tissues in Australia. We detected the variant in flying fox urine, the pathway relevant for spillover, supporting an expanded geographic range of Hendra virus risk to horses and humans.


Subject(s)
Chiroptera , Hendra Virus , Henipavirus Infections , Animals , Australia/epidemiology , Hendra Virus/genetics , Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary , Horses
6.
Emerg Infect Dis ; 28(7): 1384-1392, 2022 07.
Article in English | MEDLINE | ID: mdl-35731130

ABSTRACT

Knowledge of the dynamics and genetic diversity of Nipah virus circulating in bats and at the human-animal interface is limited by current sampling efforts, which produce few detections of viral RNA. We report a series of investigations at Pteropus medius bat roosts identified near the locations of human Nipah cases in Bangladesh during 2012-2019. Pooled bat urine was collected from 23 roosts; 7 roosts (30%) had >1 sample in which Nipah RNA was detected from the first visit. In subsequent visits to these 7 roosts, RNA was detected in bat urine up to 52 days after the presumed exposure of the human case-patient, although the probability of detection declined rapidly with time. These results suggest that rapidly deployed investigations of Nipah virus shedding from bat roosts near human cases could increase the success of viral sequencing compared with background surveillance and could enhance understanding of Nipah virus ecology and evolution.


Subject(s)
Chiroptera , Henipavirus Infections , Nipah Virus , Animals , Bangladesh/epidemiology , Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary , Humans , Nipah Virus/genetics , RNA, Viral/genetics
7.
Emerg Infect Dis ; 28(3): 693-704, 2022 03.
Article in English | MEDLINE | ID: mdl-35202527

ABSTRACT

We identified and isolated a novel Hendra virus (HeV) variant not detected by routine testing from a horse in Queensland, Australia, that died from acute illness with signs consistent with HeV infection. Using whole-genome sequencing and phylogenetic analysis, we determined the variant had ≈83% nt identity with prototypic HeV. In silico and in vitro comparisons of the receptor-binding protein with prototypic HeV support that the human monoclonal antibody m102.4 used for postexposure prophylaxis and current equine vaccine will be effective against this variant. An updated quantitative PCR developed for routine surveillance resulted in subsequent case detection. Genetic sequence consistency with virus detected in grey-headed flying foxes suggests the variant circulates at least among this species. Studies are needed to determine infection kinetics, pathogenicity, reservoir-species associations, viral-host coevolution, and spillover dynamics for this virus. Surveillance and biosecurity practices should be updated to acknowledge HeV spillover risk across all regions frequented by flying foxes.


Subject(s)
Chiroptera , Hendra Virus , Henipavirus Infections , Horse Diseases , Animals , Australia/epidemiology , Hendra Virus/genetics , Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary , Horse Diseases/epidemiology , Horses , Phylogeny , Sentinel Surveillance
8.
J Law Med ; 29(3): 700-706, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36056660

ABSTRACT

Zoonotic diseases are those which originate in animals but are transmitted to humans often through an intermediate host such as a wild animal. In Australia Hendra virus (HeV) is a disease of horses with occasional human fatalities and which is spread by the fruit bat. This article explores the lessons learnt from managing the Queensland outbreak of HeV in 1994. The legal framework for the notification and management of prohibited matter including zoonotic diseases in Queensland and New South Wales has been strengthened by provisions in the Biosecurity Act 2015 (NSW) which create strong penalties for failure to notify outbreaks and failure to isolate infected stock and prevent their removal from premises within 24 hours. The response of at least 20% of Queensland equine veterinarians to the new legal obligations has been to cease practising equine medicine. There may be scope for enhanced education of veterinary students in legal obligations under the biosecurity legislation.


Subject(s)
Hendra Virus , Henipavirus Infections , Horse Diseases , Veterinarians , Animals , Hendra Virus/physiology , Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary , Horse Diseases/epidemiology , Horse Diseases/prevention & control , Horses , Humans , Zoonoses
9.
Virol J ; 18(1): 197, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34641882

ABSTRACT

BACKGROUND: Hendra virus (HeV) has caused lethal disease outbreaks in humans and horses in Australia. Flying foxes are the wildlife reservoir from which the virus was first isolated in 1996. Following a heat stress mortality event in Australian flying foxes in 2013, a novel HeV variant was discovered. This study describes the subsequent surveillance of Australian flying foxes for this novel virus over a nine year period using qRT-PCR testing of tissues from flying foxes submitted primarily for Australian bat lyssavirus diagnosis. Genome sequencing and characterisation of the novel HeV variant was also undertaken. METHODS: Spleen and kidney samples harvested from flying fox carcasses were initially screened with two real-time qRT-PCR assays specific for the prototype HeV. Two additional qRT-PCR assays were developed specific for the HeV variant first detected in samples from a flying fox in 2013. Next-generation sequencing and virus isolation was attempted from selected samples to further characterise the new virus. RESULTS: Since 2013, 98 flying foxes were tested and 11 were positive for the new HeV variant. No samples were positive for the original HeV. Ten of the positive samples were from grey-headed flying foxes (GHFF, Pteropus poliocephalus), however this species was over-represented in the opportunistic sampling (83% of bats tested were GHFF). The positive GHFF samples were collected from Victoria and South Australia and one positive Little red flying fox (LRFF, Pteropus scapulatus) was collected from Western Australia. Immunohistochemistry confirmed the presence of henipavirus antigen, associated with an inflammatory lesion in cardiac blood vessels of one GHFF. Positive samples were sequenced and the complete genome was obtained from three samples. When compared to published HeV genomes, there was 84% sequence identity at the nucleotide level. Based on phylogenetic analyses, the newly detected HeV belongs to the HeV species but occupies a distinct lineage. We have therefore designated this virus HeV genotype 2 (HeV-g2). Attempts to isolate virus from PCR positive samples have not been successful. CONCLUSIONS: A novel HeV genotype (HeV-g2) has been identified in two flying fox species submitted from three states in Australia, indicating that the level of genetic diversity for HeV is broader than first recognised. Given its high genetic relatedness to HeV, HeV-g2 is a zoonotic pathogen.


Subject(s)
Chiroptera , Hendra Virus , Henipavirus Infections , Animals , Australia/epidemiology , Genotype , Hendra Virus/genetics , Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary , Horses , Phylogeny
10.
BMC Infect Dis ; 21(1): 162, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33563231

ABSTRACT

BACKGROUND: In June 2019, Nipah virus (NiV) infection was detected in a 21-year-old male (index case) of Ernakulum, Kerala, India. This study was undertaken to determine if NiV was in circulation in Pteropus species (spp) in those areas where the index case had visit history in 1 month. METHODS: Specialized techniques were used to trap the Pteropus medius bats (random sampling) in the vicinity of the index case area. Throat and rectal swabs samples of 141 bats along with visceral organs of 92 bats were collected to detect the presence of NiV by real-time reverse transcriptase-polymerase chain reaction (qRTPCR). Serum samples of 52 bats were tested for anti-NiV Immunoglobulin (Ig) G antibodies by Enzyme-Linked Immunosorbent Assay (ELISA). The complete genome of NiV was sequenced by next-generation sequencing (NGS) from the tissues and swab samples of bats. RESULTS: One rectal swab sample and three bats visceral organs were found positive for the NiV. Interestingly, 20.68% (12/58) of Pteropus were positive for anti-NiV IgG antibodies. NiV sequences of 18,172; 17,200 and 15,100 nucleotide bps could be retrieved from three Pteropus bats. CONCLUSION: A distinct cluster of NiV sequences, with significant net-evolutionary nucleotide divergence, was obtained, suggesting the circulation of new genotype (I-India) in South India. NiV Positivity in Pteropus spp. of bats revealed that NiV is circulating in many districts of Kerala state, and active surveillance of NiV should be immediately set up to know the hotspot area for NiV infection.


Subject(s)
Chiroptera/virology , Henipavirus Infections/diagnosis , Nipah Virus/genetics , Animals , Antibodies, Viral/blood , Disease Outbreaks , Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary , Henipavirus Infections/virology , High-Throughput Nucleotide Sequencing , Immunoglobulin G/blood , India/epidemiology , Nipah Virus/classification , Nipah Virus/immunology , Phylogeny , RNA, Viral/chemistry , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , Rectum/virology
11.
J Infect Dis ; 221(Suppl 4): S407-S413, 2020 05 11.
Article in English | MEDLINE | ID: mdl-31682727

ABSTRACT

Nipah virus (NiV) is a bat-borne zoonotic pathogen that can cause severe respiratory distress and encephalitis upon spillover into humans. NiV is capable of infecting a broad range of hosts including humans, pigs, ferrets, dogs, cats, hamsters, and at least 2 genera of bats. Little is known about the biology of NiV in the bat reservoir. In this study, we evaluate the potential for the Egyptian fruit bat (EFB), Rousettus aegyptiacus, to serve as a model organism for studying NiV in bats. Our data suggest that NiV does not efficiently replicate in EFBs in vivo. Furthermore, we show no seroconversion against NiV glycoprotein and a lack of viral replication in primary and immortalized EFB-derived cell lines. Our data show that despite using a conserved target for viral entry, NiV replication is limited in some bat species. We conclude that EFBs are not an appropriate organism to model NiV infection or transmission in bats.


Subject(s)
Chiroptera/classification , Chiroptera/virology , Henipavirus Infections/veterinary , Nipah Virus/physiology , Virus Replication/physiology , Animals , Henipavirus Infections/virology , Species Specificity
12.
J Infect Dis ; 221(Suppl 4): S436-S447, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32022850

ABSTRACT

BACKGROUND: The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are capable of causing severe and often lethal respiratory and/or neurologic disease in animals and humans. Given the sporadic nature of henipavirus outbreaks, licensure of vaccines and therapeutics for human use will likely require demonstration of efficacy in animal models that faithfully reproduce the human condition. Currently, the African green monkey (AGM) best mimics human henipavirus-induced disease. METHODS: The pathogenic potential of HeV and both strains of NiV (Malaysia, Bangladesh) was assessed in cynomolgus monkeys and compared with henipavirus-infected historical control AGMs. Multiplex gene and protein expression assays were used to compare host responses. RESULTS: In contrast to AGMs, in which henipaviruses cause severe and usually lethal disease, HeV and NiVs caused only mild or asymptomatic infections in macaques. All henipaviruses replicated in macaques with similar kinetics as in AGMs. Infection in macaques was associated with activation and predicted recruitment of cytotoxic CD8+ T cells, Th1 cells, IgM+ B cells, and plasma cells. Conversely, fatal outcome in AGMs was associated with aberrant innate immune signaling, complement dysregulation, Th2 skewing, and increased secretion of MCP-1. CONCLUSION: The restriction factors identified in macaques can be harnessed for development of effective countermeasures against henipavirus disease.


Subject(s)
Hendra Virus , Henipavirus Infections/veterinary , Immunity, Cellular , Immunity, Humoral , Macaca fascicularis , Nipah Virus , Animals , Henipavirus Infections/virology , Male , Monkey Diseases/immunology , Monkey Diseases/virology , Viral Load , Viral Tropism
13.
J Infect Dis ; 221(Suppl 4): S375-S382, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32034942

ABSTRACT

Bat-borne zoonotic pathogens belonging to the family Paramxyoviridae, including Nipah and Hendra viruses, and the family Filoviridae, including Ebola and Marburg viruses, can cause severe disease and high mortality rates on spillover into human populations. Surveillance efforts for henipaviruses and filoviruses have been largely restricted to the Old World; however, recent studies suggest a potentially broader distribution for henipaviruses and filoviruses than previously recognized. In the current study, we screened for henipaviruses and filoviruses in New World bats collected across 4 locations in Trinidad near the coast of Venezuela. Bat tissue samples were screened using previously established reverse-transcription polymerase chain reaction assays. Serum were screened using a multiplex immunoassay to detect antibodies reactive with the envelope glycoprotein of viruses in the genus Henipavirus and the family Filoviridae. Serum samples were also screened by means of enzyme-linked immunosorbent assay for antibodies reactive with Nipah G and F glycoproteins. Of 84 serum samples, 28 were reactive with ≥1 henipavirus glycoprotein by ≥1 serological method, and 6 serum samples were reactive against ≥1 filovirus glycoproteins. These data provide evidence of potential circulation of viruses related to the henipaviruses and filoviruses in New World bats.


Subject(s)
Chiroptera/virology , Filoviridae Infections/veterinary , Filoviridae , Henipavirus Infections/veterinary , Henipavirus , Animals , Chiroptera/blood , Chiroptera/classification , Filoviridae Infections/epidemiology , Filoviridae Infections/virology , Henipavirus Infections/epidemiology , Henipavirus Infections/virology , Serologic Tests , Trinidad and Tobago/epidemiology
14.
Emerg Infect Dis ; 26(1): 104-113, 2020 01.
Article in English | MEDLINE | ID: mdl-31855143

ABSTRACT

We conducted an in-depth characterization of the Nipah virus (NiV) isolate previously obtained from a Pteropus lylei bat in Cambodia in 2003 (CSUR381). We performed full-genome sequencing and phylogenetic analyses and confirmed CSUR381 is part of the NiV-Malaysia genotype. In vitro studies revealed similar cell permissiveness and replication of CSUR381 (compared with 2 other NiV isolates) in both bat and human cell lines. Sequence alignments indicated conservation of the ephrin-B2 and ephrin-B3 receptor binding sites, the glycosylation site on the G attachment protein, as well as the editing site in phosphoprotein, suggesting production of nonstructural proteins V and W, known to counteract the host innate immunity. In the hamster animal model, CSUR381 induced lethal infections. Altogether, these data suggest that the Cambodia bat-derived NiV isolate has high pathogenic potential and, thus, provide insight for further studies and better risk assessment for future NiV outbreaks in Southeast Asia.


Subject(s)
Chiroptera/virology , Henipavirus Infections/veterinary , Nipah Virus/pathogenicity , Animals , Cambodia , Genome, Viral/genetics , Henipavirus Infections/epidemiology , Henipavirus Infections/virology , Humans , Nipah Virus/genetics , Phylogeny , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Whole Genome Sequencing
15.
Rev Med Virol ; 29(1): e2010, 2019 01.
Article in English | MEDLINE | ID: mdl-30251294

ABSTRACT

Since emergence of the Nipah virus (NiV) in 1998 from Malaysia, the NiV virus has reappeared on different occasions causing severe infections in human population associated with high rate of mortality. NiV has been placed along with Hendra virus in genus Henipavirus of family Paramyxoviridae. Fruit bats (Genus Pteropus) are known to be natural host and reservoir of NiV. During the outbreaks from Malaysia and Singapore, the roles of pigs as intermediate host were confirmed. The infection transmitted from bats to pigs and subsequently from pigs to humans. Severe encephalitis was reported in NiV infection often associated with neurological disorders. First NiV outbreak in India occurred in Siliguri district of West Bengal in 2001, where direct transmission of the NiV virus from bats-to-human and human-to-human was reported in contrast to the role of pigs in the Malaysian NiV outbreak. Regular NiV outbreaks have been reported from Bangladesh since 2001 to 2015. The latest outbreak of NiV has been recorded in May, 2018 from Kerala, India which resulted in the death of 17 individuals. Due to lack of vaccines and effective antivirals, Nipah encephalitis poses a great threat to public health. Routine surveillance studies in the infected areas can be useful in detecting early signs of infection and help in containment of these outbreaks.


Subject(s)
Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary , Nipah Virus/isolation & purification , Swine Diseases/epidemiology , Swine Diseases/virology , Zoonoses/epidemiology , Zoonoses/virology , Animals , Asia/epidemiology , Chiroptera , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/veterinary , Communicable Diseases, Emerging/virology , Disease Outbreaks , Disease Transmission, Infectious , Epidemiological Monitoring , Henipavirus Infections/virology , Humans , Survival Analysis , Swine
16.
BMC Vet Res ; 16(1): 300, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32838786

ABSTRACT

BACKGROUND: Nipah virus (NiV) is a fatal zoonotic agent that was first identified amongst pig farmers in Malaysia in 1998, in an outbreak that resulted in 105 fatal human cases. That epidemic arose from a chain of infection, initiating from bats to pigs, and which then spilled over from pigs to humans. In Thailand, bat-pig-human communities can be observed across the country, particularly in the central plain. The present study therefore aimed to identify high-risk areas for potential NiV outbreaks and to model how the virus is likely to spread. Multi-criteria decision analysis (MCDA) and weighted linear combination (WLC) were employed to produce the NiV risk map. The map was then overlaid with the nationwide pig movement network to identify the index subdistricts in which NiV may emerge. Subsequently, susceptible-exposed-infectious-removed (SEIR) modeling was used to simulate NiV spread within each subdistrict, and network modeling was used to illustrate how the virus disperses across subdistricts. RESULTS: Based on the MCDA and pig movement data, 14 index subdistricts with a high-risk of NiV emergence were identified. We found in our infectious network modeling that the infected subdistricts clustered in, or close to the central plain, within a range of 171 km from the source subdistricts. However, the virus may travel as far as 528.5 km (R0 = 5). CONCLUSIONS: In conclusion, the risk of NiV dissemination through pig movement networks in Thailand is low but not negligible. The risk areas identified in our study can help the veterinary authority to allocate financial and human resources to where preventive strategies, such as pig farm regionalization, are required and to contain outbreaks in a timely fashion once they occur.


Subject(s)
Henipavirus Infections/veterinary , Nipah Virus , Swine Diseases/epidemiology , Animals , Chiroptera/virology , Decision Support Techniques , Disease Outbreaks/prevention & control , Henipavirus Infections/epidemiology , Henipavirus Infections/transmission , Humans , Swine , Swine Diseases/virology , Thailand/epidemiology , Transportation
17.
Emerg Infect Dis ; 25(6): 1144-1152, 2019 06.
Article in English | MEDLINE | ID: mdl-31107231

ABSTRACT

Nipah virus (NiV) is a zoonotic pathogen that causes high case-fatality rates (CFRs) in humans. Two NiV strains have caused outbreaks: the Malaysia strain (NiVM), discovered in 1998-1999 in Malaysia and Singapore (≈40% CFR); and the Bangladesh strain (NiVB), discovered in Bangladesh and India in 2001 (≈80% CFR). Recently, NiVB in African green monkeys resulted in a more severe and lethal disease than NiVM. No NiV vaccines or treatments are licensed for human use. We assessed replication-restricted single-injection recombinant vesicular stomatitis vaccine NiV vaccine vectors expressing the NiV glycoproteins against NiVB challenge in African green monkeys. All vaccinated animals survived to the study endpoint without signs of NiV disease; all showed development of NiV F Ig, NiV G IgG, or both, as well as neutralizing antibody titers. These data show protective efficacy against a stringent and relevant NiVB model of human infection.


Subject(s)
Chlorocebus aethiops , Henipavirus Infections , Nipah Virus , Vesiculovirus , Viral Vaccines , Zoonoses , Animals , Female , Male , Henipavirus Infections/mortality , Henipavirus Infections/prevention & control , Henipavirus Infections/veterinary , Henipavirus Infections/virology , Immunity, Humoral , Monkey Diseases/pathology , Monkey Diseases/virology , Vesiculovirus/immunology , Viral Load , Viral Vaccines/immunology
18.
Emerg Infect Dis ; 25(1): 166-170, 2019 01.
Article in English | MEDLINE | ID: mdl-30561301

ABSTRACT

Despite molecular and serologic evidence of Nipah virus in bats from various locations, attempts to isolate live virus have been largely unsuccessful. We report isolation and full-genome characterization of 10 Nipah virus isolates from Pteropus medius bats sampled in Bangladesh during 2013 and 2014.


Subject(s)
Chiroptera/virology , Disease Reservoirs/virology , Genome, Viral/genetics , Henipavirus Infections/veterinary , Nipah Virus/genetics , Animals , Bangladesh , Geography , Henipavirus Infections/virology , Humans , Nipah Virus/isolation & purification , Phylogeny , Zoonoses
19.
BMC Vet Res ; 15(1): 73, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30832676

ABSTRACT

BACKGROUND: Thailand's Central Plain is identified as a contact zone between pigs and flying foxes, representing a potential zoonotic risk. Nipah virus (NiV) has been reported in flying foxes in Thailand, but it has never been found in pigs or humans. An assessment of the suitability of NiV transmission at the spatial and farm level would be useful for disease surveillance and prevention. Multi-criteria decision analysis (MCDA), a knowledge-driven model, was used to map contact zones between local epizootic risk factors as well as to quantify the suitability of NiV transmission at the pixel and farm level. RESULTS: Spatial risk factors of NiV transmission in pigs were identified by experts as being of three types, including i) natural host factors (bat preferred areas and distance to the nearest bat colony), ii) intermediate host factors (pig population density), and iii) environmental factors (distance to the nearest forest, distance to the nearest orchard, distance to the nearest water body, and human population density). The resulting high suitable areas were concentrated around the bat colonies in three provinces in the East of Thailand, including Chacheongsao, Chonburi, and Nakhonnayok. The suitability of NiV transmission in pig farms in the study area was quantified as ranging from very low to medium suitability. CONCLUSIONS: We believe that risk-based surveillance in the identified priority areas may increase the chances of finding out NiV and other bat-borne pathogens and thereby optimize the allocation of financial resources for disease surveillance. In the long run, improvements of biosecurity in those priority areas may also contribute to preventing the spread of potential emergence of NiV and other bat-borne pathogens.


Subject(s)
Chiroptera/virology , Henipavirus Infections/veterinary , Nipah Virus , Swine/virology , Animals , Decision Support Techniques , Henipavirus Infections/epidemiology , Henipavirus Infections/transmission , Humans , Risk Assessment , Thailand/epidemiology
20.
J Infect Dis ; 217(9): 1390-1394, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29351657

ABSTRACT

Nipah virus is a zoonotic virus harbored by bats and lethal to humans. Bat-to-human spillovers occur every winter in Bangladesh. However, there is significant heterogeneity in the number of spillovers detected by district and year that remains unexplained. We analyzed data from all 57 spillovers during 2007-2013 and found that temperature differences explained 36% of the year-to-year variation in the total number of spillovers each winter and that distance to surveillance hospitals explained 45% of spatial heterogeneity. Interventions to prevent human infections may be most important during colder winters. Further work is needed to understand how dynamics of bat infections explains spillover risk.


Subject(s)
Disease Outbreaks/veterinary , Henipavirus Infections/veterinary , Nipah Virus , Seasons , Zoonoses/virology , Animals , Bangladesh/epidemiology , Chiroptera/virology , Henipavirus Infections/virology , Humans , Retrospective Studies , Time Factors , Zoonoses/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL