Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 998
Filter
1.
Spinal Cord ; 62(10): 574-583, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39187628

ABSTRACT

STUDY DESIGN: Preclinical pilot study. OBJECTIVES: To explore peripheral and central nociceptive mechanisms that contribute to muscle stretch-induced locomotor deficits following spinal cord injury. SETTING: Kentucky Spinal Cord Injury Research Center, Louisville, KY, USA. METHODS: Ten female Sprague-Dawley rats received moderate, 25 g/cm T10 contusion injuries and recovered for 4 weeks. Rats were divided into three groups: Morphine/Ibuprofen-treated, Acetaminophen/Baclofen-treated, and saline control. Each group received daily hindlimb muscle stretching during weeks 4, 5, 9, and 10 post-injury and drugs were administered with stretching during weeks 4 and 9 only. Locomotor function was assessed throughout the experiment using the BBB Open Field Locomotor Scale. Hindlimb responses including spasticity, writhing, and clonic-like vibrations during muscle stretching were classified and scored. RESULTS: Consistent with our previous studies, hindlimb muscle stretching caused significant deficits in locomotor recovery following spinal cord injury. Baclofen and Ibuprofen partially mitigated the stretching effect, but none of the drugs significantly prevented the drop in locomotor function during stretching. Interestingly, treatment with Baclofen or Ibuprofen significantly reduced hindlimb responses such as spasticity and writhing during stretching, while Morphine exacerbated clonic-like vibrations in response to stretching maneuvers. CONCLUSIONS: These findings suggest that stretching may inhibit locomotor recovery through combined mechanisms of peripheral inflammation and sensitization of nociceptive afferents. When combined with central sprouting and loss of descending controls after SCI, this results in exaggerated nociceptive input during stretching. The inability of the applied clinical drugs to mitigate the detrimental effects of stretching highlights the complexity of the stretching phenomenon and emphasizes the need for further investigation.


Subject(s)
Disease Models, Animal , Hindlimb , Ibuprofen , Morphine , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Female , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/complications , Hindlimb/physiopathology , Hindlimb/drug effects , Ibuprofen/pharmacology , Ibuprofen/administration & dosage , Morphine/pharmacology , Morphine/administration & dosage , Rats , Baclofen/pharmacology , Baclofen/administration & dosage , Acetaminophen/pharmacology , Acetaminophen/administration & dosage , Pilot Projects , Muscle Stretching Exercises , Muscle Relaxants, Central/pharmacology , Muscle Relaxants, Central/administration & dosage , Analgesics, Opioid/pharmacology , Analgesics, Opioid/administration & dosage
2.
Cell Mol Life Sci ; 79(1): 35, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34989866

ABSTRACT

Multiple representatives of eulipotyphlan mammals such as shrews have oral venom systems. Venom facilitates shrews to hunt and/or hoard preys. However, little is known about their venom composition, and especially the mechanism to hoard prey in comatose states for meeting their extremely high metabolic rates. A toxin (BQTX) was identified from venomous submaxillary glands of the shrew Blarinella quadraticauda. BQTX is specifically distributed and highly concentrated (~ 1% total protein) in the organs. BQTX shares structural and functional similarities to toxins from snakes, wasps and snails, suggesting an evolutional relevancy of venoms from mammalians and non-mammalians. By potentiating thrombin and factor-XIIa and inhibiting plasmin, BQTX induces acute hypertension, blood coagulation and hypokinesia. It also shows strong analgesic function by inhibiting elastase. Notably, the toxin keeps high plasma stability with a 16-h half-life in-vivo, which likely extends intoxication to paralyze or immobilize prey hoarded fresh for later consumption and maximize foraging profit.


Subject(s)
Analgesia/methods , Hypokinesia/physiopathology , Shrews/metabolism , Toxins, Biological/metabolism , Venoms/metabolism , Adult , Amino Acid Sequence , Animals , Base Sequence , Blood Pressure/drug effects , Female , Hindlimb/drug effects , Hindlimb/physiopathology , Humans , Macaca mulatta , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Pain/chemically induced , Pain/physiopathology , Pain/prevention & control , Sequence Homology, Amino Acid , Shrews/genetics , Thrombin/antagonists & inhibitors , Thrombin/metabolism , Toxins, Biological/administration & dosage , Toxins, Biological/genetics , Venoms/genetics
3.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35628350

ABSTRACT

Hypoxia and inflammation play a major role in revascularization following ischemia. Sildenafil inhibits phosphodiesterase-5, increases intracellular cGMP and induces revascularization through a pathway which remains incompletely understood. Thus, we investigated the effect of sildenafil on post-ischemic revascularization. The left femoral artery was ligated in control and sildenafil-treated (25 mg/kg per day) rats. Vascular density was evaluated and expressed as the left/right leg (L/R) ratio. In control rats, L/R ratio was 33 Ā± 2% and 54 Ā± 9%, at 7- and 21-days post-ligation, respectively, and was significantly increased in sildenafil-treated rats to 47 Ā± 4% and 128 Ā± 11%, respectively. A neutralizing anti-VEGF antibody significantly decreased vascular density (by 0.48-fold) in control without effect in sildenafil-treated animals. Blood flow and arteriolar density followed the same pattern. In the ischemic leg, HIF-1α and VEGF expression levels increased in control, but not in sildenafil-treated rats, suggesting that sildenafil did not induce angiogenesis. PI3-kinase, Akt and eNOS increased after 7 days, with down-regulation after 21 days. Sildenafil induced outward remodeling or arteriogenesis in mesenteric resistance arteries in association with eNOS protein activation. We conclude that sildenafil treatment increased tissue blood flow and arteriogenesis independently of VEGF, but in association with PI3-kinase, Akt and eNOS activation.


Subject(s)
Hindlimb , Ischemia , Nitric Oxide Synthase Type III , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Sildenafil Citrate , Animals , Hindlimb/blood supply , Hindlimb/drug effects , Hindlimb/metabolism , Ischemia/drug therapy , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction , Sildenafil Citrate/pharmacology , Vascular Endothelial Growth Factor A/metabolism
4.
Mol Med ; 27(1): 127, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654365

ABSTRACT

OBJECTIVE: D-Serine is a crucial endogenous co-agonist of N-methyl-D-aspartate receptors (NMDARs) in the central nervous system and can affect the function of the brain derived neurotrophic factor (BDNF) system, which plays an essential role in modulating synaptic plasticity. The current study aimed to systematically evaluate the role and mechanisms of D-serine in depressive behavior in nucleus accumbens (NAc). METHODS: D-Serine concentration in the chronic social defeat stress (CSDS) model in NAc was measured using high-performance liquid chromatography (HPLC). The antidepressant-like effects of D-serine were identified using forced swim test (FST) and tail suspension test (TST) in control mice and then assessed in CSDS model. We applied social interaction and sucrose preference tests to identify the susceptibility of CSDS model. Western blotting was further performed to assess the changes of BDNF signaling cascade in NAc after CSDS and D-serine treatment. The BDNF signaling inhibitor (K252a) was also used to clarify the antidepressant-like mechanism of D-serine. Moreover, D-serine effects on synaptic plasticity in NAc were investigated using electrophysiological methods. RESULTS: D-Serine concentration was decreased in depression susceptible mice in NAc. D-Serine injections into NAc exhibited antidepressant-like effects in FST and TST without affecting the locomotor activity of mice. D-Serine was also effective in CSDS model of depression. Moreover, D-serine down-regulated the BDNF signaling pathway in NAc during CSDS procedure. Furthermore, BDNF signaling inhibitor (K252a) enhanced the antidepressant effects of D-serine. We also found that D-serine was essential for NMDARs-dependent long-term depression (LTD). CONCLUSION: D-Serine exerts antidepressant-like effects in mice mediated through restraining the BDNF signaling pathway and regulating synaptic plasticity in NAc.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Neuronal Plasticity/drug effects , Nucleus Accumbens/drug effects , Serine/pharmacology , Signal Transduction/drug effects , Animals , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Chromatography, High Pressure Liquid/methods , Depression/metabolism , Depression/physiopathology , Hindlimb/drug effects , Hindlimb/physiopathology , Hindlimb Suspension/physiology , Male , Mice, Inbred C57BL , Motor Activity/drug effects , Motor Activity/physiology , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Serine/metabolism , Stress, Psychological/metabolism , Stress, Psychological/physiopathology
5.
Biochem Biophys Res Commun ; 541: 36-42, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33465740

ABSTRACT

Methylene blue (MB) is a blue cationic thiazine dye and currently used in different medical settings. Notably, there have been several attempts to introduce MB for attenuating pain in the last decade. Some clinical studies reported remarkable results, which, however, have been much debated. In addition, accumulating evidence have revealed that MB diminishes voltage-gated sodium channel currents. Accordingly, in the present study, we conducted inĀ vivo experiments, including inĀ vivo single nerve recording and behavioral test, to investigate whether MB dampens neural firing rates and ultimately contributes to pain relief. As a result, neural firing rates significantly decreased and finally converged to zero after MB administration. This event lasted longer than that of lidocaine and was dose-dependently modulated. Furthermore, there was a marked improvement in pain behaviors. The withdrawal threshold and latency of hind paws significantly rose post-MB administration. Therefore, these results demonstrate that MB lessens pain by significantly weakening neural excitability, which implies a strong possibility that this dye may be developed as a pain-relieving medication in the future. This is the first inĀ vivo study to elucidate the effect of MB on nerves and pain relief.


Subject(s)
Action Potentials/drug effects , Analgesics/pharmacology , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , Neural Inhibition/drug effects , Neurons/drug effects , Pain/psychology , Analgesics/therapeutic use , Animals , Coloring Agents/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Femoral Nerve/drug effects , Hindlimb/drug effects , Lidocaine/pharmacology , Male , Pain/drug therapy , Pain/prevention & control , Rats , Rats, Sprague-Dawley
6.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R385-R395, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34259041

ABSTRACT

Exercise intolerance is a hallmark symptom of cardiovascular disease and likely occurs via enhanced activation of muscle metaboreflex-induced vasoconstriction of the heart and active skeletal muscle which, thereby limits cardiac output and peripheral blood flow. Muscle metaboreflex vasoconstrictor responses occur via activation of metabolite-sensitive afferent fibers located in ischemic active skeletal muscle, some of which express transient receptor potential vanilloid 1 (TRPV1) cation channels. Local cardiac and intrathecal administration of an ultrapotent noncompetitive, dominant negative agonist resiniferatoxin (RTX) can ablate these TRPV1-sensitive afferents. This technique has been used to attenuate cardiac sympathetic afferents and nociceptive pain. We investigated whether intrathecal administration (L4-L6) of RTX (2 Āµg/kg) could chronically attenuate subsequent muscle metaboreflex responses elicited by reductions in hindlimb blood flow during mild exercise (3.2 km/h) in chronically instrumented conscious canines. RTX significantly attenuated metaboreflex-induced increases in mean arterial pressure (27 Ā± 5.0 mmHg vs. 6 Ā± 8.2 mmHg), cardiac output (1.40 Ā± 0.2 L/min vs. 0.28 Ā± 0.1 L/min), and stroke work (2.27 Ā± 0.2 LĀ·mmHg vs. 1.01 Ā± 0.2 LĀ·mmHg). Effects were maintained until 78 Ā± 14 days post-RTX at which point the efficacy of RTX injection was tested by intra-arterial administration of capsaicin (20 Āµg/kg). A significant reduction in the mean arterial pressure response (+45.7 Ā± 6.5 mmHg pre-RTX vs. +19.7 Ā± 3.1 mmHg post-RTX) was observed. We conclude that intrathecal administration of RTX can chronically attenuate the muscle metaboreflex and could potentially alleviate enhanced sympatho-activation observed in cardiovascular disease states.


Subject(s)
Cardiac Output/drug effects , Diterpenes/pharmacology , Hindlimb/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Animals , Arterial Pressure/drug effects , Cardiac Output/physiology , Diterpenes/administration & dosage , Dogs , Heart/drug effects , Heart/physiopathology , Hindlimb/physiopathology , Ischemia/physiopathology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Regional Blood Flow/drug effects , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , Vasoconstriction/physiology
7.
Acta Pharmacol Sin ; 42(12): 2033-2045, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33664417

ABSTRACT

Caffeine induces multiple vascular effects. In this study we investigated the angiogenic effect of physiological concentrations of caffeine with focus on endothelial cell behaviors (migration and proliferation) during angiogenesis and its mitochondrial and bioenergetic mechanisms. We showed that caffeine (10-50 ĀµM) significantly enhanced angiogenesis in vitro, evidenced by concentration-dependent increases in tube formation, and migration of human umbilical vein endothelial cells (HUVECs) without affecting cell proliferation. Caffeine (50 ĀµM) enhanced endothelial migration via activation of cAMP/PKA/AMPK signaling pathway, which was mimicked by cAMP analog 8-Br-cAMP, and blocked by PKA inhibitor H89, adenylate cyclase inhibitor SQ22536 or AMPK inhibitor compound C. Furthermore, caffeine (50 ĀµM) induced significant mitochondrial shortening through theĀ increased phosphorylation of mitochondrial fission protein dynamin-related protein 1 (Drp1) in HUVECs, which increased its activity to regulate mitochondrial fission. Pharmacological blockade of Drp1 by Mdivi-1 (10 ĀµM) or disturbance of mitochondrial fission by Drp1 silencing markedly suppressed caffeine-induced lamellipodia formation and endothelial cell migration. Moreover, we showed that caffeine-induced mitochondrial fission led to accumulation of more mitochondria in lamellipodia regions and augmentation of mitochondrial energetics, both of which were necessary for cell migration. In a mouse model of hindlimb ischemia, administration of caffeine (0.05% in 200 mL drinking water daily, for 14 days) significantly promoted angiogenesis and perfusion as well as activation of endothelial AMPK signaling in the ischemic hindlimb. Taken together, caffeine induces mitochondrial fission through cAMP/PKA/AMPK signaling pathway. Mitochondrial fission is an integral process in caffeine-induced endothelial cell migration by altering mitochondrial distribution and energetics.


Subject(s)
Caffeine/therapeutic use , Endothelium/drug effects , Ischemia/drug therapy , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Neovascularization, Physiologic/drug effects , Animals , Cell Movement/drug effects , Hindlimb/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice, Inbred C57BL , Pseudopodia/drug effects , Signal Transduction/drug effects
8.
Int J Mol Sci ; 22(8)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920198

ABSTRACT

Sustained sarcolemma depolarization due to loss of the Na,K-ATPase function is characteristic for skeletal muscle motor dysfunction. Ouabain, a specific ligand of the Na,K-ATPase, has a circulating endogenous analogue. We hypothesized that the Na,K-ATPase targeted by the elevated level of circulating ouabain modulates skeletal muscle electrogenesis and prevents its disuse-induced disturbances. Isolated soleus muscles from rats intraperitoneally injected with ouabain alone or subsequently exposed to muscle disuse by 6-h hindlimb suspension (HS) were studied. Conventional electrophysiology, Western blotting, and confocal microscopy with cytochemistry were used. Acutely applied 10 nM ouabain hyperpolarized the membrane. However, a single injection of ouabain (1 Āµg/kg) prior HS was unable to prevent the HS-induced membrane depolarization. Chronic administration of ouabain for four days did not change the α1 and α2 Na,K-ATPase protein content, however it partially prevented the HS-induced loss of the Na,K-ATPase electrogenic activity and sarcolemma depolarization. These changes were associated with increased phosphorylation levels of AMP-activated protein kinase (AMPK), its substrate acetyl-CoA carboxylase and p70 protein, accompanied with increased mRNA expression of interleikin-6 (IL-6) and IL-6 receptor. Considering the role of AMPK in regulation of the Na,K-ATPase, we suggest an IL-6/AMPK contribution to prevent the effects of chronic ouabain under skeletal muscle disuse.


Subject(s)
Interleukin-6/genetics , Muscular Disorders, Atrophic/drug therapy , Ouabain/pharmacology , Protein Kinases/genetics , Sodium-Potassium-Exchanging ATPase/genetics , AMP-Activated Protein Kinase Kinases , Acetyl-CoA Carboxylase/genetics , Animals , Hindlimb/drug effects , Hindlimb/physiopathology , Hindlimb Suspension , Humans , Interleukin-6/antagonists & inhibitors , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Muscular Disorders, Atrophic/genetics , Muscular Disorders, Atrophic/pathology , Organ Culture Techniques , Protein Kinases/drug effects , Rats , Rats, Wistar
9.
Int J Mol Sci ; 22(24)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34948061

ABSTRACT

Cell-derived matrix (CDM) has proven its therapeutic potential and been utilized as a promising resource in tissue regeneration. In this study, we prepared a human fibroblast-derived matrix (FDM) by decellularization of in vitro cultured cells and transformed the FDM into a nano-sized suspended formulation (sFDM) using ultrasonication. The sFDM was then homogeneously mixed with Pluronic F127 and hyaluronic acid (HA), to effectively administer sFDM into target sites. Both sFDM and sFDM containing hydrogel (PH/sFDM) were characterized via immunofluorescence, sol-gel transition, rheological analysis, and biochemical factors array. We found that PH/sFDM hydrogel has biocompatible, mechanically stable, injectable properties and can be easily administered into the external and internal target regions. sFDM itself holds diverse bioactive molecules. Interestingly, sFDM-containing serum-free media helped maintain the metabolic activity of endothelial cells significantly better than those in serum-free condition. PH/sFDM also promoted vascular endothelial growth factor (VEGF) secretion from monocytes in vitro. Moreover, when we evaluated therapeutic effects of PH/sFDM via the murine full-thickness skin wound model, regenerative potential of PH/sFDM was supported by epidermal thickness, significantly more neovessel formation, and enhanced mature collagen deposition. The hindlimb ischemia model also found some therapeutic improvements, as assessed by accelerated blood reperfusion and substantially diminished necrosis and fibrosis in the gastrocnemius and tibialis muscles. Together, based on sFDM holding a strong therapeutic potential, our engineered hydrogel (PH/sFDM) should be a promising candidate in tissue engineering and regenerative medicine.


Subject(s)
Extracellular Matrix/chemistry , Fibroblasts/chemistry , Hindlimb/injuries , Hyaluronic Acid/pharmacology , Ischemia/drug therapy , Wound Healing/drug effects , Animals , Cells, Cultured , Disease Models, Animal , Hindlimb/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Hyaluronic Acid/chemistry , Hydrogels , Ischemia/etiology , Male , Mice , Particle Size , Poloxamer/chemistry , Regenerative Medicine , Rheology , THP-1 Cells , Vascular Endothelial Growth Factor A/metabolism
10.
Int J Mol Sci ; 22(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199392

ABSTRACT

Coordination of four-limb movements during quadrupedal locomotion is controlled by supraspinal monoaminergic descending pathways, among which serotoninergic ones play a crucial role. Here we investigated the locomotor pattern during recovery from blockade of 5-HT7 or 5-HT2A receptors after intrathecal application of SB269970 or cyproheptadine in adult rats with chronic intrathecal cannula implanted in the lumbar spinal cord. The interlimb coordination was investigated based on electromyographic activity recorded from selected fore- and hindlimb muscles during rat locomotion on a treadmill. In the time of recovery after hindlimb transient paralysis, we noticed a presence of an unusual pattern of quadrupedal locomotion characterized by a doubling of forelimb stepping in relation to unaffected hindlimb stepping (2FL-1HL) after blockade of 5-HT7 receptors but not after blockade of 5-HT2A receptors. The 2FL-1HL pattern, although transient, was observed as a stable form of fore-hindlimb coupling during quadrupedal locomotion. We suggest that modulation of the 5-HT7 receptors on interneurons located in lamina VII with ascending projections to the forelimb spinal network can be responsible for the 2FL-1HL locomotor pattern. In support, our immunohistochemical analysis of the lumbar spinal cord demonstrated the presence of the 5-HT7 immunoreactive cells in the lamina VII, which were rarely 5-HT2A immunoreactive.


Subject(s)
Locomotion/genetics , Receptor, Serotonin, 5-HT2A/genetics , Receptors, Serotonin/genetics , Spinal Cord Injuries/genetics , Animals , Cyproheptadine/pharmacology , Electric Stimulation , Electromyography , Forelimb/drug effects , Forelimb/physiopathology , Hindlimb/drug effects , Hindlimb/physiopathology , Humans , Locomotion/drug effects , Lumbosacral Region/physiopathology , Rats , Receptor, Serotonin, 5-HT2A/drug effects , Receptors, Serotonin/drug effects , Serotonin/genetics , Serotonin/metabolism , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Spinal Cord , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Spine/drug effects , Spine/physiopathology
11.
Int J Mol Sci ; 22(9)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064436

ABSTRACT

2-Arachidonyl-lysophosphatidylethanolamine, shortly 2-ARA-LPE, is a polyunsaturated lysophosphatidylethanolamine. 2-ARA-LPE has a very long chain arachidonic acid, formed by an ester bond at the sn-2 position. It has been reported that 2-ARA-LPE has anti-inflammatory effects in a zymosan-induced peritonitis model. However, it's action mechanisms are poorly investigated. Recently, resolution of inflammation is considered to be an active process driven by M2 polarized macrophages. Therefore, we have investigated whether 2-ARA-LPE acts on macrophages for anti-inflammation, whether 2-ARA-LPE modulates macrophage phenotypes to reduce inflammation, and whether 2-ARA-LPE is anti-inflammatory in a carrageenan-induced paw edema model. In mouse peritoneal macrophages, 2-ARA-LPE was found to inhibit lipopolysaccharide (LPS)-induced M1 macrophage polarization, but not induce M2 polarization. 2-ARA-LPE inhibited the inductions of inducible nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages at the mRNA and protein levels. Furthermore, products of the two genes, nitric oxide and prostaglandin E2, were also inhibited by 2-ARA-LPE. However, 1-oleoyl-LPE did not show any activity on the macrophage polarization and inflammatory responses. The anti-inflammatory activity of 2-ARA-LPE was also verified in vivo in a carrageenan-induced paw edema model. 2-ARA-LPE inhibits LPS-induced M1 polarization, which contributes to anti-inflammation and suppresses the carrageenan-induced paw edema in vivo.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arachidonic Acids/pharmacology , Edema/drug therapy , Lysophospholipids/pharmacology , Macrophages, Peritoneal/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Arachidonic Acids/chemistry , Carrageenan/administration & dosage , Cyclooxygenase 2/immunology , Dinoprostone/antagonists & inhibitors , Dinoprostone/biosynthesis , Edema/chemically induced , Edema/immunology , Edema/pathology , Hindlimb/drug effects , Hindlimb/immunology , Hindlimb/metabolism , Interleukin-12 Subunit p35/antagonists & inhibitors , Interleukin-12 Subunit p35/immunology , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/immunology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Lysophospholipids/chemistry , Macrophages, Peritoneal/immunology , Male , Mice , Mice, Inbred C57BL , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/immunology , Primary Cell Culture , Treatment Outcome
12.
Biochem Biophys Res Commun ; 533(4): 745-750, 2020 12 17.
Article in English | MEDLINE | ID: mdl-32988581

ABSTRACT

The mechanism of severe pain occurring because of physical disuse, such as complex regional pain syndrome Type I, has not been elucidated so far. Therefore, to investigate this mechanism, we have developed a model called a chronic post-cast pain (CPCP) model. Oxidative stress-related factors generated in a fixed limb may be triggers for nociceptive signals due to physical disuse. On the basis of the results of our previous studies, we speculated that oxidative stress-related factors in immobilized hind limbs may also be triggers of nociceptive signals due to physical disuse. In this study, we aimed to clarify whether an oxidative stress-related factor is involved in the induction of nociceptive signals. The time course of oxidative damage in the soleus (slow-twitch fiber) and gastrocnemius (fast-twitch fiber) muscles was evaluated by immunostaining of 8-hydroxy-2'-deoxyguanosine (a marker of oxidative damage in DNA). We also investigated the effects of tempol, a scavenger of superoxide, on oxidative damage in DNA, spontaneous pain-related behaviors (licking and/or biting and flinching), and the activation of spinal dorsal horn neurons (c-Fos). Systemic administration of tempol before cast removal attenuated oxidative damage to DNA in immobilized skeletal muscles, suppressed spontaneous pain-related behavior, and suppressed the activation of spinal dorsal horn neurons. We suggest that superoxide generated in immobilized skeletal muscles after cast removal is one of the peripheral factors that trigger nociceptive signals.


Subject(s)
Antioxidants/administration & dosage , Chronic Pain/drug therapy , Cyclic N-Oxides/administration & dosage , DNA/drug effects , Hindlimb/drug effects , Muscle, Skeletal/metabolism , Oxidative Stress/drug effects , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Animals , Chronic Pain/metabolism , Hindlimb/metabolism , Male , Muscle Fibers, Fast-Twitch/metabolism , Rats , Rats, Sprague-Dawley , Spin Labels , Superoxides
13.
J Neuroinflammation ; 17(1): 101, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32248810

ABSTRACT

BACKGROUND: Cannabinoid-2 receptor (CB2R) plays an important role in the cascading inflammation following ischemic injury. The toll-like receptors 4 (TLR4)/matrix metalloproteinase 9 (MMP9) signal pathway is involved in blood-brain barrier dysfunction induced by ischemia stroke. The aim of this study is to investigate the roles of exogenous activation of CB2R on attenuating neurological deficit and blood-spinal cord barrier (BSCB) disruption during rat spinal cord ischemia reperfusion (I/R) injury, through modulation of the TLR4/MMP9 axis. METHODS: Animals were intraperitoneally pretreated with TLR4 inhibitor TAK-242, CB2R agonist JWH-133 with or without CB2R antagonist AM630, or equivalent volume of vehicle 1 h before undergoing 14-min occlusion of descending aorta or sham operation. One, two, three, and 7 days after reperfusion, hindlimb locomotor function was evaluated with Basso, Beattie, and Bresnahan (BBB) Locomotor Scale, BSCB integrity was detected by measurement of Evans blue (EB) extravasation and spinal cord edema. The protein expression levels of CB2R, tight junction protein Zonula occluden-1 (ZO-1), TLR4, MMP9, MyD88, NF-κB p65, and NF-κB p-p65 were determined by western blot. The MMP9 activity was analyzed by gelatin zymography. Double immunofluorescence staining was used to identify the perivascular localization of CB2R, TLR4, MMP9, and reactive astrocytes, as well as the colocalization of CB2R, TLR4, and MMP9 with reactive astrocytes. RESULTS: JWH-133 pretreatment attenuated hindlimb motor functional deficit and BSCB leakage, along with preventing downregulation of ZO-1 and upregulation of TLR4/MMP9, similar to the effects of TAK-242 preconditioning. JWH-133 or TAK-242 pretreatment reduced the perivascular expression of TLR4/MMP9 and reactive astrocytes following injury. JWH-133 pretreatment also downregulated MyD88/NF-κB level, MMP9 activity, and the astrocytic TLR4/MMP9 after I/R injury. CONCLUSIONS: Exogenous activation of CB2R by JWH-133 attenuated neurological deficit and BSCB disruption after spinal cord I/R injury via inhibition of TLR4/MMP9 expression.


Subject(s)
Matrix Metalloproteinase 9/metabolism , Receptor, Cannabinoid, CB2/agonists , Reperfusion Injury/metabolism , Spinal Cord Ischemia/metabolism , Spinal Cord/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cannabinoids/pharmacology , Disease Models, Animal , Down-Regulation/drug effects , Down-Regulation/physiology , Hindlimb/drug effects , Hindlimb/physiopathology , Male , Rats , Rats, Sprague-Dawley , Recovery of Function/drug effects , Reperfusion Injury/physiopathology , Signal Transduction/drug effects , Signal Transduction/physiology , Spinal Cord/drug effects , Spinal Cord/physiopathology , Spinal Cord Ischemia/physiopathology , Sulfonamides/pharmacology , Up-Regulation/physiology , Up-Regulation/radiation effects
14.
IUBMB Life ; 72(5): 1054-1064, 2020 05.
Article in English | MEDLINE | ID: mdl-32043729

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is associated with joint damage. Effectiveness of embelin has been established in a wide variety of inflammatory disorders, but its utility as a therapeutic agent is limited by its poor absorption, rapid metabolism, and fast systemic elimination. To apprehend these limitations, we propose to use highly bioavailable embelin-loaded chitosan nanoparticles (CS-embelin NPs) for the treatment of RA. METHODS: The rats were made arthritic using a subcutaneous injection with 0.1 ml complete Freund's adjuvant (CFA) into the footpad of the left hind paw. CS-embelin NPs (25 and 50 mg/kg) was administered from day 15 to day 28 after adjuvant injection. After the experimental period, the animals were sacrificed and various biochemical markers were assessed. RESULTS: Arthritic score and paw swelling were significantly reduced after treatment with CS-embelin NPs. Arthritis-induced rats showed a significant increase in malondialdehyde (MDA) and nitric oxide (NO) with a concomitant reduction of antioxidants in the paw tissue. CS-embelin NPs (25 and 50 mg/kg) reduced MDA and NO levels and restored antioxidant levels to normalcy by mitigating oxidative stress. The arthritic rats exhibited elevated tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1beta (IL-1Ɵ) serum concentrations, upregulated TNF- α and IL-6 protein levels and upregulated nuclear factor-kB (NF-kB) mRNA expression in paw tissues. Treatment with CS-embelin NPs (25 and 50 mg/kg) significantly reduced serum levels and down-regulated inflammatory markers to normalcy, dose-dependently. CONCLUSION: The results suggest that CS-embelin NPs displayed a protective effect against adjuvant-induced arthritis in rats mediated through antioxidant and anti-inflammatory effects.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Benzoquinones/pharmacology , Chitosan/chemistry , Drug Carriers , Nanoparticles/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Arthritis, Experimental/chemically induced , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Benzoquinones/chemistry , Chitosan/metabolism , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Compounding/methods , Freund's Adjuvant/administration & dosage , Gene Expression Regulation , Hindlimb/drug effects , Hindlimb/metabolism , Hindlimb/pathology , Interleukin-1beta/blood , Interleukin-1beta/genetics , Interleukin-6/blood , Interleukin-6/genetics , Male , Malondialdehyde/blood , NF-kappa B/blood , NF-kappa B/genetics , Nanoparticles/metabolism , Nitric Oxide/blood , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/genetics
15.
Can J Physiol Pharmacol ; 98(4): 228-235, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32207632

ABSTRACT

To test if magnitudes of the beneficial actions of CO2 water bath therapy on blood flow and vascular density are dependent upon temperature, ischemia in the hind limb of rats was induced by occluding the left femoral artery for 2 weeks and the animals were exposed to water bath therapy with or without CO2 at 34 or 41 Ā°C for 4 weeks (20 min treatment each day for 5 days/week). CO2 water bath therapy at 34 Ā°C increased peak, minimal, and mean blood flow by 190%-600% in the ischemic limb. On the other hand, CO2 water bath treatment at 41 Ā°C increased these parameters of blood flow by 37%, 55%, and 41%, respectively, in the ischemic limb. The small blood vessel count, an index of vascular density, in the ischemic limb was increased by CO2 water bath therapy at 34 and 41 Ā°C by 32% and 122%, respectively. No changes in the ischemic animals by CO2 water bath therapy at 34 or 41 Ā°C were observed in the heart rate, R-R interval, and plasma lipid or glucose levels. These data indicate that the beneficial effect of CO2 water bath therapy at 34 Ā°C on blood flow in the ischemic muscle is greater whereas that on vascular density is smaller than changes in these parameters at 41 Ā°C.


Subject(s)
Carbon Dioxide/pharmacology , Hindlimb/blood supply , Hindlimb/drug effects , Ischemia/drug therapy , Neovascularization, Physiologic/drug effects , Regional Blood Flow/drug effects , Animals , Disease Models, Animal , Femoral Artery/drug effects , Hemodynamics/drug effects , Male , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Rats , Temperature , Water
16.
J Musculoskelet Neuronal Interact ; 20(1): 136-141, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32131378

ABSTRACT

OBJECTIVES: This study aims to investigate the changes in bone morphogenetic protein-2 (BMP-2) expression and mechanical properties in the healing process of rats with osteoporotic hindlimb fracture. METHODS: 120 rat models of osteoporotic hindlimb fracture were established and randomly divided into experimental group and control group. Quantitative real-time polymerase chain reaction (PCR) used to detect the BMP-2 expression in the rat's callus tissue on the fractured side. The mechanical properties of rat's hindlimb skeleton were examined using a universal material mechanics testing machine. RESULTS: The BMP-2 expression in the experimental group was higher than that in the control group (p<0.05). The linear correlation analysis showed that the BMP-2 was positively correlated with healing time (r=0.87, p<0.05). The mechanical properties were markedly improved at T2, T3 and T4, which peaked at T4 (p<0.05). However, the mechanical properties in the rats in the experimental group were notably superior to those in the control group at T2, T3, and T4 (p<0.05). CONCLUSIONS: The treatment with strontium ranelate can effectively improve the BMP-2 and bone mechanical properties of the rats with osteoporotic hindlimb fracture in the healing stage and accelerate the healing progress, which could be proved to be an efficacious means in treating osteoporotic fracture.


Subject(s)
Bone Density Conservation Agents/therapeutic use , Bone Morphogenetic Protein 2/biosynthesis , Hindlimb/metabolism , Osteoporotic Fractures/drug therapy , Osteoporotic Fractures/metabolism , Thiophenes/therapeutic use , Animals , Bone Density Conservation Agents/pharmacology , Bone Morphogenetic Protein 2/genetics , Female , Fracture Healing/drug effects , Fracture Healing/physiology , Gene Expression , Hindlimb/drug effects , Hindlimb/injuries , Rats , Rats, Sprague-Dawley , Thiophenes/pharmacology , Treatment Outcome
17.
Mediators Inflamm ; 2020: 3153186, 2020.
Article in English | MEDLINE | ID: mdl-32104148

ABSTRACT

This study investigated whether glutamine (GLN) pretreatment can enhance circulating endothelial progenitor cells (EPCs) and attenuate inflammatory reaction in high-fat diet-induced obese mice with limb ischemia. Mice were assigned to a normal control (NC), high-fat control (HC), limb ischemia (HI), and GLN limb ischemia (HG) groups. The NC group provided chow diet and treated as a negative control. Mice in the HC and HI groups were fed a high-fat diet which 60% energy provided by fat for 8 weeks. Mice in the HG group were fed the same diet for 4 weeks and then transferred to a high-fat diet with 25% of total protein nitrogen provided as GLN to replace part of the casein for the subsequent 4 weeks. After feeding 8 weeks, mice in the HC group were sham-operated, while the HI and HG groups underwent an operation to induce limb ischemia. All mice except the NC group were euthanized on either day 1 or 7 after the operation. The results showed that the 8 weeks' high-fat diet feeding resulted in obesity. The HG group had higher circulating EPCs on day 1 while muscle vascular endothelial growth factor, matrix metalloproteinase-9, and hypoxia-inducible factor-1 gene expressions were higher on day 7 postischemia than those of the HI group. The superoxide dismutase activity and reduced glutathione content in affected muscles were higher, whereas mRNA expressions of interleukin-6 and tumor necrosis factor-α were lower in the HG than those in the HI group. These findings suggest that obese mice pretreated with GLN-supplemented high-fat diet increased circulating EPC percentage, enhanced the antioxidant capacity, and attenuated inflammatory reactions in response to limb ischemia.


Subject(s)
Diet, High-Fat/adverse effects , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/metabolism , Glutamine/therapeutic use , Obesity/drug therapy , Obesity/etiology , Adipokines/blood , Animals , Flow Cytometry , Glutathione/metabolism , Hindlimb/drug effects , Hindlimb/pathology , Ischemia/metabolism , Ischemia/pathology , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Polymerase Chain Reaction , Superoxide Dismutase/metabolism
18.
Proc Natl Acad Sci U S A ; 114(46): 12315-12320, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29087944

ABSTRACT

Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood-brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Ischemia/enzymology , Myocardial Ischemia/enzymology , NADPH Oxidase 4/genetics , Animals , Benzoxazoles/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Brain/drug effects , Brain/enzymology , Brain/pathology , Brain Ischemia/genetics , Brain Ischemia/pathology , Brain Ischemia/prevention & control , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Enzyme Inhibitors/pharmacology , Female , Femoral Artery/injuries , Gene Expression Regulation , Hindlimb/blood supply , Hindlimb/drug effects , Hindlimb/metabolism , Hindlimb/pathology , Humans , Male , Mice , Mice, Knockout , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Myocardial Ischemia/prevention & control , NADPH Oxidase 4/antagonists & inhibitors , NADPH Oxidase 4/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Organ Specificity , Pyrazoles/pharmacology , Pyridones/pharmacology , Rats , Signal Transduction , Triazoles/pharmacology
19.
Int J Mol Sci ; 21(15)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32752261

ABSTRACT

Intraspinal grafting of serotonergic (5-HT) neurons was shown to restore plantar stepping in paraplegic rats. Here we asked whether neurons of other phenotypes contribute to the recovery. The experiments were performed on adult rats after spinal cord total transection. Grafts were injected into the sub-lesional spinal cord. Two months later, locomotor performance was tested with electromyographic recordings from hindlimb muscles. The role of noradrenergic (NA) innervation was investigated during locomotor performance of spinal grafted and non-grafted rats using intraperitoneal application of α2 adrenergic receptor agonist (clonidine) or antagonist (yohimbine). Morphological analysis of the host spinal cords demonstrated the presence of tyrosine hydroxylase positive (NA) neurons in addition to 5-HT neurons. 5-HT fibers innervated caudal spinal cord areas in the dorsal and ventral horns, central canal, and intermediolateral zone, while the NA fiber distribution was limited to the central canal and intermediolateral zone. 5-HT and NA neurons were surrounded by each other's axons. Locomotor abilities of the spinal grafted rats, but not in control spinal rats, were facilitated by yohimbine and suppressed by clonidine. Thus, noradrenergic innervation, in addition to 5-HT innervation, plays a potent role in hindlimb movement enhanced by intraspinal grafting of brainstem embryonic tissue in paraplegic rats.


Subject(s)
Brain Stem/transplantation , Brain Tissue Transplantation/methods , Nerve Regeneration/physiology , Paraplegia/surgery , Recovery of Function/physiology , Spinal Cord Injuries/surgery , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Antagonists/pharmacology , Animals , Brain Stem/embryology , Clonidine/pharmacology , Female , Hindlimb/drug effects , Hindlimb/innervation , Hindlimb/physiopathology , Locomotion/drug effects , Nerve Regeneration/drug effects , Neurons/drug effects , Neurons/physiology , Paraplegia/physiopathology , Rats, Wistar , Recovery of Function/drug effects , Spinal Cord Injuries/physiopathology , Yohimbine/pharmacology
20.
Int J Mol Sci ; 21(24)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322156

ABSTRACT

This study aimed to evaluate skeletal pain associated with osteoporosis and to examine the inhibitory effects of cytotoxic T lymphocyte-associated antigen-4Ig (CTLA-4Ig) administration in ovariectomized (OVX) mice. Eight-week-old female ddY mice were assigned to three groups: sham-operated mice (SHAM) treated with vehicle, OVX mice treated with vehicle (OVX), and OVX mice treated with CTLA-4Ig (CTLA-4Ig). Vehicle or CTLA-4Ig was injected intraperitoneally, starting immediately after surgery. After 4 weeks of treatment, mechanical sensitivity was examined, and the bilateral hind limbs were removed and evaluated by micro-computed tomography, immunohistochemical analyses, and messenger RNA expression analysis. Ovariectomy induced bone loss and mechanical hyperalgesia in the hindlimbs. CTLA-4Ig treatment prevented bone loss in the hindlimbs compared to vehicle administration in the OVX group. Moreover, mechanical hyperalgesia was significantly decreased in the CTLA-4Ig treatment group in comparison to the OVX group. The expression levels of tumor necrosis factor-α (TNF-α) and sclerostin (SOST), as well as the number of osteoclasts, were increased, and the expression level of Wnt-10b was decreased in the OVX group compared with the SHAM group, whereas these parameters were improved in the CTLA-4Ig group compared with the OVX group. The novelty of this research is that CTLA-4Ig administration prevented bone loss and mechanical hyperalgesia induced by ovariectomy in the hindlimbs.


Subject(s)
Abatacept/administration & dosage , Bone Density/drug effects , Hindlimb/drug effects , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Osteoporosis/drug therapy , Osteoporosis/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Disease Models, Animal , Female , Hindlimb/cytology , Hindlimb/diagnostic imaging , Hindlimb/pathology , Hyperalgesia/genetics , Injections, Intraperitoneal , Mice , Osteoclasts/metabolism , Osteoporosis/diagnostic imaging , Osteoporosis/genetics , Ovariectomy , Pain/drug therapy , Pain/pathology , Pain Measurement , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL