Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Cell ; 162(3): 527-39, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26232223

ABSTRACT

About 12,000 years ago in the Near East, humans began the transition from hunter-gathering to agriculture-based societies. Barley was a founder crop in this process, and the most important steps in its domestication were mutations in two adjacent, dominant, and complementary genes, through which grains were retained on the inflorescence at maturity, enabling effective harvesting. Independent recessive mutations in each of these genes caused cell wall thickening in a highly specific grain "disarticulation zone," converting the brittle floral axis (the rachis) of the wild-type into a tough, non-brittle form that promoted grain retention. By tracing the evolutionary history of allelic variation in both genes, we conclude that spatially and temporally independent selections of germplasm with a non-brittle rachis were made during the domestication of barley by farmers in the southern and northern regions of the Levant, actions that made a major contribution to the emergence of early agrarian societies.


Subject(s)
Biological Evolution , Hordeum/physiology , Seed Dispersal , Amino Acid Sequence , Hordeum/anatomy & histology , Hordeum/genetics , Molecular Sequence Data , Phenotype , Plant Proteins/chemistry , Plant Proteins/genetics , Sequence Alignment
2.
Planta ; 259(6): 145, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709313

ABSTRACT

MAIN CONCLUSION: Soil acidity in Ethiopian highlands impacts barley production, affecting root system architecture. Study on 300 accessions showed significant trait variability, with potential for breeding enhancement. Soil acidity poses a significant challenge to crop production in the highland regions of Ethiopia, particularly impacting barley, a crucial staple crop. This acidity serves as a key stressor affecting the root system architecture (RSA) of this crop. Hence, the objective of this study was to assess the RSA traits variability under acidic soil conditions using 300 barley accessions in a greenhouse experiment. The analysis of variance indicated substantial variations among the accessions across all traits studied. The phenotypic coefficient of variation ranged from 24.4% for shoot dry weight to 11.1% for root length, while the genotypic coefficient variation varied between 18.83 and 9.2% for shoot dry weight and root length, respectively. The broad-sense heritability ranged from 36.7% for leaf area to 69.9% for root length, highlighting considerable heritability among multiple traits. The genetic advances as a percent of the mean ranged from 13.63 to 29.9%, suggesting potential for enhancement of these traits through breeding efforts. Principal component analysis and cluster analysis grouped the genotypes into two major clusters, each containing varying numbers of genotypes with contrasting traits. This diverse group presents an opportunity to access a wide range of potential parent candidates to enhance genetic variablity in breeding programs. The Pearson correlation analysis revealed significant negative associations between root angle (RA) and other RSA traits. This helps indirect selection of accessions for further improvement in soil acidity. In conclusion, this study offers valuable insights into the RSA characteristics of barley in acidic soil conditions, aiding in the development of breeding strategies to enhance crop productivity in acidic soil environments.


Subject(s)
Genotype , Hordeum , Plant Roots , Seedlings , Soil , Hordeum/genetics , Hordeum/physiology , Hordeum/growth & development , Hordeum/anatomy & histology , Soil/chemistry , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/physiology , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Seedlings/anatomy & histology , Phenotype , Hydrogen-Ion Concentration , Plant Breeding , Ethiopia , Genetic Variation , Principal Component Analysis , Acids/metabolism
3.
Ann Bot ; 133(7): 983-996, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38407464

ABSTRACT

BACKGROUND AND AIMS: Vascular patterning is intimately related to plant form and function. Here, using barley (Hordeum vulgare) as a model, we studied the vascular anatomy of the spike-type inflorescence. The main aim of the present work was to clarify the relationship between rachis (spike axis) vasculature and spike size, to define vascular dynamics and to discuss the implications for transport capacity and its interaction with the spikelets. METHODS: We used serial transverse internode sections to determine the internode area, vascular area and number of veins along the rachis of several barley lines. KEY RESULTS: Internode area and total vascular area show a clear positive correlation with spike size, whereas the number of veins is only weakly correlated. The lateral periphery of the rachis contains large mature veins of constant size, whereas the central part is occupied by small immature veins. Spikelet-derived veins entering the rachis often merge with the immature rachis veins but never merge with the mature veins. An increase in floret fertility through the conversion of a two-rowed barley into an isogenic six-rowed line, in addition to a decrease in floret fertility owing to enhanced pre-anthesis tip degeneration caused by the mutation tip sterile 2.b (tst2.b), significantly affected vein size but had limited to no effects on the number of veins or internode area. CONCLUSIONS: The rachis vasculature is the result of a two-step process involving an initial layout followed by size adjustment according to floret fertility/spike size. The restriction of large mature vessels to the periphery and that of small immature vessels to the centre of the rachis suggests that long-distance transport and local supply to spikelets are spatially separated processes. The identification of spikelet-derived veins entering the rachis without fusing with its vasculature indicates that a vascular continuity between rachis and spikelets might be non-essential.


Subject(s)
Hordeum , Plant Vascular Bundle , Hordeum/anatomy & histology , Hordeum/growth & development , Hordeum/physiology , Plant Vascular Bundle/anatomy & histology , Plant Vascular Bundle/physiology , Plant Vascular Bundle/growth & development , Biological Transport , Inflorescence/anatomy & histology , Inflorescence/growth & development , Inflorescence/physiology
4.
Plant Mol Biol ; 108(1-2): 145-155, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34928487

ABSTRACT

KEY MESSAGE: Already a short-term Cd treatment induces changes in gene expression in barley root tips via IAA and ROS signaling during mild and severe Cd stress, respectively. Even a short, 30 min, Cd treatment of roots induced a considerable alteration in gene expression in the barley root tips within an hour after the treatments. The very early activation of MYB1 transcription factor expression is partially regulated by auxin signaling in mildly stressed seedlings. An increase in allene oxide cyclase and NADPH oxidase expression was a distinguishing feature of root tips response to mild Cd stress and their expression is activated via IAA signaling. Meanwhile, early changes in the level of dehydrin transcripts were detected in moderately and severely stressed root tips, and their induction is related to altered ROS homeostasis in cells. The early activation of glutathione peroxidase expression by mild Cd stress indicates the involvement of IAA in the signaling process. In contrast, early ascorbate peroxidase expression was induced only with Cd treatment causing severe stress and ROS play central roles in its induction. The expression of cysteine protease was activated similarly in both mildly and severely Cd-stressed roots; consequently, both increased IAA and ROS levels take part in the regulation of cysteine protease expression. The Cd-evoked accumulation of BAX Inhibitor-1 mRNA was characteristic for moderately and severely stressed roots. Whereas decreased IAA level did not affect its expression, rotenone-mediated ROS depletion markedly reduced the Cd-induced expression of BAX Inhibitor-1. An early increase of alternative oxidase levels in the root tip cells indicated that the reduction of mitochondrial superoxide generation is an important component of barley root response to severe Cd stress.


Subject(s)
Cadmium/toxicity , Hordeum/drug effects , Plant Roots/drug effects , Blotting, Western , Gene Expression/drug effects , Hordeum/anatomy & histology , Hordeum/metabolism , Indoleacetic Acids/metabolism , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Roots/anatomy & histology , Plant Roots/metabolism , Polymerase Chain Reaction , Reactive Oxygen Species/metabolism
5.
Plant J ; 103(6): 2330-2343, 2020 09.
Article in English | MEDLINE | ID: mdl-32530068

ABSTRACT

The phenotypic analysis of root system growth is important to inform efforts to enhance plant resource acquisition from soils; however, root phenotyping remains challenging because of the opacity of soil, requiring systems that facilitate root system visibility and image acquisition. Previously reported systems require costly or bespoke materials not available in most countries, where breeders need tools to select varieties best adapted to local soils and field conditions. Here, we report an affordable soil-based growth (rhizobox) and imaging system to phenotype root development in glasshouses or shelters. All components of the system are made from locally available commodity components, facilitating the adoption of this affordable technology in low-income countries. The rhizobox is large enough (approximately 6000 cm2 of visible soil) to avoid restricting vertical root system growth for most if not all of the life cycle, yet light enough (approximately 21 kg when filled with soil) for routine handling. Support structures and an imaging station, with five cameras covering the whole soil surface, complement the rhizoboxes. Images are acquired via the Phenotiki sensor interface, collected, stitched and analysed. Root system architecture (RSA) parameters are quantified without intervention. The RSAs of a dicot species (Cicer arietinum, chickpea) and a monocot species (Hordeum vulgare, barley), exhibiting contrasting root systems, were analysed. Insights into root system dynamics during vegetative and reproductive stages of the chickpea life cycle were obtained. This affordable system is relevant for efforts in Ethiopia and other low- and middle-income countries to enhance crop yields and climate resilience sustainably.


Subject(s)
Plant Roots/anatomy & histology , Aging , Cicer/anatomy & histology , Cicer/genetics , Genotype , Hordeum/anatomy & histology , Hordeum/genetics , Phenotype , Soil
6.
Plant Physiol ; 183(3): 1088-1109, 2020 07.
Article in English | MEDLINE | ID: mdl-32376761

ABSTRACT

The modification of shoot architecture and increased investment into reproductive structures is key for crop improvement and is achieved through coordinated changes in the development and determinacy of different shoot meristems. A fundamental question is how the development of different shoot meristems is genetically coordinated to optimize the balance between vegetative and reproductive organs. Here we identify the MANY NODED DWARF1 (HvMND1) gene as a major regulator of plant architecture in barley (Hordeum vulgare). The mnd1.a mutant displayed an extended vegetative program with increased phytomer, leaf, and tiller production but a reduction in the number and size of grains. The induction of vegetative structures continued even after the transition to reproductive growth, resulting in a marked increase in longevity. Using mapping by RNA sequencing, we found that the HvMND1 gene encodes an acyl-CoA N-acyltransferase that is predominately expressed in developing axillary meristems and young inflorescences. Exploration of the expression network modulated by HvMND1 revealed differential expression of the developmental microRNAs miR156 and miR172 and several key cell cycle and developmental genes. Our data suggest that HvMND1 plays a significant role in the coordinated regulation of reproductive phase transitions, thereby promoting reproductive growth and whole plant senescence in barley.


Subject(s)
Acyl Coenzyme A/metabolism , Acyltransferases/metabolism , Hordeum/anatomy & histology , Hordeum/enzymology , Hordeum/genetics , Meristem/anatomy & histology , Meristem/enzymology , Meristem/genetics , Acyl Coenzyme A/genetics , Acyltransferases/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype
7.
Plant J ; 98(3): 555-570, 2019 05.
Article in English | MEDLINE | ID: mdl-30604470

ABSTRACT

To optimize shoot growth and structure of cereals, we need to understand the genetic components controlling initiation and elongation. While measuring total shoot growth at high throughput using 2D imaging has progressed, recovering the 3D shoot structure of small grain cereals at a large scale is still challenging. Here, we present a method for measuring defined individual leaves of cereals, such as wheat and barley, using few images. Plant shoot modelling over time was used to measure the initiation and elongation of leaves in a bi-parental barley mapping population under low and high soil salinity. We detected quantitative trait loci (QTL) related to shoot growth per se, using both simple 2D total shoot measurements and our approach of measuring individual leaves. In addition, we detected QTL specific to leaf elongation and not to total shoot size. Of particular importance was the detection of a QTL on chromosome 3H specific to the early responses of leaf elongation to salt stress, a locus that could not be detected without the computer vision tools developed in this study.


Subject(s)
Hordeum/anatomy & histology , Hordeum/genetics , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Triticum/genetics , Hordeum/growth & development , Plant Leaves/growth & development , Quantitative Trait Loci/genetics
8.
Plant Cell Physiol ; 61(7): 1297-1308, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32379871

ABSTRACT

The root system of barley plants is composed of embryogenic, seminal roots as well as lateral and nodal roots that are formed postembryonically from seminal roots and from the basal part of shoots, respectively. Due to their distinct developmental origin, seminal and nodal roots may differ in function during plant development; however, a clear comparison between these two root types has not yet been undertaken. In this study, anatomical, proteomic and physiological traits were compared between seminal and nodal roots of similar developmental stages. Nodal roots have larger diameter, larger metaxylem area and a larger number of metaxylem vessels than seminal roots. Proteome profiling uncovered a set of root-type-specific proteins, including proteins related to the cell wall and cytoskeleton organization, which could potentially be implicated with differential metaxylem development. We also found that nodal roots have higher levels of auxin, which is known to trigger metaxylem development. At millimolar nitrate supply, nodal roots had approximately 2-fold higher nitrate uptake and root-to-shoot translocation capacities than seminal roots, whereas no differences were found at micromolar nitrate supply. Since these marked differences were not reflected by the transcript levels of low-affinity nitrate transporter genes, we hypothesize that the larger metaxylem volume of nodal roots enhances predominantly the low-affinity uptake and translocation capacities of nutrients that are transported with the bulk flow of water, like nitrate.


Subject(s)
Hordeum/anatomy & histology , Nitrates/metabolism , Plant Roots/anatomy & histology , Proteome/metabolism , Root Nodules, Plant/anatomy & histology , Cytokinins/metabolism , Hordeum/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Root Nodules, Plant/metabolism
9.
BMC Plant Biol ; 20(Suppl 1): 255, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33050877

ABSTRACT

BACKGROUND: The naked caryopsis character in barley is a domestication-associated trait defined by loss-of-function of the NUD gene. The functional NUD gene encodes an Apetala 2/Ethylene-Response Factor (AP2/ERF) controlling the formation of a cementing layer between pericarp and both lemma and palea. The downstream genes regulated by the NUD transcription factor and molecular mechanism of a cementing layer formation are still not sufficiently described. A naturally occurring 17-kb deletion in the nud locus is associated with the emergence of naked barley. Naked barley has been traditionally used for food and nowadays is considered as a dietary component for functional nutrition. RESULTS: In the present study, we demonstrate that targeted knockout of the NUD gene using RNA-guided Cas9 endonuclease leads to the phenotype conversion from hulled to naked barley. Using in vivo pre-testing systems, highly effective guide RNAs targeting the first exon of the NUD gene were selected. Expression cassettes harboring the cas9 and guide RNA genes were used to transform barley cv. Golden Promise via Agrobacterium-mediated DNA transfer. The recessive naked grain phenotype was observed in 57% of primary transformants, which indicates a frequent occurrence of homozygous or biallelic mutations. T-DNA-free homozygous lines with independently generated mutations in the NUD gene were obtained in the T1 generation. At homozygous state, all obtained mutations including one- and two-amino acid losses with the translational reading frame being retained invariably caused the naked grain phenotype. CONCLUSIONS: The hulled and naked barley isogenic lines generated are a perfect experimental model for further studies on pleiotropic consequences of nud mutations on overall plant performance under particular consideration of yield-determining traits. Due to the high ß-glucan content of its grains, naked barley is considered as being of particular dietary value. The possibility to convert hulled into naked barley cultivars by targeted mutagenesis allows breeders to extend the potential utilization of barley by the provision of functional food.


Subject(s)
CRISPR-Associated Protein 9/metabolism , Hordeum/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Edible Grain/genetics , Gene Knockout Techniques , Gene Targeting , Hordeum/anatomy & histology , Phenotype , RNA, Guide, Kinetoplastida/metabolism
10.
Plant Physiol ; 180(2): 1013-1030, 2019 06.
Article in English | MEDLINE | ID: mdl-31004004

ABSTRACT

CENTRORADIALIS (CEN) is a key regulator of flowering time and inflorescence architecture in plants. Natural variation in the barley (Hordeum vulgare) homolog HvCEN is important for agricultural range expansion of barley cultivation, but its effects on shoot and spike architecture and consequently yield have not yet been characterized. Here, we evaluated 23 independent hvcen, also termed mat-c, mutants to determine the pleiotropic effects of HvCEN on developmental timing and shoot and spike morphologies of barley under outdoor and controlled conditions. All hvcen mutants flowered early and showed a reduction in spikelet number per spike, tiller number, and yield in the outdoor experiments. Mutations in hvcen accelerated spikelet initiation and reduced axillary bud number in a photoperiod-independent manner but promoted floret development only under long days (LDs). The analysis of a flowering locus t3 (hvft3) hvcen double mutant showed that HvCEN interacts with HvFT3 to control spikelet initiation. Furthermore, early flowering3 (hvelf3) hvcen double mutants with high HvFT1 expression levels under short days suggested that HvCEN interacts with HvFT1 to repress floral development. Global transcriptome profiling in developing shoot apices and inflorescences of mutant and wild-type plants revealed that HvCEN controlled transcripts involved in chromatin remodeling activities, cytokinin and cell cycle regulation and cellular respiration under LDs and short days, whereas HvCEN affected floral homeotic genes only under LDs. Understanding the stage and organ-specific functions of HvCEN and downstream molecular networks will allow the manipulation of different shoot and spike traits and thereby yield.


Subject(s)
Flowers/growth & development , Flowers/genetics , Genes, Plant , Hordeum/genetics , Plant Proteins/genetics , Seeds/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Homeobox , Hordeum/anatomy & histology , Hordeum/growth & development , Mutation/genetics , Phenotype , Photoperiod , Plant Proteins/metabolism , Plant Shoots/genetics , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproduction
11.
Plant Cell Environ ; 43(8): 1844-1861, 2020 08.
Article in English | MEDLINE | ID: mdl-32459028

ABSTRACT

Despite representing a sizeable fraction of the canopy, very little is known about leaf sheath gas exchange in grasses. Specifically, estimates of sheath stomatal conductance, transpiration and photosynthesis along with their responses to light, CO2 and vapour pressure deficit (VPD) are unknown. Furthermore, the anatomical basis of these responses is poorly documented. Here, using barley as a model system, and combining leaf-level gas exchange, whole-plant gravimetric measurements, transpiration inhibitors, anatomical observations, and biophysical modelling, we found that sheath and blade stomatal conductance and transpiration were similar, especially at low light, in addition to being genotypically variable. Thanks to high abaxial stomata densities and surface areas nearly half those of the blades, sheaths accounted for up to 17% of the daily whole-plant water use, which -surprisingly- increased to 45% during the nighttime. Sheath photosynthesis was on average 17-25% that of the blade and was associated with lower water use efficiency. Finally, sheaths responded differently to the environment, exhibiting a lack of response to CO2 but a strong sensitivity to VPD. Overall, these results suggest a key involvement of sheaths in feedback loops between canopy architecture and gas exchange with potentially significant implications on adaptation to current and future climates in grasses.


Subject(s)
Carbon Dioxide/metabolism , Hordeum/anatomy & histology , Hordeum/physiology , Crops, Agricultural/physiology , Genotype , Hordeum/genetics , Minnesota , Models, Biological , Photosynthesis/physiology , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Plant Stomata/physiology , Plant Transpiration/physiology , Vapor Pressure , Water/metabolism
12.
Plant Cell Environ ; 43(3): 692-711, 2020 03.
Article in English | MEDLINE | ID: mdl-31734943

ABSTRACT

Roots perform vital roles for adaptation and productivity under water-deficit stress, even though their specific functions are poorly understood. In this study, the genetic control of the nodal-root architectural and anatomical response to water deficit were investigated among diverse spring barley accessions. Water deficit induced substantial variations in the nodal root traits. The cortical, stele, and total root cross-sectional areas of the main-shoot nodal roots decreased under water deficit, but increased in the tiller nodal roots. Root xylem density and arrested nodal roots increased under water deficit, with the formation of root suberization/lignification and large cortical aerenchyma. Genome-wide association study implicated 11 QTL intervals in the architectural and anatomical nodal root response to water deficit. Among them, three and four QTL intervals had strong effects across seasons and on both root architectural and anatomical traits, respectively. Genome-wide epistasis analysis revealed 44 epistatically interacting SNP loci. Further analyses showed that these QTL intervals contain important candidate genes, including ZIFL2, MATE, and PPIB, whose functions are shown to be related to the root adaptive response to water deprivation in plants. These results give novel insight into the genetic architectures of barley nodal root response to soil water deficit stress in the fields, and thus offer useful resources for root-targeted marker-assisted selection.


Subject(s)
Hordeum/anatomy & histology , Hordeum/genetics , Plant Roots/anatomy & histology , Plant Roots/genetics , Stress, Physiological/genetics , Adaptation, Physiological/genetics , Alleles , Analysis of Variance , Chromosomes, Plant/genetics , Dehydration , Droughts , Epistasis, Genetic , Genetic Markers , Hordeum/physiology , Linkage Disequilibrium/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , Seasons
13.
Theor Appl Genet ; 133(1): 163-177, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31690990

ABSTRACT

KEY MESSAGE: An excess-tillering semi-dwarf gene Hvhtd was identified from an EMS-induced mutant in barley and alternative splicing results in excess-tillering semi-dwarf traits. Tillering and plant height are important traits determining plant architecture and grain production in cereal crops. This study identified an excess-tillering semi-dwarf mutant (htd) from an EMS-treated barley population. Genetic analysis of the F1, F2, and F2:3 populations showed that a single recessive gene controlled the excess-tillering semi-dwarf in htd. Using BSR-Seq and gene mapping, the Hvhtd gene was delimited within a 1.8 Mb interval on chromosome 2HL. Alignment of the RNA-Seq data with the functional genes in the interval identified a gene HORVU2Hr1G098820 with alternative splicing between exon2 and exon3 in the mutant, due to a G to A single-nucleotide substitution at the exon and intron junction. An independent mutant with a similar phenotype confirmed the result, with alternative splicing between exon3 and exon4. In both cases, the alternative splicing resulted in a non-functional protein. And the gene HORVU2Hr1G098820 encodes a trypsin family protein and may be involved in the IAA signaling pathway and differs from the mechanism of Green Revolution genes in the gibberellic acid metabolic pathway.


Subject(s)
Alternative Splicing/genetics , Genes, Plant , Hordeum/anatomy & histology , Hordeum/genetics , Mutation/genetics , Alleles , Amino Acid Sequence , Base Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Genetic Association Studies , Genetic Markers , Homozygote , INDEL Mutation/genetics , Phenotype , Plant Proteins/chemistry , Plant Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Reproducibility of Results , Synteny/genetics
14.
Environ Geochem Health ; 42(1): 45-58, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30874936

ABSTRACT

Effects of Cu toxicity from contaminated soil were analysed in spring barley (Hordeum sativum distichum), a widely cultivated species in South Russia. In this study, H. sativum was planted outdoors in one of the most fertile soils-Haplic Chernozem spiked with high concentration of Cu and examined between the boot and head emergence phase of growth. Copper toxicity was observed to cause slow ontogenetic development of plants, changing their morphometric parameters (shape, size, colour). To the best of our knowledge, the ultrastructural changes in roots, stems and leaves of H. sativum induced by excess Cu were fully characterized for the first time using transmission electron microscopy. The plant roots were the most effected, showing degradation of the epidermis, reduced number of parenchyma cells, as well as a significant decrease in the diameter of the stele and a disruption and modification to its cell structure. The comparative analysis of the ultrastructure of control plants and plants exposed to the toxic effects of Cu has made it possible to reveal significant disruption of the integrity of the cell wall and cytoplasmic membranes in the root with deposition of electron-dense material. The changes in the ultrastructure of the main cytoplasmic organelles-endoplasmic reticulum, mitochondria, chloroplasts and peroxisomes-in the stem and leaves were found. The cellular Cu deposition, anatomical and ultrastructural modifications could mainly account for the primary impact points of metal toxicity. Therefore, this work extends the available knowledge of the mechanisms of the Cu effect tolerance of barley.


Subject(s)
Copper/toxicity , Hordeum/drug effects , Soil Pollutants/toxicity , Cell Wall/drug effects , Cell Wall/ultrastructure , Cytoplasm/drug effects , Cytoplasm/ultrastructure , Hordeum/anatomy & histology , Hordeum/cytology , Hordeum/ultrastructure , Microscopy, Electron, Transmission , Plant Cells/drug effects , Plant Leaves/cytology , Plant Leaves/drug effects , Plant Leaves/ultrastructure , Plant Roots/cytology , Plant Roots/drug effects , Plant Roots/ultrastructure , Plant Stems/cytology , Plant Stems/drug effects , Plant Stems/ultrastructure , Russia
15.
Plant J ; 94(3): 525-534, 2018 05.
Article in English | MEDLINE | ID: mdl-29469199

ABSTRACT

Wild barley forms a two-rowed spike with a brittle rachis whereas domesticated barley has two- or six-rowed spikes with a tough rachis. Like domesticated barley, 'agriocrithon' forms a six-rowed spike; however, the spike is brittle as in wild barley, which makes the origin of agriocrithon obscure. Haplotype analysis of the Six-rowed spike 1 (vrs1) and Non-brittle rachis 1 (btr1) and 2 (btr2) genes was conducted to infer the origin of agriocrithon barley. Some agriocrithon barley accessions (eu-agriocrithon) carried Btr1 and Btr2 haplotypes that are not found in any cultivars, implying that they are directly derived from wild barley through a mutation at the vrs1 locus. Other agriocrithon barley accessions (pseudo-agriocrithon) carried Btr1 or Btr2 from cultivated barley, thus implying that they originated from hybridization between six-rowed landraces carrying btr1Btr2 and Btr1btr2 genotypes followed by recombination to produce Btr1Btr2. All materials we collected from Tibet belong to pseudo-agriocrithon and thus do not support the Tibetan Plateau as being a center of barley domestication. Tracing the evolutionary history of these allelic variants revealed that eu-agriocrithon represents six-rowed barley lineages that were selected by early farmers, once in south-eastern Turkmenistan (vrs1.a1) and again in the eastern part of Uzbekistan (vrs1.a4).


Subject(s)
Domestication , Hordeum/genetics , Crop Production , Genes, Plant/genetics , Haplotypes/genetics , Hordeum/anatomy & histology , Phylogeny , Tibet , Turkmenistan , Uzbekistan
16.
New Phytol ; 221(4): 1950-1965, 2019 03.
Article in English | MEDLINE | ID: mdl-30339269

ABSTRACT

Hordeum species develop a central spikelet flanked by two lateral spikelets at each inflorescence node. In 'two-rowed' spikes, the central spikelet alone is fertile and sets grain, while in 'six-rowed' spikes, lateral spikelets can also produce grain. Induced loss-of-function alleles of any of five Six-rowed spike (VRS) genes (VRS1-5) cause complete to intermediate gains of lateral spikelet fertility. Current six-row cultivars contain natural defective vrs1 and vrs5 alleles. Little information is known about VRS mechanism(s). We used comparative developmental, expression and genetic analyses on single and double vrs mutants to learn more about how VRS genes control development and assess their agronomic potential. We show that all VRS genes repress fertility at carpel and awn emergence in developing lateral spikelets. VRS4, VRS3 and VRS5 work through VRS1 to suppress fertility, probably by inducing VRS1 expression. Pairing vrs3, vrs4 or vrs5 alleles increased lateral spikelet fertility, despite the presence of a functional VRS1 allele. The vrs3 allele caused loss of spikelet identity and determinacy, improved grain homogeneity and increased tillering in a vrs4 background, while with vrs5, decreased tiller number and increased grain weight. Interactions amongst VRS genes control spikelet infertility, determinacy and outgrowth, and novel routes to improving six-row grain.


Subject(s)
Edible Grain/genetics , Epistasis, Genetic , Genes, Plant , Hordeum/genetics , Meristem/genetics , Alleles , Gene Expression Regulation, Plant , Hordeum/anatomy & histology , Hordeum/ultrastructure , Meristem/ultrastructure , Mutation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Theor Appl Genet ; 132(4): 883-893, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30465063

ABSTRACT

KEY MESSAGE: A major grain length QTL on chromosome 5H was fine mapped from 180.5 to 1.7 Mb. Quantitative trait loci (QTLs) mapping has been used extensively in barley to detect QTLs that underlie complex traits such as grain size. In the present study, we utilised 312 double haploid lines derived from a cross between two Australian malting varieties, Vlamingh and Buloke, to dissect the genetic control of a number of grain size characteristics. Digital image analysis was used to measure grain size characteristics including length, width, thickness and plumpness which are important traits influencing barley yield and grain physical quality. Using data from four independent environments and molecular marker genotype data, we identified 23 significant QTLs for these four traits, ten of which were consensus QTLs and identified in two or more environments. A QTL region on chromosome 5H designated qGL5H that was associated with grain size was fine mapped to a 1.7 Mb interval. qGL5H was able to explain 21.6% of phenotypic variation for grain length within the population. This major QTL is an appropriate candidate for further genetic dissection.


Subject(s)
Hordeum/anatomy & histology , Hordeum/genetics , Physical Chromosome Mapping/methods , Quantitative Trait Loci/genetics , Seeds/anatomy & histology , Chromosomes, Plant/genetics , Genes, Plant , Genomics , Genotype , Phenotype , Principal Component Analysis , Seeds/genetics
18.
J Integr Plant Biol ; 61(3): 296-309, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30325110

ABSTRACT

Modifications of inflorescence architecture have been crucial for the successful domestication of wheat and barley, which are central members of the Triticeae tribe that provide essential grains for the human diet. Investigation of the genes and alleles that underpin domestication-related traits has provided valuable insights into the molecular regulation of inflorescence development of the Triticeae, and further investigation of modified forms of architecture are proving to be equally fruitful. The identified genes are involved in diverse biological processes, including transcriptional regulation, hormone biosynthesis and metabolism, post-transcriptional and post-translational regulation, which alter inflorescence architecture by modifying the development and fertility of lateral organs, called spikelets and florets. Recent advances in sequencing capabilities and the generation of mutant populations are accelerating the identification of genes that influence inflorescence development, which is important given that genetic variation for this trait promises to be a valuable resource for optimizing grain production. This review assesses recent advances in our understanding of the genes controlling inflorescence development in wheat and barley, with the aim of highlighting the importance of improvements in developmental biology for optimizing the agronomic performance of staple crop plants.


Subject(s)
Hordeum/anatomy & histology , Hordeum/genetics , Inflorescence/genetics , Triticum/anatomy & histology , Triticum/genetics , Base Sequence , Domestication , Genes, Plant , Phenotype
19.
J Integr Plant Biol ; 61(3): 278-295, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30609316

ABSTRACT

Grass species display a wide array of inflorescences ranging from highly branched compound/panicle inflorescences to unbranched spike inflorescences. The unbranched spike is a characteristic feature of the species of tribe Triticeae, including economically important crops, such as wheat and barley. In this review, we describe two important developmental genetic mechanisms regulating spike inflorescence architecture in barley and wheat. These include genetic regulation of (i) row-type pathway specific to Hordeum species and (ii) unbranched spike development in barley and wheat. For a comparative understanding, we describe the branched inflorescence phenotypes of rice and maize along with unbranched Triticeae inflorescences. In the end, we propose a simplified model describing a probable mechanism leading to unbranched spike formation in Triticeae species.


Subject(s)
Hordeum/anatomy & histology , Hordeum/growth & development , Inflorescence/growth & development , Plant Development , Triticum/anatomy & histology , Triticum/growth & development , Biological Evolution , Hordeum/genetics , Meristem/growth & development , Triticum/genetics
20.
J Integr Plant Biol ; 61(3): 226-256, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30548413

ABSTRACT

In cereals, tillering and leaf development are key factors in the concept of crop ideotype, introduced in the 1960s to enhance crop yield, via manipulation of plant architecture. In the present review, we discuss advances in genetic analysis of barley shoot architecture, focusing on tillering, leaf size and angle. We also discuss novel phenotyping techniques, such as 2D and 3D imaging, that have been introduced in the era of phenomics, facilitating reliable trait measurement. We discuss the identification of genes and pathways that are involved in barley tillering and leaf development, highlighting key hormones involved in the control of plant architecture in barley and rice. Knowledge on genetic control of traits related to plant architecture provides useful resources for designing ideotypes for enhanced barley yield and performance.


Subject(s)
Hordeum/anatomy & histology , Hordeum/genetics , Plant Leaves/growth & development , Genes, Plant , Phenotype , Physical Chromosome Mapping , Plant Leaves/anatomy & histology , Plant Shoots/anatomy & histology , Plant Shoots/genetics , Plant Shoots/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL