Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Nat Immunol ; 22(3): 301-311, 2021 03.
Article in English | MEDLINE | ID: mdl-33603226

ABSTRACT

The transcription factor IRF8 is essential for the development of monocytes and dendritic cells (DCs), whereas it inhibits neutrophilic differentiation. It is unclear how Irf8 expression is regulated and how this single transcription factor supports the generation of both monocytes and DCs. Here, we identified a RUNX-CBFß-driven enhancer 56 kb downstream of the Irf8 transcription start site. Deletion of this enhancer in vivo significantly decreased Irf8 expression throughout the myeloid lineage from the progenitor stages, thus resulting in loss of common DC progenitors and overproduction of Ly6C+ monocytes. We demonstrated that high, low or null expression of IRF8 in hematopoietic progenitor cells promotes differentiation toward type 1 conventional DCs, Ly6C+ monocytes or neutrophils, respectively, via epigenetic regulation of distinct sets of enhancers in cooperation with other transcription factors. Our results illustrate the mechanism through which IRF8 controls the lineage choice in a dose-dependent manner within the myeloid cell system.


Subject(s)
Cell Lineage , Core Binding Factor alpha Subunits/metabolism , Core Binding Factor beta Subunit/metabolism , Dendritic Cells/metabolism , Enhancer Elements, Genetic , Interferon Regulatory Factors/metabolism , Monocytes/metabolism , Myeloid Progenitor Cells/metabolism , Animals , Antigens, Ly/genetics , Antigens, Ly/metabolism , Bone Marrow Cells , Cells, Cultured , Core Binding Factor alpha Subunits/genetics , Core Binding Factor beta Subunit/genetics , Dendritic Cells/immunology , Epigenesis, Genetic , Female , Gene Expression Regulation, Developmental , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Male , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Monocytes/immunology , Myeloid Progenitor Cells/immunology , Phenotype , Signal Transduction
2.
Nat Immunol ; 16(12): 1274-81, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26437243

ABSTRACT

Upon recognition of antigen, B cells undertake a bifurcated response in which some cells rapidly differentiate into plasmablasts while others undergo affinity maturation in germinal centers (GCs). Here we identified a double-negative feedback loop between the transcription factors IRF4 and IRF8 that regulated the initial developmental bifurcation of activated B cells as well as the GC response. IRF8 dampened signaling via the B cell antigen receptor (BCR), facilitated antigen-specific interaction with helper T cells, and promoted antibody affinity maturation while antagonizing IRF4-driven differentiation of plasmablasts. Genomic analysis revealed concentration-dependent actions of IRF4 and IRF8 in regulating distinct gene-expression programs. Stochastic modeling suggested that the double-negative feedback was sufficient to initiate bifurcation of the B cell developmental trajectories.


Subject(s)
B-Lymphocytes/immunology , Interferon Regulatory Factors/immunology , Lymphocyte Activation/immunology , Signal Transduction/immunology , Algorithms , Animals , B-Lymphocytes/metabolism , Blotting, Western , Cell Differentiation/immunology , Cells, Cultured , Feedback, Physiological , Flow Cytometry , Germinal Center/cytology , Germinal Center/immunology , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Models, Immunological , Plasma Cells/immunology , Plasma Cells/metabolism , Receptors, Antigen, B-Cell/immunology , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Transcriptome/genetics , Transcriptome/immunology
3.
Immunity ; 47(6): 1114-1128.e6, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29221730

ABSTRACT

CD4+ T cells orchestrate immune responses and destruction of allogeneic organ transplants, but how this process is regulated on a transcriptional level remains unclear. Here, we demonstrated that interferon regulatory factor 4 (IRF4) was a key transcriptional determinant controlling T cell responses during transplantation. IRF4 deletion in mice resulted in progressive establishment of CD4+ T cell dysfunction and long-term allograft survival. Mechanistically, IRF4 repressed PD-1, Helios, and other molecules associated with T cell dysfunction. In the absence of IRF4, chromatin accessibility and binding of Helios at PD-1 cis-regulatory elements were increased, resulting in enhanced PD-1 expression and CD4+ T cell dysfunction. The dysfunctional state of Irf4-deficient T cells was initially reversible by PD-1 ligand blockade, but it progressively developed into an irreversible state. Hence, IRF4 controls a core regulatory circuit of CD4+ T cell dysfunction, and targeting IRF4 represents a potential therapeutic strategy for achieving transplant acceptance.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Graft Rejection/immunology , Graft Survival , Heart Transplantation , Interferon Regulatory Factors/immunology , Animals , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Differentiation , Cell Movement , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Gene Expression Profiling , Gene Expression Regulation , Graft Rejection/genetics , Graft Rejection/mortality , Graft Rejection/pathology , Granzymes/genetics , Granzymes/immunology , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/immunology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Signal Transduction , Survival Analysis , Transcription Factors/genetics , Transcription Factors/immunology , Transplantation, Homologous
4.
Immunity ; 47(6): 1129-1141.e5, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29246443

ABSTRACT

During chronic stimulation, CD8+ T cells acquire an exhausted phenotype characterized by expression of inhibitory receptors, down-modulation of effector function, and metabolic impairments. T cell exhaustion protects from excessive immunopathology but limits clearance of virus-infected or tumor cells. We transcriptionally profiled antigen-specific T cells from mice infected with lymphocytic choriomeningitis virus strains that cause acute or chronic disease. T cell exhaustion during chronic infection was driven by high amounts of T cell receptor (TCR)-induced transcription factors IRF4, BATF, and NFATc1. These regulators promoted expression of inhibitory receptors, including PD-1, and mediated impaired cellular metabolism. Furthermore, they repressed the expression of TCF1, a transcription factor required for memory T cell differentiation. Reducing IRF4 expression restored the functional and metabolic properties of antigen-specific T cells and promoted memory-like T cell development. These findings indicate that IRF4 functions as a central node in a TCR-responsive transcriptional circuit that establishes and sustains T cell exhaustion during chronic infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Interferon Regulatory Factors/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/immunology , CD8-Positive T-Lymphocytes/virology , Cell Differentiation , Gene Expression Regulation , HEK293 Cells , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/immunology , Humans , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Lymphocyte Activation , Lymphocyte Depletion , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/growth & development , Mice , Mice, Knockout , NFATC Transcription Factors/genetics , NFATC Transcription Factors/immunology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Receptors, Antigen, T-Cell/genetics , Signal Transduction
5.
Nature ; 574(7777): 249-253, 2019 10.
Article in English | MEDLINE | ID: mdl-31578523

ABSTRACT

The integrity of the mammalian epidermis depends on a balance of proliferation and differentiation in the resident population of stem cells1. The kinase RIPK4 and the transcription factor IRF6 are mutated in severe developmental syndromes in humans, and mice lacking these genes display epidermal hyperproliferation and soft-tissue fusions that result in neonatal lethality2-5. Our understanding of how these genes control epidermal differentiation is incomplete. Here we show that the role of RIPK4 in mouse development requires its kinase activity; that RIPK4 and IRF6 expressed in the epidermis regulate the same biological processes; and that the phosphorylation of IRF6 at Ser413 and Ser424 primes IRF6 for activation. Using RNA sequencing (RNA-seq), histone chromatin immunoprecipitation followed by sequencing (ChIP-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) of skin in wild-type and IRF6-deficient mouse embryos, we define the transcriptional programs that are regulated by IRF6 during epidermal differentiation. IRF6 was enriched at bivalent promoters, and IRF6 deficiency caused defective expression of genes that are involved in the metabolism of lipids and the formation of tight junctions. Accordingly, the lipid composition of the stratum corneum of Irf6-/- skin was abnormal, culminating in a severe defect in the function of the epidermal barrier. Collectively, our results explain how RIPK4 and IRF6 function to ensure the integrity of the epidermis and provide mechanistic insights into why developmental syndromes that are characterized by orofacial, skin and genital abnormalities result when this axis goes awry.


Subject(s)
Cell Differentiation , Epidermal Cells/cytology , Epidermis/physiology , Interferon Regulatory Factors/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Abnormalities, Multiple/genetics , Animals , Cleft Lip/genetics , Cleft Palate/genetics , Cysts/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Epidermal Cells/metabolism , Epidermis/embryology , Eye Abnormalities/genetics , Female , Fingers/abnormalities , Gene Expression Regulation , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Knee/abnormalities , Knee Joint/abnormalities , Lip/abnormalities , Lipid Metabolism/genetics , Lower Extremity Deformities, Congenital/genetics , Male , Mice , Mice, Inbred C57BL , Phosphorylation , Phosphoserine/metabolism , Protein Serine-Threonine Kinases/genetics , Syndactyly/genetics , Urogenital Abnormalities/genetics
6.
EMBO J ; 39(22): e104464, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32959911

ABSTRACT

Microglia are the principal phagocytes that clear cell debris in the central nervous system (CNS). This raises the question, which cells remove cell debris when microglial phagocytic activity is impaired. We addressed this question using Siglechdtr mice, which enable highly specific ablation of microglia. Non-microglial mononuclear phagocytes, such as CNS-associated macrophages and circulating inflammatory monocytes, did not clear microglial debris. Instead, astrocytes were activated, exhibited a pro-inflammatory gene expression profile, and extended their processes to engulf microglial debris. This astrocytic phagocytosis was also observed in Irf8-deficient mice, in which microglia were present but dysfunctional. RNA-seq demonstrated that even in a healthy CNS, astrocytes express TAM phagocytic receptors, which were the main astrocytic phagocytic receptors for cell debris in the above experiments, indicating that astrocytes stand by in case of microglial impairment. This compensatory mechanism may be important for the maintenance or prolongation of a healthy CNS.


Subject(s)
Astrocytes/physiology , Microglia/metabolism , Phagocytosis/physiology , Animals , Astrocytes/cytology , Brain , Central Nervous System/physiology , Disease Models, Animal , Female , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Male , Mice , Mice, Knockout , Microglia/ultrastructure , Phagocytosis/genetics
7.
Immunity ; 39(5): 833-45, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24211184

ABSTRACT

Upon infection, CD8(+) T cells undergo a stepwise process of early activation, expansion, and differentiation into effector cells. How these phases are transcriptionally regulated is incompletely defined. Here, we report that interferon regulatory factor 4 (IRF4), dispensable for early CD8(+) T cell activation, was vital for sustaining the expansion and effector differentiation of CD8(+) T cells. Mechanistically, IRF4 promoted the expression and function of Blimp1 and T-bet, two transcription factors required for CD8(+) T cell effector differentiation, and simultaneously repressed genes that mediate cell cycle arrest and apoptosis. Selective ablation of Irf4 in peripheral CD8(+) T cells impaired antiviral CD8(+) T cell responses, viral clearance, and CD8(+) T cell-mediated host recovery from influenza infection. IRF4 expression was regulated by T cell receptor (TCR) signaling strength via mammalian target of rapamycin (mTOR). Our data reveal that IRF4 translates differential strength of TCR signaling into different quantitative and qualitative CD8(+) T cell responses.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Interferon Regulatory Factors/physiology , Animals , Apoptosis , Apoptosis Regulatory Proteins/antagonists & inhibitors , Bcl-2-Like Protein 11 , Cell Differentiation , Cells, Cultured/cytology , Coculture Techniques , Cyclin-Dependent Kinase Inhibitor Proteins/antagonists & inhibitors , Dendritic Cells/immunology , Gene Expression Regulation , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Lymphocyte Activation , Membrane Proteins/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Mice, Transgenic , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Positive Regulatory Domain I-Binding Factor 1 , Proto-Oncogene Proteins/antagonists & inhibitors , Receptors, Antigen, T-Cell/immunology , Specific Pathogen-Free Organisms , T-Box Domain Proteins/biosynthesis , T-Box Domain Proteins/genetics , TOR Serine-Threonine Kinases/physiology , Transcription Factors/biosynthesis , Transcription Factors/genetics , Viral Plaque Assay
8.
J Virol ; 94(18)2020 08 31.
Article in English | MEDLINE | ID: mdl-32759316

ABSTRACT

An entirely plasmid-based reverse genetics (RG) system was recently developed for rotavirus (RV), opening new avenues for in-depth molecular dissection of RV biology, immunology, and pathogenesis. Several improvements to further optimize the RG efficiency have now been described. However, only a small number of individual RV strains have been recovered to date. None of the current methods have supported the recovery of murine RV, impeding the study of RV replication and pathogenesis in an in vivo suckling mouse model. Here, we describe useful modifications to the RG system that significantly improve rescue efficiency of multiple RV strains. In addition to the 11 group A RV segment-specific (+)RNAs [(+)ssRNAs], a chimeric plasmid was transfected, from which the capping enzyme NP868R of African swine fever virus (ASFV) and the T7 RNA polymerase were expressed. Second, a genetically modified MA104 cell line was used in which several components of the innate immunity were degraded. Using this RG system, we successfully recovered the simian RV RRV strain, the human RV CDC-9 strain, a reassortant between murine RV D6/2 and simian RV SA11 strains, and several reassortants and reporter RVs. All these recombinant RVs were rescued at a high efficiency (≥80% success rate) and could not be reliably rescued using several recently published RG strategies (<20%). This improved system represents an important tool and great potential for the rescue of other hard-to-recover RV strains such as low-replicating attenuated vaccine candidates or low-cell culture passage clinical isolates from humans or animals.IMPORTANCE Group A rotavirus (RV) remains as the single most important cause of severe acute gastroenteritis among infants and young children worldwide. An entirely plasmid-based reverse genetics (RG) system was recently developed, opening new ways for in-depth molecular study of RV. Despite several improvements to further optimize the RG efficiency, it has been reported that current strategies do not enable the rescue of all cultivatable RV strains. Here, we described a helpful modification to the current strategies and established a tractable RG system for the rescue of the simian RRV strain, the human CDC-9 strain, and a murine-like RV strain, which is suitable for both in vitro and in vivo studies. This improved RV reverse genetics system will facilitate study of RV biology in both in vitro and in vivo systems that will facilitate the improved design of RV vaccines, better antiviral therapies, and expression vectors.


Subject(s)
Gene Expression Regulation, Viral , Host-Pathogen Interactions/genetics , Reassortant Viruses/genetics , Reverse Genetics/methods , Rotavirus/genetics , Viral Proteins/genetics , African Swine Fever Virus/genetics , African Swine Fever Virus/immunology , Animals , Chlorocebus aethiops , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/immunology , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Mice , Nucleotidyltransferases/genetics , Nucleotidyltransferases/immunology , Plasmids/chemistry , Plasmids/metabolism , RNA Caps , Reassortant Viruses/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Rotavirus/immunology , STAT1 Transcription Factor/deficiency , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , Transfection , Vero Cells , Viral Proteins/immunology , Virus Replication
9.
J Immunol ; 203(7): 1930-1942, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31366714

ABSTRACT

IFN regulatory factor (IRF) 3 has been identified as the most critical regulator of both RNA and DNA virus-induced IFN production in mammals. However, ambiguity exists in research on chicken IRFs; in particular IRF3 seems to be missing in chickens, making IFN regulation in chickens unclear. In this study, we comprehensively investigated the potential IFN-related IRFs in chickens and showed that IRF7 is the most critical IFN-ß regulator in chickens. With a chicken IRF7 (chIRF7) knockout DF-1 cell line, we conducted a series of experiments to demonstrate that chIRF7 is involved in both chicken STING (chSTING)- and chicken MAVS (chMAVS)-mediated IFN-ß regulation in response to DNA and RNA viral infections, respectively. We further examined the mechanisms of chIRF7 activation by chSTING. We found that chicken TBK1 (chTBK1) is indispensable for chIRF7 activation by chSTING as well as that chSTING interacts with both chIRF7 and chTBK1 to function as a scaffold in chIRF7 activation by chTBK1. More interestingly, we discovered that chSTING mediates the activation of chIRF7 through a conserved SLQxSyS motif. In short, we confirmed that although IRF3 is missing in chickens, they employ IRF7 to reconstitute corresponding IFN signaling to respond to both DNA and RNA viral infections. Additionally, we uncovered a mechanism of chIRF7 activation by chSTING. The results will enrich and deepen our understanding of the regulatory mechanisms of the chicken IFN system.


Subject(s)
Avian Proteins/deficiency , Chickens/immunology , Interferon Regulatory Factor-7/immunology , Interferon Regulatory Factors/deficiency , Interferon-beta/immunology , Signal Transduction/immunology , Amino Acid Motifs , Animals , Avian Proteins/immunology , Chick Embryo , Chickens/genetics , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factors/immunology , Interferon-beta/genetics , Signal Transduction/genetics
10.
Int J Mol Sci ; 22(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803441

ABSTRACT

Interferon regulatory factor-4 (IRF4) and IRF8 regulate differentiation, growth and functions of lymphoid and myeloid cells. Targeted deletion of irf8 in T cells (CD4-IRF8KO) has been shown to exacerbate colitis and experimental autoimmune uveitis (EAU), a mouse model of human uveitis. We therefore generated mice lacking irf4 in T cells (CD4-IRF4KO) and investigated whether expression of IRF4 by T cells is also required for regulating T cells that suppress autoimmune diseases. Surprisingly, we found that CD4-IRF4KO mice are resistant to EAU. Suppression of EAU derived in part from inhibiting pathogenic responses of Th17 cells while inducing expansion of regulatory lymphocytes that secrete IL-10 and/or IL-35 in the eye and peripheral lymphoid tissues. Furthermore, CD4-IRF4KO T cells exhibit alterations in cell metabolism and are defective in the expression of two Ikaros zinc-finger (IKZF) transcription factors (Ikaros, Aiolos) that are required for lymphocyte differentiation, metabolism and cell-fate decisions. Thus, synergistic effects of IRF4 and IkZFs might induce metabolic reprogramming of differentiating lymphocytes and thereby dynamically regulate relative abundance of T and B lymphocyte subsets that mediate immunopathogenic mechanisms during uveitis. Moreover, the diametrically opposite effects of IRF4 and IRF8 during EAU suggests that intrinsic function of IRF4 in T cells might be activating proinflammatory responses while IRF8 promotes expansion of immune-suppressive mechanisms.


Subject(s)
Autoimmune Diseases , CD4-Positive T-Lymphocytes , Cell Differentiation , Gene Deletion , Interferon Regulatory Factors/deficiency , Transcription, Genetic/immunology , Uveitis , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Cell Differentiation/genetics , Cell Differentiation/immunology , Interferon Regulatory Factors/immunology , Interferon Regulatory Factors/metabolism , Mice , Mice, Knockout , Uveitis/genetics , Uveitis/immunology , Uveitis/metabolism , Uveitis/pathology
11.
Apoptosis ; 25(7-8): 474-480, 2020 08.
Article in English | MEDLINE | ID: mdl-32533513

ABSTRACT

The release of DNA into the cytoplasm upon damage to the nucleus or during viral infection triggers an interferon-mediated defense response, inflammation and cell death. In human cells cytoplasmic DNA is sensed by cyclic GMP-AMP Synthase (cGAS) and Absent In Melanoma 2 (AIM2). Here, we report the identification of a "natural knockout" model of cGAS. Comparative genomics of phylogenetically diverse mammalian species showed that cGAS and its interaction partner Stimulator of Interferon Genes (STING) have been inactivated by mutations in the Malayan pangolin whereas other mammals retained intact copies of these genes. The coding sequences of CGAS and STING1 are also disrupted by premature stop codons and frame-shift mutations in Chinese and tree pangolins, suggesting that expression of these genes was lost in a common ancestor of all pangolins that lived more than 20 million years ago. AIM2 is retained in a functional form in pangolins whereas it is inactivated by mutations in carnivorans, the phylogenetic sister group of pangolins. The deficiency of cGAS and STING points to the existence of alternative mechanisms of controlling cytoplasmic DNA-associated cell damage and viral infections in pangolins.


Subject(s)
DNA-Binding Proteins/genetics , DNA/genetics , Interferon Regulatory Factors/genetics , Membrane Proteins/genetics , Nucleotidyltransferases/genetics , Pangolins/genetics , Animals , Base Sequence , Cats , China , Codon, Terminator , Cytosol/immunology , Cytosol/metabolism , DNA/immunology , DNA-Binding Proteins/immunology , Gene Expression Regulation , Humans , Immunity, Innate , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/immunology , Malaysia , Membrane Proteins/deficiency , Membrane Proteins/immunology , Mutation , Nucleotidyltransferases/deficiency , Nucleotidyltransferases/immunology , Pangolins/immunology , Phylogeny , Species Specificity
12.
Int J Mol Sci ; 21(10)2020 May 23.
Article in English | MEDLINE | ID: mdl-32456211

ABSTRACT

Interferon regulatory factors (IRFs) play diverse roles in the regulation of the innate and adaptive immune responses in various diseases. In psoriasis, IRF2 is known to be involved in pathogenesis, while studies on other IRFs are limited. In this study, we investigated the role of IRF5 in psoriasis using imiquimod-induced psoriasis-like dermatitis. Although IRF5 is known to play a critical role in the induction of proinflammatory cytokines by immune cells, such as dendritic cells (DCs), macrophages, and monocytes, IRF5 deficiency unexpectedly exacerbated psoriasiform skin inflammation. The interferon-α and tumor necrosis factor-α mRNA expression levels were decreased, while levels of Th17 cytokines including IL-17, IL-22, and IL-23 were increased in IRF5-deficient mice. Furthermore, IL-23 expression in DCs from IRF5-deficient mice was upregulated both in steady state and after toll-like receptor 7/8 agonist stimulation. Importantly, the expression of IRF4, which is also important for the IL-23 production in DCs, was augmented in DCs from IRF5-deficient mice. Taken together, our results suggest that IRF5 deficiency induces the upregulation of IRF4 in DCs followed by augmented IL-23 production, resulting in the amplification of Th17 responses and the exacerbation of imiquimod-induced psoriasis-like skin inflammation. The regulation of IRF4 or IRF5 expression may be a novel therapeutic approach to psoriasis.


Subject(s)
Interferon Regulatory Factors/genetics , Interleukins/metabolism , Psoriasis/metabolism , Animals , Cells, Cultured , Dendritic Cells/metabolism , Female , Imiquimod/toxicity , Interferon Inducers/toxicity , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/metabolism , Interferons/genetics , Interferons/metabolism , Interleukins/genetics , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Psoriasis/etiology , Psoriasis/genetics , Skin/drug effects , Skin/metabolism , Th17 Cells/metabolism
13.
Immunity ; 33(2): 192-202, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20674401

ABSTRACT

Interferon-regulatory factor 4 (IRF4) is essential for the development of T helper 2 (Th2) and Th17 cells. Herein, we report that IRF4 is also crucial for the development and function of an interleukin-9 (IL-9)-producing CD4(+) T cell subset designated Th9. IRF4-deficient CD4(+) T cells failed to develop into IL-9-producing Th9 cells, and IRF4-specific siRNA inhibited IL-9 production in wild-type CD4(+) T cells. Chromatin-immunoprecipitation (ChIP) analyses revealed direct IRF4 binding to the Il9 promoter in Th9 cells. In a Th9-dependent asthma model, neutralization of IL-9 substantially ameliorated asthma symptoms. The relevance of these findings is emphasized by the fact that the induction of IL-9 production also occurs in human CD4(+) T cells accompanied by the upregulation of IRF4. Our data clearly demonstrate the central function of IRF4 in the development of Th9 cells and underline the contribution of this T helper cell subset to the pathogenesis of asthma.


Subject(s)
Interferon Regulatory Factors/immunology , Interleukin-9/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Asthma/genetics , Asthma/immunology , Cell Differentiation , Cells, Cultured , Humans , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Interleukin-9/biosynthesis , Interleukin-9/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic , Protein Binding , RNA, Small Interfering/genetics , T-Lymphocytes, Helper-Inducer/cytology
14.
Circulation ; 136(12): 1140-1154, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28698173

ABSTRACT

BACKGROUND: Myeloid cells are central to atherosclerotic lesion development and vulnerable plaque formation. Impaired ability of arterial phagocytes to uptake apoptotic cells (efferocytosis) promotes lesion growth and establishment of a necrotic core. The transcription factor interferon regulatory factor (IRF)-5 is an important modulator of myeloid function and programming. We sought to investigate whether IRF5 affects the formation and phenotype of atherosclerotic lesions. METHODS: We investigated the role of IRF5 in atherosclerosis in 2 complementary models. First, atherosclerotic lesion development in hyperlipidemic apolipoprotein E-deficient (ApoE-/-) mice and ApoE-/- mice with a genetic deletion of IRF5 (ApoE-/-Irf5-/-) was compared and then lesion development was assessed in a model of shear stress-modulated vulnerable plaque formation. RESULTS: Both lesion and necrotic core size were significantly reduced in ApoE-/-Irf5-/- mice compared with IRF5-competent ApoE-/- mice. Necrotic core size was also reduced in the model of shear stress-modulated vulnerable plaque formation. A significant loss of CD11c+ macrophages was evident in ApoE-/-Irf5-/- mice in the aorta, draining lymph nodes, and bone marrow cell cultures, indicating that IRF5 maintains CD11c+ macrophages in atherosclerosis. Moreover, we revealed that the CD11c gene is a direct target of IRF5 in macrophages. In the absence of IRF5, CD11c- macrophages displayed a significant increase in expression of the efferocytosis-regulating integrin-ß3 and its ligand milk fat globule-epidermal growth factor 8 protein and enhanced efferocytosis in vitro and in situ. CONCLUSIONS: IRF5 is detrimental in atherosclerosis by promoting the maintenance of proinflammatory CD11c+ macrophages within lesions and controlling the expansion of the necrotic core by impairing efferocytosis.


Subject(s)
Atherosclerosis/pathology , Interferon Regulatory Factors/metabolism , Animals , Aorta/metabolism , Aorta/pathology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , CD11c Antigen/genetics , CD11c Antigen/metabolism , Cells, Cultured , Immunohistochemistry , Integrin beta3/metabolism , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Lymph Nodes/cytology , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Necrosis , Phagocytosis , Shear Strength
15.
J Virol ; 91(20)2017 10 15.
Article in English | MEDLINE | ID: mdl-28794023

ABSTRACT

Epstein-Barr virus (EBV) is associated with multiple human malignancies. EBV latent membrane protein 1 (LMP1) is required for the efficient transformation of primary B lymphocytes in vitro and possibly in vivo The tumor suppressor p53 plays a seminal role in cancer development. In some EBV-associated cancers, p53 tends to be wild type and overly expressed; however, the effects of p53 on LMP1 expression is not clear. We find LMP1 expression to be associated with p53 expression in EBV-transformed cells under physiological and DNA damaging conditions. DNA damage stimulates LMP1 expression, and p53 is required for the stimulation. Ectopic p53 stimulates endogenous LMP1 expression. Moreover, endogenous LMP1 blocks DNA damage-mediated apoptosis. Regarding the mechanism of p53-mediated LMP1 expression, we find that interferon regulatory factor 5 (IRF5), a direct target of p53, is associated with both p53 and LMP1. IRF5 binds to and activates a LMP1 promoter reporter construct. Ectopic IRF5 increases the expression of LMP1, while knockdown of IRF5 leads to reduction of LMP1. Furthermore, LMP1 blocks IRF5-mediated apoptosis in EBV-infected cells. All of the data suggest that cellular p53 stimulates viral LMP1 expression, and IRF5 may be one of the factors for p53-mediated LMP1 stimulation. LMP1 may subsequently block DNA damage- and IRF5-mediated apoptosis for the benefits of EBV. The mutual regulation between p53 and LMP1 may play an important role in EBV infection and latency and its related cancers.IMPORTANCE The tumor suppressor p53 is a critical cellular protein in response to various stresses and dictates cells for various responses, including apoptosis. This work suggests that an Epstein-Bar virus (EBV) principal viral oncogene is activated by cellular p53. The viral oncogene blocks p53-mediated adverse effects during viral infection and transformation. Therefore, the induction of the viral oncogene by p53 provides a means for the virus to cope with infection and DNA damage-mediated cellular stresses. This seems to be the first report that p53 activates a viral oncogene; therefore, the discovery would be interesting to a broad readership from the fields of oncology to virology.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 4, Human/physiology , Tumor Suppressor Protein p53/metabolism , Viral Matrix Proteins/genetics , Virus Latency/genetics , Apoptosis , Cell Line, Tumor , Cell Transformation, Viral , DNA Damage , Herpesvirus 4, Human/genetics , Humans , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Promoter Regions, Genetic , Tumor Suppressor Protein p53/genetics , Viral Matrix Proteins/biosynthesis
16.
Stem Cells ; 35(4): 898-908, 2017 04.
Article in English | MEDLINE | ID: mdl-28090699

ABSTRACT

Human induced pluripotent stem (iPS) cells can differentiate into cells of all three germ layers, including hematopoietic stem cells and their progeny. Interferon regulatory factor 8 (IRF8) is a transcription factor, which acts in hematopoiesis as lineage determining factor for myeloid cells, including dendritic cells (DC). Autosomal recessive or dominant IRF8 mutations occurring in patients cause severe monocytic and DC immunodeficiency. To study IRF8 in human hematopoiesis we generated human IRF8-/- iPS cells and IRF8-/- embryonic stem (ES) cells using RNA guided CRISPR/Cas9n genome editing. Upon induction of hematopoietic differentiation, we demonstrate that IRF8 is dispensable for iPS cell and ES cell differentiation into hemogenic endothelium and for endothelial-to-hematopoietic transition, and thus development of hematopoietic progenitors. We differentiated iPS cell and ES cell derived progenitors into CD141+ cross-presenting cDC1 and CD1c+ classical cDC2 and CD303+ plasmacytoid DC (pDC). We found that IRF8 deficiency compromised cDC1 and pDC development, while cDC2 development was largely unaffected. Additionally, in an unrestricted differentiation regimen, IRF8-/- iPS cells and ES cells exhibited a clear bias toward granulocytes at the expense of monocytes. IRF8-/- DC showed reduced MHC class II expression and were impaired in cytokine responses, migration, and antigen presentation. Taken together, we engineered a human IRF8 knockout model that allows studying molecular mechanisms of human immunodeficiencies in vitro, including the pathophysiology of IRF8 deficient DC. Stem Cells 2017;35:898-908.


Subject(s)
Cell Engineering , Dendritic Cells/cytology , Dendritic Cells/metabolism , Hematopoiesis , Induced Pluripotent Stem Cells/cytology , Interferon Regulatory Factors/deficiency , Models, Biological , CRISPR-Cas Systems/genetics , Gene Deletion , Granulocytes/cytology , Granulocytes/metabolism , Humans , Interferon Regulatory Factors/metabolism
17.
Nature ; 490(7421): 543-6, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-22992523

ABSTRACT

Interferon regulatory factor 4 (IRF4) is an IRF family transcription factor with critical roles in lymphoid development and in regulating the immune response. IRF4 binds DNA weakly owing to a carboxy-terminal auto-inhibitory domain, but cooperative binding with factors such as PU.1 or SPIB in B cells increases binding affinity, allowing IRF4 to regulate genes containing ETS-IRF composite elements (EICEs; 5'-GGAAnnGAAA-3'). Here we show that in mouse CD4(+) T cells, where PU.1/SPIB expression is low, and in B cells, where PU.1 is well expressed, IRF4 unexpectedly can cooperate with activator protein-1 (AP1) complexes to bind to AP1-IRF4 composite (5'-TGAnTCA/GAAA-3') motifs that we denote as AP1-IRF composite elements (AICEs). Moreover, BATF-JUN family protein complexes cooperate with IRF4 in binding to AICEs in pre-activated CD4(+) T cells stimulated with IL-21 and in T(H)17 differentiated cells. Importantly, BATF binding was diminished in Irf4(-/-) T cells and IRF4 binding was diminished in Batf(-/-) T cells, consistent with functional cooperation between these factors. Moreover, we show that AP1 and IRF complexes cooperatively promote transcription of the Il10 gene, which is expressed in T(H)17 cells and potently regulated by IL-21. These findings reveal that IRF4 can signal via complexes containing ETS or AP1 motifs depending on the cellular context, thus indicating new approaches for modulating IRF4-dependent transcription.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , CD4-Positive T-Lymphocytes/metabolism , Interferon Regulatory Factors/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Transcription, Genetic , Amino Acid Motifs , Animals , B-Lymphocytes/metabolism , Base Sequence , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , Binding Sites , CD4-Positive T-Lymphocytes/cytology , Cell Differentiation , Female , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Interleukin-10/genetics , Interleukins/immunology , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Nucleotide Motifs , Proto-Oncogene Proteins/metabolism , Signal Transduction , Th17 Cells/cytology , Th17 Cells/immunology , Trans-Activators/metabolism , Transcription Factor AP-1/metabolism , Up-Regulation
18.
Nature ; 490(7421): 502-7, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-22992524

ABSTRACT

The AP1 transcription factor Batf3 is required for homeostatic development of CD8α(+) classical dendritic cells that prime CD8 T-cell responses against intracellular pathogens. Here we identify an alternative, Batf3-independent pathway in mice for CD8α(+) dendritic cell development operating during infection with intracellular pathogens and mediated by the cytokines interleukin (IL)-12 and interferon-γ. This alternative pathway results from molecular compensation for Batf3 provided by the related AP1 factors Batf, which also functions in T and B cells, and Batf2 induced by cytokines in response to infection. Reciprocally, physiological compensation between Batf and Batf3 also occurs in T cells for expression of IL-10 and CTLA4. Compensation among BATF factors is based on the shared capacity of their leucine zipper domains to interact with non-AP1 factors such as IRF4 and IRF8 to mediate cooperative gene activation. Conceivably, manipulating this alternative pathway of dendritic cell development could be of value in augmenting immune responses to vaccines.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Interferon Regulatory Factors/metabolism , Animals , Antigen Presentation , Antigens, CD/metabolism , Basic-Leucine Zipper Transcription Factors/chemistry , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD8 Antigens/immunology , CD8 Antigens/metabolism , CTLA-4 Antigen/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Lineage , Dendritic Cells/immunology , Female , Fibrosarcoma/immunology , Fibrosarcoma/metabolism , Fibrosarcoma/pathology , Gene Expression Regulation , Integrin alpha Chains/metabolism , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Interleukin-10/metabolism , Interleukin-12/immunology , Interleukin-12/metabolism , Leucine Zippers , Male , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Oncogene Protein p65(gag-jun)/metabolism , Protein Binding , Protein Structure, Tertiary , Repressor Proteins/deficiency , Repressor Proteins/genetics , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Toxoplasma/immunology
19.
Cytokine ; 98: 15-26, 2017 10.
Article in English | MEDLINE | ID: mdl-28283223

ABSTRACT

Interferon regulatory factors (IRFs) play critical roles in pathogen-induced innate immune responses and the subsequent induction of adaptive immune response. Dysregulation of IRF signaling is therefore thought to contribute to autoimmune disease pathogenesis. Indeed, numerous murine in vivo studies have documented protection from or enhanced susceptibility to particular autoimmune diseases in Irf-deficient mice. What has been lacking, however, is replication of these in vivo observations in primary immune cells from patients with autoimmune disease. These types of studies are essential as the majority of in vivo data support a protective role for IRFs in Irf-deficient mice, yet IRFs are often found to be overexpressed in patient immune cells. A significant body of work is beginning to emerge from both of these areas of study - mouse and human.


Subject(s)
Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Interferon Regulatory Factors/metabolism , Signal Transduction , Adaptive Immunity , Animals , Autoimmune Diseases/physiopathology , Humans , Immunity, Innate , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Mice
20.
J Immunol ; 194(4): 1467-79, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25595782

ABSTRACT

Premature atherosclerosis is a severe complication of lupus and other systemic autoimmune disorders. Gain-of-function polymorphisms in IFN regulatory factor 5 (IRF5) are associated with an increased risk of developing lupus, and IRF5 deficiency in lupus mouse models ameliorates disease. However, whether IRF5 deficiency also protects against atherosclerosis development in lupus is not known. In this study, we addressed this question using the gld.apoE(-/-) mouse model. IRF5 deficiency markedly reduced lupus disease severity. Unexpectedly, despite the reduction in systemic immune activation, IRF5-deficient mice developed increased atherosclerosis and also exhibited metabolic dysregulation characterized by hyperlipidemia, increased adiposity, and insulin resistance. Levels of the atheroprotective cytokine IL-10 were reduced in aortae of IRF5-deficient mice, and in vitro studies demonstrated that IRF5 is required for IL-10 production downstream of TLR7 and TLR9 signaling in multiple immune cell types. Chimera studies showed that IRF5 deficiency in bone marrow-derived cells prevents lupus development and contributes in part to the increased atherosclerosis. Notably, IRF5 deficiency in non-bone marrow-derived cells also contributes to the increased atherosclerosis through the generation of hyperlipidemia and increased adiposity. Together, our results reveal a protective role for IRF5 in lupus-associated atherosclerosis that is mediated through the effects of IRF5 in both immune and nonimmune cells. These findings have implications for the proposed targeting of IRF5 in the treatment of autoimmune disease as global IRF5 inhibition may exacerbate cardiovascular disease in these patients.


Subject(s)
Atherosclerosis/etiology , Interferon Regulatory Factors/immunology , Lupus Erythematosus, Systemic/immunology , Metabolic Syndrome/etiology , Animals , Atherosclerosis/immunology , Disease Models, Animal , Female , Flow Cytometry , Interferon Regulatory Factors/deficiency , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/pathology , Male , Metabolic Syndrome/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL