Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 533
Filter
1.
Cell ; 159(2): 253-66, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25284151

ABSTRACT

To study how microbes establish themselves in a mammalian gut environment, we colonized germ-free mice with microbial communities from human, zebrafish, and termite guts, human skin and tongue, soil, and estuarine microbial mats. Bacteria from these foreign environments colonized and persisted in the mouse gut; their capacity to metabolize dietary and host carbohydrates and bile acids correlated with colonization success. Cohousing mice harboring these xenomicrobiota or a mouse cecal microbiota, along with germ-free "bystanders," revealed the success of particular bacterial taxa in invading guts with established communities and empty gut habitats. Unanticipated patterns of ecological succession were observed; for example, a soil-derived bacterium dominated even in the presence of bacteria from other gut communities (zebrafish and termite), and human-derived bacteria colonized germ-free bystander mice before mouse-derived organisms. This approach can be generalized to address a variety of mechanistic questions about succession, including succession in the context of microbiota-directed therapeutics.


Subject(s)
Bacteria/classification , Bacteria/growth & development , Gastrointestinal Tract/microbiology , Mice/microbiology , Animals , Bacteria/metabolism , Ecosystem , Estuaries , Germ-Free Life , Humans , Isoptera/microbiology , Microbial Interactions , Skin/microbiology , Soil Microbiology , Symbiosis , Tongue/microbiology , Zebrafish/microbiology
2.
J Nat Prod ; 87(4): 935-947, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38575516

ABSTRACT

We report on the use of nitric oxide-mediated transcriptional activation (NOMETA) as an innovative means to detect and access new classes of microbial natural products encoded within silent biosynthetic gene clusters. A small library of termite nest- and mangrove-derived fungi and actinomyces was subjected to cultivation profiling using a miniaturized 24-well format approach (MATRIX) in the presence and absence of nitric oxide, with the resulting metabolomes subjected to comparative chemical analysis using UPLC-DAD and GNPS molecular networking. This strategy prompted study of Talaromyces sp. CMB-TN6F and Coccidiodes sp. CMB-TN39F, leading to discovery of the triterpene glycoside pullenvalenes A-D (1-4), featuring an unprecedented triterpene carbon skeleton and rare 6-O-methyl-N-acetyl-d-glucosaminyl glycoside residues. Structure elucidation of 1-4 was achieved by a combination of detailed spectroscopic analysis, chemical degradation, derivatization and synthesis, and biosynthetic considerations.


Subject(s)
Aminoglycosides , Isoptera , Nitric Oxide , Triterpenes , Animals , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Molecular Structure , Isoptera/microbiology , Aminoglycosides/pharmacology , Australia , Transcriptional Activation/drug effects , Fungi/metabolism , Talaromyces/chemistry , Talaromyces/metabolism , Actinomyces/metabolism , Actinomyces/drug effects
3.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34285074

ABSTRACT

Organoheterotrophs are the dominant bacteria in most soils worldwide. While many of these bacteria can subsist on atmospheric hydrogen (H2), levels of this gas are generally insufficient to sustain hydrogenotrophic growth. In contrast, bacteria residing within soil-derived termite mounds are exposed to high fluxes of H2 due to fermentative production within termite guts. Here, we show through community, metagenomic, and biogeochemical profiling that termite emissions select for a community dominated by diverse hydrogenotrophic Actinobacteriota and Dormibacterota. Based on metagenomic short reads and derived genomes, uptake hydrogenase and chemosynthetic RuBisCO genes were significantly enriched in mounds compared to surrounding soils. In situ and ex situ measurements confirmed that high- and low-affinity H2-oxidizing bacteria were highly active in the mounds, such that they efficiently consumed all termite-derived H2 emissions and served as net sinks of atmospheric H2 Concordant findings were observed across the mounds of three different Australian termite species, with termite activity strongly predicting H2 oxidation rates (R2 = 0.82). Cell-specific power calculations confirmed the potential for hydrogenotrophic growth in the mounds with most termite activity. In contrast, while methane is produced at similar rates to H2 by termites, mounds contained few methanotrophs and were net sources of methane. Altogether, these findings provide further evidence of a highly responsive terrestrial sink for H2 but not methane and suggest H2 availability shapes composition and activity of microbial communities. They also reveal a unique arthropod-bacteria interaction dependent on H2 transfer between host-associated and free-living microbial communities.


Subject(s)
Bacteria/metabolism , Gases/metabolism , Isoptera/microbiology , Microbiota , Animals , Australia , Hydrogen/metabolism , Oxygen Consumption , Soil Microbiology
4.
Pestic Biochem Physiol ; 204: 106004, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277353

ABSTRACT

Termites are consistently confronted with a complex microbial environment. In addition to the role of their innate immune system in resisting pathogen infection, social immune behavior also plays a significant role in helping termites withstand the stress caused by pathogenic microorganisms. The allogrooming behavior among different individuals is commonly observed in termites, and it plays a crucial role in the social immune interaction network. In the case of Odontotermes formosanus (Shiraki), Orco is specifically involved in detecting pheromones and volatile chemicals released by termites to communicate with each other. Nonetheless, the function of Orco in the social immunity remains unreported in O. formosanus. Consequently, in this study, we recorded the allogrooming behavior of O. formosanus workers under SM1 stress. The results indicated a significant increase in allogrooming behavior due to SM1 infection. The allogrooming behavior of workers under SM1 stress was significantly increased after the addition of soldiers. Compared with pronotum group treated by SM1, SM1 treatment of workers' heads significantly reduced the allogrooming behavior among workers. In addition, we found that SM1 could greatly increase the expression of OforOrco. Furthermore, interfering with OforOrco could markedly reduce the allogrooming behavior among workers under SM1 stress, and increase the mortality of worker under SM1 stress. This study demonstrated the significant role of OforOrco in the social immunity of O. formosanus, which offers a theoretical foundation for the advancement of research on termite RNA biopesticides, and the integration of RNA interference (RNAi) with pathogens. This study is valuable for elucidating the social immune behavior and interaction network of termites.


Subject(s)
Isoptera , Serratia marcescens , Animals , Isoptera/microbiology , Isoptera/physiology , Serratia marcescens/physiology , Grooming , Insect Proteins/genetics , Insect Proteins/metabolism , Behavior, Animal/drug effects
5.
BMC Genomics ; 24(1): 123, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927388

ABSTRACT

BACKGROUND: The termite-fungus symbiosis is an ancient stable mutualism of two partners that reproduce and disperse independently. With the founding of each termite colony the symbiotic association must be re-established with a new fungus partner. Complementarity in the ability to break down plant substrate may help to stabilize this symbiosis despite horizontal symbiont transmission. An alternative, non-exclusive, hypothesis is that a reduced rate of evolution may contribute to stabilize the symbiosis, the so-called Red King Effect. METHODS: To explore this concept, we produced the first linkage map of a species of Termitomyces, using genotyping by sequencing (GBS) of 88 homokaryotic offspring. We constructed a highly contiguous genome assembly using PacBio data and a de-novo evidence-based annotation. This improved genome assembly and linkage map allowed for examination of the recombination landscape and its potential effect on the mutualistic lifestyle. RESULTS: Our linkage map resulted in a genome-wide recombination rate of 22 cM/Mb, lower than that of other related fungi. However, the total map length of 1370 cM was similar to that of other related fungi. CONCLUSIONS: The apparently decreased rate of recombination is primarily due to genome expansion of islands of gene-poor repetitive sequences. This study highlights the importance of inclusion of genomic context in cross-species comparisons of recombination rate.


Subject(s)
Isoptera , Termitomyces , Animals , Isoptera/genetics , Isoptera/microbiology , Termitomyces/genetics , Fungi/genetics , Genomics , Symbiosis/genetics , Genetic Linkage
6.
Appl Environ Microbiol ; 89(5): e0036123, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37067424

ABSTRACT

The decomposition of wood and detritus is challenging to most macroscopic organisms due to the recalcitrant nature of lignocellulose. Moreover, woody plants often protect themselves by synthesizing toxic or nocent compounds which infuse their tissues. Termites are essential wood decomposers in warmer terrestrial ecosystems and, as such, they have to cope with high concentrations of plant toxins in wood. In this paper, we evaluated the influence of wood age on the gut microbial (bacterial and fungal) communities associated with the termites Reticulitermes flavipes (Rhinotermitidae) (Kollar, 1837) and Microcerotermes biroi (Termitidae) (Desneux, 1905). We confirmed that the secondary metabolite concentration decreased with wood age. We identified a core microbial consortium maintained in the gut of R. flavipes and M. biroi and found that its diversity and composition were not altered by the wood age. Therefore, the concentration of secondary metabolites had no effect on the termite gut microbiome. We also found that both termite feeding activities and wood age affect the wood microbiome. Whether the increasing relative abundance of microbes with termite activities is beneficial to the termites is unknown and remains to be investigated. IMPORTANCE Termites can feed on wood thanks to their association with their gut microbes. However, the current understanding of termites as holobiont is limited. To our knowledge, no studies comprehensively reveal the influence of wood age on the termite-associated microbial assemblage. The wood of many tree species contains high concentrations of plant toxins that can vary with their age and may influence microbes. Here, we studied the impact of Norway spruce wood of varying ages and terpene concentrations on the microbial communities associated with the termites Reticulitermes flavipes (Rhinotermitidae) and Microcerotermes biroi (Termitidae). We performed a bacterial 16S rRNA and fungal ITS2 metabarcoding study to reveal the microbial communities associated with R. flavipes and M. biroi and their impact on shaping the wood microbiome. We noted that a stable core microbiome in the termites was unaltered by the feeding substrate, while termite activities influenced the wood microbiome, suggesting that plant secondary metabolites have negligible effects on the termite gut microbiome. Hence, our study shed new insights into the termite-associated microbial assemblage under the influence of varying amounts of terpene content in wood and provides a groundwork for future investigations for developing symbiont-mediated termite control measures.


Subject(s)
Isoptera , Wood , Animals , Wood/metabolism , Ecosystem , Isoptera/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Bacteria/genetics
7.
J Nat Prod ; 86(8): 1891-1900, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37506055

ABSTRACT

Streptomyces spp. are well-known symbiotic microorganisms that produce antimicrobial metabolites against various pathogens. We isolated actinomycetes from the body surface of the termite Odontotermes formosanus and identified it as Streptomyces neopeptinius BYF101 based on 16S rRNA phylogenetic analysis. Chemical analysis of the cultures of termite-associated S. neopeptinius BYF101 via HR-MS2 and GNPS analyses enabled the isolation and identification of 20 metabolites, including the unreported obscurolide-type metabolites (1-3). The chemical structures of unreported compounds (1-3) were elucidated using HR-ESI-MS and 1D and 2D NMR analysis, and their absolute configurations were determined via chemical reactions followed by the application of competing enantioselective acylation (CEA) and computational methods for ECD and DP4+ probability calculation. The isolated compounds (1-20) were tested to determine their antifungal activity against two human fungal pathogens, Candida albicans and Cryptococcus neoformans. Among the compounds tested, indole-3-carboxylic acid (9) displayed antifungal activity against C. neoformans, with an MIC value of 12 µg/mL.


Subject(s)
Cryptococcus neoformans , Isoptera , Streptomyces , Animals , Humans , Antifungal Agents/chemistry , Isoptera/microbiology , RNA, Ribosomal, 16S/genetics , Phylogeny , Streptomyces/chemistry , Microbial Sensitivity Tests , Candida albicans
8.
Pestic Biochem Physiol ; 189: 105306, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36549813

ABSTRACT

The immunity of insects plays a vital role in their survival. Our experiments found that lipopolysaccharide (LPS) and glucono-δ-lactone (GDL) could influence the virulence of Serratia marcescens Bizio (SM1) to Odontotermes formosanus (Shiraki) by affecting the immunity. Gram-negative binding proteins (GNBPs) are an important pattern recognition proteins that play a crucial role in the innate immune system. Therefore, two OfGNBPs were cloned in O. formosanus. The expression of OfGNBPs was significantly changed by LPS,SM1 and GDL, not prick. In addition, the immune-related gene expression, the phenoloxidase activity and antibacterial activity of donor termites and recipient termites were significantly induced by SM1. Furthermore, the knockdown of OfGNBP by RNA interference reduced not only individual immunity but also social immunity in O. formosanus, which increased the virulence of SM1 to O. formosanus. Importantly, dsOfGNBP alone also had good control effect on O. formosanus. In summary, we concluded that dsOfGNBPs are important termite immunosuppressants.


Subject(s)
Isoptera , Animals , Isoptera/genetics , Isoptera/microbiology , Serratia marcescens/genetics , Lipopolysaccharides/pharmacology
9.
Nat Prod Rep ; 39(2): 231-248, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34879123

ABSTRACT

Covering: September 1972 to December 2020Explorations of complex symbioses have often elucidated a plethora of previously undescribed chemical compounds that may serve ecological functions in signalling, communication or defence. A case in point is the subfamily of termites that cultivate a fungus as their primary food source and maintain complex bacterial communities, from which a series of novel compound discoveries have been made. Here, we summarise the origins and types of 375 compounds that have been discovered from the symbiosis over the past four decades and discuss the potential for synergistic actions between compounds within the complex chemical mixtures in which they exist. We go on to highlight how vastly underexplored the diversity and geographic distribution of the symbiosis is, which leaves ample potential for natural product discovery of compounds of both ecological and medical importance.


Subject(s)
Isoptera , Agriculture , Animals , Fungi , Isoptera/microbiology , Phylogeny , Symbiosis
10.
Chembiochem ; 23(10): e202100698, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35298064

ABSTRACT

Termites live in a dynamic environment where colony health is strongly influenced by surrounding microbes. However, little is known about the mycobiomes of lower termites and their nests, and how these change in response to disease. Here we compared the individual and nest mycobiomes of a healthy subterranean termite colony (Coptotermes testaceus) to one infected and ultimately eradicated by a fungal pathogen. We identified Trichoderma species in the materials of both nests, but they were also abundant in the infected termites. Methanolic extracts of Trichoderma sp. FHG000531, isolated from the infected nest, were screened for secondary metabolites by UHPLC-HR MS/MS-guided molecular networking. We identified many bioactive compounds with potential roles in the eradication of the infected colony, as well as a cluster of six unknown peptides. The novel peptide FE011 was isolated and characterized by NMR spectroscopy. The function of this novel peptide family as well as the role of Trichoderma species in dying termite colonies therefore requires further investigation.


Subject(s)
Isoptera , Mycobiome , Trichoderma , Animals , Isoptera/microbiology , Tandem Mass Spectrometry
11.
Chemistry ; 28(36): e202200612, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35404539

ABSTRACT

In this study, we analyzed if Actinomadura sp. RB99 produces siderophores that that could be responsible for the antimicrobial activity observed in co-cultivation studies. Dereplication of high-resolution tandem mass spectrometry (HRMS/MS) and global natural product social molecular networking platform (GNPS) analysis of fungus-bacterium co-cultures resulted in the identification of five madurastatin derivatives (A1, A2, E1, F, and G1), of which were four new derivatives. Chemical structures were unambiguously confirmed by HR-ESI-MS, 1D and 2D NMR experiments, as well as MS/MS data and their absolute structures were elucidated based on Marfey's analysis, DP4+ probability calculation and total synthesis. Structure analysis revealed that madurastatin E1 (2) contained a rare 4-imidazolidinone cyclic moiety and madurastatin A1 (5) was characterized as a Ga3+ -complex. The function of madurastatins as siderophores was evaluated using the fungal pathogen Cryptococcus neoformans as model organism. Based on homology models, we identified the putative NRPS-based gene cluster region of the siderophores in Actinomadura sp. RB99.


Subject(s)
Isoptera , Siderophores , Actinomadura , Animals , Isoptera/microbiology , Magnetic Resonance Spectroscopy , Siderophores/chemistry , Tandem Mass Spectrometry
12.
Microb Ecol ; 84(2): 391-403, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34495359

ABSTRACT

Insects that farm monocultures of fungi are canonical examples of nutritional symbiosis as well as independent evolution of agriculture in non-human animals. But just like in human agriculture, these fungal crops face constant threat of invasion by weeds which, if unchecked, take over the crop fungus. In fungus-growing termites, the crop fungus (Termitomyces) faces such challenges from the weedy fungus Pseudoxylaria. The mechanism by which Pseudoxylaria is suppressed is not known. However, evidence suggests that some bacterial secondary symbionts can serve as defensive mutualists by preventing the growth of Pseudoxylaria. However, such secondary symbionts must possess the dual, yet contrasting, capabilities of suppressing the weedy fungus while keeping the growth of the crop fungus unaffected. This study describes the isolation, identification, and culture-dependent estimation of the roles of several such putative defensive mutualists from the colonies of the wide-spread fungus-growing termite from India, Odontotermes obesus. From the 38 bacterial cultures tested, a strain of Pseudomonas showed significantly greater suppression of the weedy fungus than the crop fungus. Moreover, a 16S rRNA pan-microbiome survey, using the Nanopore platform, revealed Pseudomonas to be a part of the core microbiota of O. obesus. A meta-analysis of microbiota composition across different species of Odontotermes also confirms the widespread prevalence of Pseudomonas within this termite. These lines of evidence indicate that Pseudomonas could be playing the role of defensive mutualist within Odontotermes.


Subject(s)
Isoptera , Animals , Fungi , Isoptera/microbiology , Plant Weeds/genetics , Pseudomonas/genetics , RNA, Ribosomal, 16S/genetics , Symbiosis
13.
Naturwissenschaften ; 109(5): 45, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35980473

ABSTRACT

Insects and fungi are abundant in many environments, in which facultative and/or obligate associations involving these groups have been established during evolution. In termites, mutualism with fungi is well reported for some termite lineages (e.g., Macrotermitinae). Within some subterranean termite species (Rhinotermitidae), egg-mimicking fungi, also referred to as "termite "balls", are often harbored inside the nest, mixed to the egg piles. Such interaction seems to be advantageous for both partners since the fungi are protected inside the nest while they may serve as an additional food source and also provide cellulases which may be incorporated into the termite digestive process. Although such mutualism has been reported for seven species of Reticulitermes and Coptotermes formosanus, all the samplings were restricted to temperate regions. Here, we provide the first Neotropical record of this termite-fungus association, and the first report for Coptotermes gestroi. The morphological characters of the "termite balls" observed in a C. gestroi nest resemble those already reported for Reticulitermes spp. and the congeneric species C. formosanus. They include a color ranging from light to dark brown, spherical shape, and a reduced diameter (0.23-0.34 mm). Our findings provide new insights into the geographical distribution of the association between termites and sclerotium-forming fungi. Future genetic analyses will be valuable aiming to identify the egg-mimicking fungi associated with C. gestroi and shed light on the evolution of this fascinating symbiosis.


Subject(s)
Basidiomycota , Cockroaches , Isoptera , Animals , Fungi , Isoptera/microbiology , Symbiosis
14.
J Nat Prod ; 85(9): 2159-2167, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36040034

ABSTRACT

Cultures of a termite-associated and a free-living member of the fungal genus Podaxis, revived from spores maintained in century-old herbarium collections, were analyzed for their insecticidal and antimicrobial effects. Their secondary metabolomes were explored to uncover possible adaptive mechanisms of termite association, and dereplication of LC-HRMS/MS data sets led to the isolation of podaxisterols A-D (1-4), modified ergosterol derivatives that result from a Diels-Alder reaction with endogenous nitrosyl cyanide. Chemical structures were determined based on HRMS/MS and NMR analyses as well as X-ray crystallography. The putative origin of the endogenous fungal nitrosyl cyanide and ergosterol derivatives is discussed based on results obtained from stable isotope experiments and in silico analysis. Our "omics"-driven analysis of this underexplored yet worldwide distributed fungal genus builds a foundation for studies on a potential metabolic adaptations to diverse lifestyles.


Subject(s)
Agaricales , Anti-Infective Agents , Ergosterol , Insecticides , Isoptera , Agaricales/chemistry , Agaricales/metabolism , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Ergosterol/analogs & derivatives , Ergosterol/isolation & purification , Ergosterol/pharmacology , Insecticides/chemistry , Insecticides/isolation & purification , Insecticides/pharmacology , Isoptera/microbiology , Metabolomics , Nitrogen Oxides/chemistry
15.
Proc Natl Acad Sci U S A ; 116(39): 19675-19684, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31492817

ABSTRACT

Lower termites harbor in their hindgut complex microbial communities that are involved in the digestion of cellulose. Among these are protists, which are usually associated with specific bacterial symbionts found on their surface or inside their cells. While these form the foundations of a classic system in symbiosis research, we still know little about the functional basis for most of these relationships. Here, we describe the complex functional relationship between one protist, the oxymonad Streblomastix strix, and its ectosymbiotic bacterial community using single-cell genomics. We generated partial assemblies of the host S. strix genome and Candidatus Ordinivivax streblomastigis, as well as a complex metagenome assembly of at least 8 other Bacteroidetes bacteria confirmed by ribosomal (r)RNA fluorescence in situ hybridization (FISH) to be associated with S. strix. Our data suggest that S. strix is probably not involved in the cellulose digestion, but the bacterial community on its surface secretes a complex array of glycosyl hydrolases, providing them with the ability to degrade cellulose to monomers and fueling the metabolism of S. strix In addition, some of the bacteria can fix nitrogen and can theoretically provide S. strix with essential amino acids and cofactors, which the protist cannot synthesize. On the contrary, most of the bacterial symbionts lack the essential glycolytic enzyme enolase, which may be overcome by the exchange of intermediates with S. strix This study demonstrates the value of the combined single-cell (meta)genomic and FISH approach for studies of complicated symbiotic systems.


Subject(s)
Isoptera/microbiology , Oxymonadida/metabolism , Animals , Bacteria/metabolism , Bacteroidetes/genetics , Cellulose/metabolism , Digestive System/metabolism , Eukaryota/metabolism , Genome , Isoptera/genetics , Metagenomics/methods , Phylogeny , Single-Cell Analysis/methods , Symbiosis
16.
Molecules ; 27(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35208983

ABSTRACT

Social insects are in mutualism with microorganisms, contributing to their resistance against infectious diseases. The fungus Pseudallescheria boydii SNB-CN85 isolated from termites produces ovalicin derivatives resulting from the esterification of the less hindered site of the ovalicin epoxide by long-chain fatty acids. Their structures were elucidated using spectroscopic analysis and semisynthesis from ovalicin. For ovalicin, these compounds displayed antiprotozoal activities against Plasmodium falciparum and Trypanosoma brucei, with IC50 values of 19.8 and 1.1 µM, respectively, for the most active compound, i.e., ovalicin linoleate. In parallel, metabolomic profiling of a collection of P. boydii strains associated with termites made it possible to highlight this class of compounds together with tyroscherin derivatives in all strains. Finally, the complete genome of P. boydii strains was obtained by sequencing, and the cluster of potential ovalicin and ovalicin biosynthesis genes was annotated. Through these metabolomic and genomic analyses, a new ovalicin derivative named boyden C, in which the 6-membered ring of ovalicin was opened by oxidative cleavage, was isolated and structurally characterized.


Subject(s)
Antimalarials , Isoptera/microbiology , Plasmodium falciparum/growth & development , Scedosporium , Sesquiterpenes , Trypanocidal Agents , Trypanosoma brucei brucei/growth & development , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , French Guiana , Scedosporium/chemistry , Scedosporium/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology
17.
Annu Rev Entomol ; 66: 23-43, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417825

ABSTRACT

Termites have long been studied for their symbiotic associations with gut microbes. In the late nineteenth century, this relationship was poorly understood and captured the interest of parasitologists such as Joseph Leidy; this research led to that of twentieth-century biologists and entomologists including Cleveland, Hungate, Trager, and Lüscher. Early insights came via microscopy, organismal, and defaunation studies, which led to descriptions of microbes present, descriptions of the roles of symbionts in lignocellulose digestion, and early insights into energy gas utilization by the host termite. Focus then progressed to culture-dependent microbiology and biochemical studies of host-symbiont complementarity, which revealed specific microhabitat requirements for symbionts and noncellulosic mechanisms of symbiosis (e.g., N2 fixation). Today, knowledge on termite symbiosis has accrued exponentially thanks to omic technologies that reveal symbiont identities, functions, and interdependence, as well as intricacies of host-symbiont complementarity. Moving forward, the merging of classical twentieth-century approaches with evolving omic tools should provide even deeper insights into host-symbiont interplay.


Subject(s)
Entomology/history , Isoptera/parasitology , Microbiota , Symbiosis , Animals , Genomics , History, 19th Century , History, 20th Century , History, 21st Century , Isoptera/genetics , Isoptera/microbiology
18.
BMC Biotechnol ; 21(1): 26, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33757473

ABSTRACT

BACKGROUND: The production of agricultural wastes still growing as a consequence of the population growing. However, the majority of these residues are under-utilized due their chemical composition, which is mainly composed by cellulose. Actually, the search of cellulases with high efficiency to degrade this carbohydrate remains as the challenge. In the present experiment, two genes encoding an endoglucanase (EC 3.2.1.4) and ß-glucosidase (EC 3.2.1.21) were overexpressed in Escherichia coli and their recombinant enzymes (egl-FZYE and cel-FZYE, respectively) characterized. Those genes were found in Trabulsiella odontermitis which was isolated from the gut of termite Heterotermes sp. Additionally, the capability to release sugars from agricultural wastes was evaluated in both enzymes, alone and in combination. RESULTS: The results have shown that optimal pH was 6.0 and 6.5, reaching an activity of 1051.65 ± 47.78 and 607.80 ± 10.19 U/mg at 39 °C, for egl-FZYE and cel-FZYE, respectively. The Km and Vmax for egl-FZYE using CMC as substrate were 11.25 mg/mL and 3921.57 U/mg, respectively, whereas using Avicel were 15.39 mg/mL and 2314.81 U/mg, respectively. The Km and Vmax for cel-FZYE using Avicel as substrate were 11.49 mg/mL and 2105.26 U/mg, respectively, whereas using CMC the enzyme did not had activity. Both enzymes had effect on agricultural wastes, and their effect was improved when they were combined reaching an activity of 955.1 ± 116.1, 4016.8 ± 332 and 1124.2 ± 241 U/mg on corn stover, sorghum stover and pine sawdust, respectively. CONCLUSIONS: Both enzymes were capable of degrading agricultural wastes, and their effectiveness was improved up to 60% of glucose released when combined. In summary, the results of the study demonstrate that the recombinant enzymes exhibit characteristics that indicate their value as potential feed additives and that the enzymes could be used to enhance the degradation of cellulose in the poor-quality forage generally used in ruminant feedstuffs.


Subject(s)
Cellulases/chemistry , Enterobacteriaceae/enzymology , Refuse Disposal/methods , Waste Products/analysis , Agriculture , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Cellulases/genetics , Cellulases/metabolism , Cellulose/metabolism , Crops, Agricultural/metabolism , Crops, Agricultural/microbiology , Enterobacteriaceae/chemistry , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Enzyme Stability , Isoptera/microbiology , Kinetics
19.
Appl Environ Microbiol ; 87(2)2021 01 04.
Article in English | MEDLINE | ID: mdl-33097518

ABSTRACT

All termites have established a wide range of associations with symbiotic microbes in their guts. Some termite species are also associated with microbes that grow in their nests, but the prevalence of these associations remains largely unknown. Here, we studied the bacterial communities associated with the termites and galleries of three wood-feeding termite species by using 16S rRNA gene amplicon sequencing. We found that the compositions of bacterial communities among termite bodies, termite galleries, and control wood fragments devoid of termite activities differ in a species-specific manner. Termite galleries were enriched in bacterial operational taxonomic units (OTUs) belonging to Rhizobiales and Actinobacteria, which were often shared by several termite species. The abundance of several bacterial OTUs, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus, was reduced in termite galleries. Our results demonstrate that both termite guts and termite galleries harbor unique bacterial communities.IMPORTANCE As is the case for all ecosystem engineers, termites impact their habitat by their activities, potentially affecting bacterial communities. Here, we studied three wood-feeding termite species and found that they influence the composition of the bacterial communities in their surrounding environment. Termite activities have positive effects on Rhizobiales and Actinobacteria abundance and negative effects on the abundance of several ubiquitous genera, such as Bacillus, Clostridium, Corynebacterium, and Staphylococcus Our results demonstrate that termite galleries harbor unique bacterial communities.


Subject(s)
Bacteria/classification , Isoptera/microbiology , Microbiota , Animals , Bacteria/genetics , Biodiversity , RNA, Ribosomal, 16S/genetics , Species Specificity
20.
Appl Environ Microbiol ; 87(3)2021 01 15.
Article in English | MEDLINE | ID: mdl-33187992

ABSTRACT

The functional screening of a Pseudacanthotermes militaris termite gut metagenomic library revealed an array of xylan-degrading enzymes, including P. militaris 25 (Pm25), a multimodular glycoside hydrolase family 10 (GH10). Sequence analysis showed details of the unusual domain organization of this enzyme. It consists of one catalytic domain, which is intercalated by two carbohydrate binding modules (CBMs) from family 4. The genes upstream of the genes encoding Pm25 are susC-susD-unk, suggesting Pm25 is a Xyn10C-like enzyme belonging to a polysaccharide utilization locus. The majority of Xyn10C-like enzymes shared the same interrupted domain architecture and were vastly distributed in different xylan utilization loci found in gut Bacteroidetes, indicating the importance of this enzyme in glycan acquisition for gut microbiota. To understand its unusual multimodularity and the possible role of the CBMs, a detailed characterization of the full-length Pm25 and truncated variants was performed. Results revealed that the GH10 catalytic module is specific toward the hydrolysis of xylan. Ligand binding results indicate that the GH10 module and the CBMs act independently, whereas the tandem CBM4s act synergistically with each other and improve enzymatic activity when assayed on insoluble polysaccharides. In addition, we show that the UNK protein upstream of Pm25 is able to bind arabinoxylan. Altogether, these findings contribute to a better understanding of the potential role of Xyn10C-like proteins in xylan utilization systems of gut bacteria.IMPORTANCE Xylan is the major hemicellulosic polysaccharide in cereals and contributes to the recalcitrance of the plant cell wall toward degradation. Members of the Bacteroidetes, one of the main phyla in rumen and human gut microbiota, have been shown to encode polysaccharide utilization loci dedicated to the degradation of xylan. Here, we present the biochemical characterization of a xylanase encoded by a Bacteroidetes strain isolated from the termite gut metagenome. This xylanase is a multimodular enzyme, the sequence of which is interrupted by the insertion of two CBMs from family 4. Our results show that this enzyme resembles homologues that were shown to be important for xylan degradation in rumen or human diet and show that the CBM insertion in the middle of the sequence seems to be a common feature in xylan utilization systems. This study shed light on our understanding of xylan degradation and plant cell wall deconstruction, which can be applied to several applications in food, feed, and bioeconomy.


Subject(s)
Bacteroidetes/enzymology , Endo-1,4-beta Xylanases , Isoptera/microbiology , Animals , Bacterial Proteins/genetics , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Gastrointestinal Microbiome , Metagenome , Xylans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL