Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.539
Filter
1.
J Cell Mol Med ; 28(7): e18235, 2024 04.
Article in English | MEDLINE | ID: mdl-38509735

ABSTRACT

Kidney stone, one of the oldest known diseases, has plagued humans for centuries, consistently imposing a heavy burden on patients and healthcare systems worldwide due to their high incidence and recurrence rates. Advancements in endoscopy, imaging, genetics, molecular biology and bioinformatics have led to a deeper and more comprehensive understanding of the mechanism behind nephrolithiasis. Kidney stone formation is a complex, multi-step and long-term process involving the transformation of stone-forming salts from free ions into asymptomatic or symptomatic stones influenced by physical, chemical and biological factors. Among the various types of kidney stones observed in clinical practice, calcareous nephrolithiasis is currently the most common and exhibits the most intricate formation mechanism. Extensive research suggests that calcareous nephrolithiasis primarily originates from interstitial subepithelial calcified plaques and/or calcified blockages in the openings of collecting ducts. These calcified plaques and blockages eventually come into contact with urine in the renal pelvis, serving as a nidus for crystal formation and subsequent stone growth. Both pathways of stone formation share similar mechanisms, such as the drive of abnormal urine composition, involvement of oxidative stress and inflammation, and an imbalance of stone inhibitors and promoters. However, they also possess unique characteristics. Hence, this review aims to provide detailed description and present recent discoveries regarding the formation processes of calcareous nephrolithiasis from two distinct birthplaces: renal interstitium and tubule lumen.


Subject(s)
Calcinosis , Kidney Calculi , Humans , Kidney Medulla/metabolism , Kidney Calculi/complications , Kidney Calculi/metabolism , Calcinosis/metabolism , Endoscopy , Inflammation/metabolism
2.
J Cell Mol Med ; 28(10): e18409, 2024 May.
Article in English | MEDLINE | ID: mdl-38769917

ABSTRACT

Farnesoid X receptor (FXR), a ligand-activated transcription factor, plays an important role in maintaining water homeostasis by up-regulating aquaporin 2 (AQP2) expression in renal medullary collecting ducts; however, its role in the survival of renal medullary interstitial cells (RMICs) under hypertonic conditions remains unclear. We cultured primary mouse RMICs and found that the FXR was expressed constitutively in RMICs, and that its expression was significantly up-regulated at both mRNA and protein levels by hypertonic stress. Using luciferase and ChIP assays, we found a potential binding site of nuclear factor kappa-B (NF-κB) located in the FXR gene promoter which can be bound and activated by NF-κB. Moreover, hypertonic stress-induced cell death in RMICs was significantly attenuated by FXR activation but worsened by FXR inhibition. Furthermore, FXR increased the expression and nuclear translocation of hypertonicity-induced tonicity-responsive enhance-binding protein (TonEBP), the expressions of its downstream target gene sodium myo-inositol transporter (SMIT), and heat shock protein 70 (HSP70). The present study demonstrates that the NF-κB/FXR/TonEBP pathway protects RMICs against hypertonic stress.


Subject(s)
Kidney Medulla , NF-kappa B , Signal Transduction , Animals , NF-kappa B/metabolism , Mice , Kidney Medulla/metabolism , Kidney Medulla/cytology , Osmotic Pressure , Aquaporin 2/metabolism , Aquaporin 2/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Male , Mice, Inbred C57BL , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Promoter Regions, Genetic , Cells, Cultured , Gene Expression Regulation , Symporters/metabolism , Symporters/genetics , Receptors, Cytoplasmic and Nuclear
3.
Am J Physiol Renal Physiol ; 326(2): F189-F201, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37994410

ABSTRACT

To reabsorb >99% of the glomerular filtrate, the metabolic demand of the kidney is high. Interestingly, renal blood flow distribution exhibits marked inhomogeneity, with typical tissue oxygen tension (Po2) of 50-60 mmHg in the well-perfused cortex and 10-20 mmHg in the inner medulla. Cellular fluid composition and acidity also varies substantially. To understand how different renal epithelial cells adapt to their local environment, we have developed and applied computational models of mitochondrial function of proximal convoluted tubule cell (baseline Po2 = 50 mmHg, cytoplasmic pH = 7.20) and medullary thick ascending limb (mTAL) cell (baseline Po2 = 10 mmHg, cytoplasmic pH = 6.85). The models predict key cellular quantities, including ATP generation, P/O (phosphate/oxygen) ratio, proton motive force, electrical potential gradient, oxygen consumption, the redox state of key electron carriers, and ATP consumption. Model simulations predict that close to their respective baseline conditions, the proximal tubule and mTAL mitochondria exhibit qualitatively similar behaviors. Nonetheless, because the mTAL mitochondrion has adapted to a much lower Po2, it can sustain a sufficiently high ATP production at Po2 as low as 4-5 mmHg, whereas the proximal tubule mitochondria would not. Also, because the mTAL cytosol is already acidic under baseline conditions, the proton motive force (pmf) exhibits higher sensitivity to further acidification. Among the different pathways that lead to oxidative phosphorylation impairment, the models predict that both the proximal tubule and mTAL mitochondria are most sensitive to reductions in Complex III activity.NEW & NOTEWORTHY Tissue fluid composition varies substantially within the mammalian kidney. The renal cortex is well perfused and pH neutral, whereas some medullary regions are hypoxic and acidic. How do these environments affect the mitochondrial function of proximal convoluted tubule and medullary thick ascending limb cells, which reside in the cortex and medulla, respectively? This computational modeling study demonstrates that these mitochondria can adapt to their contrasting environments and exhibit different sensitivities to perturbations to local environments.


Subject(s)
Kidney Tubules, Proximal , Kidney , Rats , Animals , Kidney/metabolism , Kidney Tubules, Proximal/metabolism , Oxygen/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Kidney Medulla/metabolism , Mammals/metabolism
4.
Kidney Int ; 105(2): 242-244, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38245213

ABSTRACT

The renal medulla maintains salt and water balance and is prone to dysregulation because of high oxygen demand. Challenges in obtaining high-quality tissue have limited characterization of molecular programs regulating the medulla. Haug et al. leveraged gene expression, chromatin accessibility, long-range chromosomal interactions, and spatial transcriptomics to build a reference set of medullary tissue marker genes to define the medullary role in kidney function, exemplifying the strength and utility of multi-omic data integration.


Subject(s)
Kidney Medulla , Multiomics , Kidney Medulla/metabolism , Sodium Chloride, Dietary/metabolism , Sodium Chloride/metabolism , Water-Electrolyte Balance
5.
Exp Physiol ; 109(5): 766-778, 2024 May.
Article in English | MEDLINE | ID: mdl-38551893

ABSTRACT

It has been proposed that diuretics can improve renal tissue oxygenation through inhibition of tubular sodium reabsorption and reduced metabolic demand. However, the impact of clinically used diuretic drugs on the renal cortical and medullary microcirculation is unclear. Therefore, we examined the effects of three commonly used diuretics, at clinically relevant doses, on renal cortical and medullary perfusion and oxygenation in non-anaesthetised healthy sheep. Merino ewes received acetazolamide (250 mg; n = 9), furosemide (20 mg; n = 10) or amiloride (10 mg; n = 7) intravenously. Systemic and renal haemodynamics, renal cortical and medullary tissue perfusion and P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ , and renal function were then monitored for up to 8 h post-treatment. The peak diuretic response occurred 2 h (99.4 ± 14.8 mL/h) after acetazolamide, at which stage cortical and medullary tissue perfusion and P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ were not significantly different from their baseline levels. The peak diuretic response to furosemide occurred at 1 h (196.5 ± 12.3 mL/h) post-treatment but there were no significant changes in cortical and medullary tissue oxygenation during this period. However, cortical tissue P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ fell from 40.1 ± 3.8 mmHg at baseline to 17.2 ± 4.4 mmHg at 3 h and to 20.5 ± 5.3 mmHg at 6 h after furosemide administration. Amiloride did not produce a diuretic response and was not associated with significant changes in cortical or medullary tissue oxygenation. In conclusion, clinically relevant doses of diuretic agents did not improve regional renal tissue oxygenation in healthy animals during the 8 h experimentation period. On the contrary, rebound renal cortical hypoxia may develop after dissipation of furosemide-induced diuresis.


Subject(s)
Acetazolamide , Amiloride , Diuretics , Furosemide , Kidney Cortex , Kidney Medulla , Animals , Furosemide/pharmacology , Acetazolamide/pharmacology , Amiloride/pharmacology , Diuretics/pharmacology , Sheep , Female , Kidney Cortex/drug effects , Kidney Cortex/metabolism , Kidney Medulla/drug effects , Kidney Medulla/metabolism , Oxygen/metabolism , Hemodynamics/drug effects , Oxygen Consumption/drug effects
6.
Eur J Immunol ; 52(8): 1258-1272, 2022 08.
Article in English | MEDLINE | ID: mdl-35527392

ABSTRACT

Renal immune cells serve as sentinels against ascending bacteria but also promote detrimental inflammation. The kidney medulla is characterized by extreme electrolyte concentrations. We here address how its main osmolytes, NaCl and urea, regulate tubular cell cytokine expression and monocyte chemotaxis. In the healthy human kidney, more monocytes were detected in medulla than cortex. The monocyte gradient was attenuated in patients with medullary NaCl depletion by loop diuretic therapy and in the nephrotic syndrome. Renal tubular epithelial cell gene expression responded similarly to NaCl and tonicity control mannitol, but not urea. NaCl significantly upregulated chemotactic cytokines, most markedly CCL26, CCL2, and CSF1. This induction was inhibited by the ROS scavenger n-acetylcysteine. In contrast, urea, the main medullary osmolyte in catabolism, dampened tubular epithelial CCL26 and CSF1 expression. Renal medullary chemokine and monocyte marker expression decreased in catabolic mice. NaCl-, but not urea-stimulated tubular epithelium or CCL2 and CCL26, promoted human classical monocyte migration. CCL26 improved bactericidal function. In the human kidney medulla, monocyte densities correlated with tubular CCL26 protein abundance. In summary, medullary-range NaCl, but not urea, promotes tubular cytokine expression and monocyte recruitment. This may contribute to the pyelonephritis vulnerability in catabolism but can possibly be harnessed against pathologic inflammation.


Subject(s)
Kidney Medulla , Sodium Chloride , Animals , Cytokines/metabolism , Epithelial Cells/metabolism , Humans , Inflammation/metabolism , Kidney Medulla/metabolism , Mice , Monocytes/metabolism , Sodium Chloride/metabolism , Sodium Chloride/pharmacology , Urea/metabolism , Urea/pharmacology
7.
J Cell Physiol ; 237(10): 3883-3899, 2022 10.
Article in English | MEDLINE | ID: mdl-35908199

ABSTRACT

The renal collecting ducts (CD) are formed by a fully differentiated epithelium, and their tissue organization and function require the presence of mature cell adhesion structures. In certain circumstances, the cells can undergo de-differentiation by a process called epithelial-mesenchymal transition (EMT), in which the cells lose their epithelial phenotype and acquire the characteristics of the mesenchymal cells, which includes loss of cell-cell adhesion. We have previously shown that in renal papillary CD cells, cell adhesion structures are located in sphingomyelin (SM)-enriched plasma membrane microdomains and the inhibition of SM synthase 1 activity induced CD cells to undergo an EMT process. In the present study, we evaluated the influence of SM metabolism during the EMT of the cells that form the CD of the renal papilla during aging. To this end, primary cultures of renal papillary CD cells from young, middle-, and aged-rats were performed. By combining biochemical and immunofluorescence studies, we found experimental evidence that CD cells undergo an increase in spontaneous and reversible EMT during aging and that at least one of the reasons for this phenomenon is the decrease in SM content due to the combination of decreased SM synthase activity and an increase in SM degradation mediated by neutral sphingomyelinase. Age is a risk factor for many diseases, among which renal fibrosis is included. Our findings highlight the importance of sphingolipids and particularly SM as a modulator of the fate of CD cells and probably contribute to the development of treatments to avoid or reverse renal fibrosis during aging.


Subject(s)
Epithelial-Mesenchymal Transition , Kidney Diseases , Animals , Epithelial Cells/metabolism , Fibrosis , Kidney Medulla/metabolism , Rats , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelins/metabolism
8.
Cell Mol Life Sci ; 78(23): 7831-7849, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34724098

ABSTRACT

Randall's plaques (RP) are well established as precursor lesions of idiopathic calcium oxalate (CaOx) stones, and the process of biomineralization driven by osteogenic-like cells has been highlighted in RP formation, but the mechanism is poorly understood. Given the inhibitory role of α-Klotho (KL), an aging suppressor protein with high expression in kidneys, in ectopic calcification and the close association between KL gene polymorphisms and urolithiasis susceptibility, we determined the potential role of KL in RP formation. This study found that both soluble KL (s-KL) and transmembrane KL (m-KL) were downregulated, and that s-KL but not m-KL was inversely correlated with upregulation of osteogenic markers in RP tissues. Additionally, s-KL expression was markedly suppressed in human renal interstitial fibroblasts (hRIFs) and slightly suppressed in HK-2 cells after osteogenic induction, intriguingly, which was echoed to the greater osteogenic capability of hRIFs than HK-2 cells. Further investigations showed the inhibitory effect of s-KL on hRIF osteogenic differentiation in vitro and in vivo. Moreover, coculture with recombinant human KL (r-KL) or HK-2 cells suppressed osteogenic differentiation of hRIFs, and this effect was abolished by coculture with KL-silenced HK-2 cells or the ß-catenin agonist SKL2001. Mechanistically, s-KL inactivated the Wnt-ß-catenin pathway by directly binding to Wnt2 and upregulating SFRP1. Further investigations identified activation of the Wnt-ß-catenin pathway and downregulation of SFRP1 and DKK1 in RP tissues. In summary, this study identified s-KL deficiency as a pathological feature of RP and revealed that s-KL released from HK-2 cells inhibited osteogenic differentiation of hRIFs by inactivating the Wnt-ß-catenin pathway, not only providing in-depth insight into the role of s-KL in renal interstitial biomineralization but also shedding new light on the interaction of renal tubular epithelial cells with interstitial cells to clarify RP formation.


Subject(s)
Cell Differentiation , Fibroblasts/pathology , Kidney Calculi/pathology , Klotho Proteins/metabolism , Osteogenesis , Wnt Proteins/antagonists & inhibitors , beta Catenin/antagonists & inhibitors , Animals , Fibroblasts/metabolism , Gene Expression Regulation , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Kidney Calculi/genetics , Kidney Calculi/metabolism , Kidney Medulla/metabolism , Kidney Medulla/pathology , Klotho Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Nude , Wnt Proteins/genetics , Wnt Proteins/metabolism , beta Catenin/genetics , beta Catenin/metabolism
9.
J Am Soc Nephrol ; 32(2): 291-306, 2021 02.
Article in English | MEDLINE | ID: mdl-33239393

ABSTRACT

BACKGROUND: Single-cell transcriptomes from dissociated tissues provide insights into cell types and their gene expression and may harbor additional information on spatial position and the local microenvironment. The kidney's cells are embedded into a gradient of increasing tissue osmolality from the cortex to the medulla, which may alter their transcriptomes and provide cues for spatial reconstruction. METHODS: Single-cell or single-nuclei mRNA sequencing of dissociated mouse kidneys and of dissected cortex, outer, and inner medulla, to represent the corticomedullary axis, was performed. Computational approaches predicted the spatial ordering of cells along the corticomedullary axis and quantitated expression levels of osmo-responsive genes. In situ hybridization validated computational predictions of spatial gene-expression patterns. The strategy was used to compare single-cell transcriptomes from wild-type mice to those of mice with a collecting duct-specific knockout of the transcription factor grainyhead-like 2 (Grhl2CD-/-), which display reduced renal medullary osmolality. RESULTS: Single-cell transcriptomics from dissociated kidneys provided sufficient information to approximately reconstruct the spatial position of kidney tubule cells and to predict corticomedullary gene expression. Spatial gene expression in the kidney changes gradually and osmo-responsive genes follow the physiologic corticomedullary gradient of tissue osmolality. Single-nuclei transcriptomes from Grhl2CD-/- mice indicated a flattened expression gradient of osmo-responsive genes compared with control mice, consistent with their physiologic phenotype. CONCLUSIONS: Single-cell transcriptomics from dissociated kidneys facilitated the prediction of spatial gene expression along the corticomedullary axis and quantitation of osmotically regulated genes, allowing the prediction of a physiologic phenotype.


Subject(s)
Kidney Cortex/metabolism , Kidney Cortex/pathology , Kidney Medulla/metabolism , Kidney Medulla/pathology , Transcriptome , Animals , Disease Models, Animal , Gene Expression Regulation , In Situ Hybridization , Kidney Tubules/metabolism , Kidney Tubules/pathology , Mice , Mice, Inbred C57BL , Osmolar Concentration
10.
Int J Mol Sci ; 23(11)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35682969

ABSTRACT

Pregnancy is characterized by adaptations in the function of several maternal body systems that ensure the development of the fetus whilst maintaining health of the mother. The renal system is responsible for water and electrolyte balance, as well as waste removal. Thus, it is imperative that structural and functional changes occur in the kidney during pregnancy. However, our knowledge of the precise morphological and molecular mechanisms occurring in the kidney during pregnancy is still very limited. Here, we investigated the changes occurring in the mouse kidney during pregnancy by performing an integrated analysis involving histology, gene and protein expression assays, mass spectrometry profiling and bioinformatics. Data from non-pregnant and pregnant mice were used to identify critical signalling pathways mediating changes in the maternal kidneys. We observed an expansion of renal medulla due to proliferation and infiltration of interstitial cellular constituents, as well as alterations in the activity of key cellular signalling pathways (e.g., AKT, AMPK and MAPKs) and genes involved in cell growth/metabolism (e.g., Cdc6, Foxm1 and Rb1) in the kidneys during pregnancy. We also generated plasma and urine proteomic profiles, identifying unique proteins in pregnancy. These proteins could be used to monitor and study potential mechanisms of renal adaptations during pregnancy and disease.


Subject(s)
Kidney , Proteomics , Animals , Female , Fetus/metabolism , Kidney/metabolism , Kidney Medulla/metabolism , Mice , Pregnancy , Proteins/metabolism , Water-Electrolyte Balance
11.
Am J Physiol Cell Physiol ; 321(3): C507-C518, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34191628

ABSTRACT

The fluid in the 14 distinct segments of the renal tubule undergoes sequential transport processes that gradually convert the glomerular filtrate into the final urine. The solute carrier (SLC) family of proteins is responsible for much of the transport of ions and organic molecules along the renal tubule. In addition, some SLC family proteins mediate housekeeping functions by transporting substrates for metabolism. Here, we have developed a curated list of SLC family proteins. We used the list to produce resource webpages that map these proteins and their transcripts to specific segments along the renal tubule. The data were used to highlight some interesting features of expression along the renal tubule including sex-specific expression in the proximal tubule and the role of accessory proteins (ß-subunit proteins) that are thought to be important for polarized targeting in renal tubule epithelia. Also, as an example of application of the data resource, we describe the patterns of acid-base transporter expression along the renal tubule.


Subject(s)
Kidney Diseases/genetics , Kidney Glomerulus/metabolism , Kidney Medulla/metabolism , Kidney Tubules/metabolism , Organoids/metabolism , Solute Carrier Proteins/genetics , Animals , Biological Transport , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Glomerular Filtration Rate , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Glomerulus/pathology , Kidney Medulla/pathology , Kidney Tubules/pathology , Male , Mice , Molecular Sequence Annotation , Organoids/pathology , Sex Factors , Single-Cell Analysis , Solute Carrier Proteins/classification , Solute Carrier Proteins/metabolism
12.
Am J Physiol Renal Physiol ; 320(1): F17-F30, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33196322

ABSTRACT

Connexins (Cxs) form gap junctions for intercellular exchange of inorganic ions and messenger molecules. In the kidney, Cxs play essential roles within its compartments, but data on the precise cellular localization and cell type-related function of their isoforms are scarce. We tested whether Cx43 distribution is restricted to vascular and interstitial cells and whether medullary fibroblasts express Cx43 to coordinate profibrotic signaling. Confocal immunofluorescence techniques, ultrastructural labeling, and functional experiments in cell culture were performed. Cx43 was chiefly expressed in the vasculature but was absent from tubular epithelia. All arterial, arteriolar, and lymphatic endothelia showed continuous Cx43 signal along their borders. In the inner medulla, only the interstitium showed Cx43 signals, which were assigned to fibroblasts and their processes. Cultured Cx43-expressing medullary fibroblasts served to study the role of gap junctions in a profibrotic context. In a dye spreading assay, Cx43-sensitive diffusion of Lucifer yellow was dependent on gap junctional passage. The addition of transforming growth factor-ß1 (5 ng/mL for 48 h) activated Cx43 biosynthesis and caused Cx43-sensitive transformation of the fibroblasts into a myofibroblast phenotype. This suggested that Cx43 gap junctional channels enable the coordination of profibrotic signaling between cells of the medullary interstitium. In summary, we demonstrate the presence of Cx43-expressing gap junctions within the two major renal compartments, the vasculature and interstitium. Endothelial Cx43 likely provides functions of an earlier-defined "electrical syncytium" within the vascular wall. Additionally, Cx43 facilitates profibrotic signaling between medullary interstitial fibroblasts.


Subject(s)
Cell Differentiation , Connexin 43/metabolism , Endothelial Cells/metabolism , Fibroblasts/metabolism , Kidney Medulla/blood supply , Kidney Medulla/metabolism , Animals , Cell Communication , Cell Line , Endothelial Cells/ultrastructure , Fibroblasts/ultrastructure , Fibrosis , Gap Junctions/metabolism , Gap Junctions/ultrastructure , Humans , Kidney Medulla/ultrastructure , Male , Mice, Inbred C57BL , Myofibroblasts/metabolism , Myofibroblasts/ultrastructure , Phenotype , Rats, Wistar
13.
J Pharmacol Exp Ther ; 376(1): 98-105, 2021 01.
Article in English | MEDLINE | ID: mdl-33127751

ABSTRACT

The G protein-coupled estrogen receptor 1 (GPER1) mediates rapid estrogenic signaling. We recently reported that activation of GPER1 in the renal medulla evokes endothelin-1-dependent natriuresis in female, but not male, rats. However, the involvement of the ET receptors, ETA and ETB, underlying GPER1 natriuretic action remain unclear. In this study, we used genetic and pharmacologic methods to identify the contributions of ETA and ETB in mediating this female-specific natriuretic effect of renal medullary GPER1. Infusion of the GPER1-selective agonist G1 (5 pmol/kg per minute) into the renal medulla for 40 minutes increased Na+ excretion and urine flow in anesthetized female ETB-deficient (ETB def) rats and littermate controls but did not affect blood pressure or urinary K+ excretion in either group. Pretreatment with the selective ETA inhibitor ABT-627 (5 mg/kg, intravenous) abolished G1-induced natriuresis in ETB def rats. To further isolate the effects of inhibiting either receptor alone, we conducted the same experiments in anesthetized female Sprague-Dawley (SD) rats pretreated or not with ABT-627 and/or the selective ETB inhibitor A-192621 (10 mg/kg, intravenous). Neither antagonism of ETA nor antagonism of ETB receptor alone affected the G1-induced increase in Na+ excretion and urine flow in SD rats. However, simultaneous antagonism of both receptors completely abolished these effects. These data suggest that ETA and ETB receptors can mediate the natriuretic and diuretic response to renal medullary GPER1 activation in female rats. SIGNIFICANCE STATEMENT: Activation of G protein-coupled estrogen receptor 1 (GPER1) in the renal medulla of female rats evokes natriuresis via endothelin receptors A and/or B, suggesting that GPER1 and endothelin signaling pathways help efficient sodium excretion in females. Thus, GPER1 activation could be potentially useful to mitigate salt sensitivity in females.


Subject(s)
Natriuresis , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Atrasentan/pharmacology , Endothelin Receptor Antagonists/pharmacology , Female , Kidney Medulla/drug effects , Kidney Medulla/metabolism , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/agonists
14.
J Vasc Res ; 58(1): 38-48, 2021.
Article in English | MEDLINE | ID: mdl-33207336

ABSTRACT

Diabetes through adenosine A1 receptor (A1R) and P2 receptors (P2Rs) may lead to disturbances in renal microvasculature. We investigated the renal microvascular response to Ap4A, an agonist of P2Rs, in streptozotocin-induced diabetic rats. Using laser Doppler flowmetry, renal blood perfusion (RBP) was measured during infusion of Ap4A alone or in the presence of A1R antagonist, either DPCPX (8-cyclopentyl-1,3-dipropylxanthine) or 8-cyclopentyltheophylline (CPT). Ap4A induced a biphasic response in RBP: a phase of rapid decrease was followed by a rapid increase, which was transient in diabetic rats but extended for 30 min in nondiabetic rats. Phase of decreased RBP was not affected by DPCPX or CPT in either group. Early and extended increases in RBP were prevented by DPCPX and CPT in nondiabetic rats, while in diabetic rats, the early increase in RBP was not affected by these antagonists. A1R mRNA and protein levels were increased in isolated glomeruli of diabetic rats, but no changes were detected in P2Y1R and P2Y2R mRNA. Presence of unblocked A1R is a prerequisite for the P2R-mediated relaxing effect of Ap4A in nondiabetic conditions, but influence of A1R on P2R-mediated renal vasorelaxation is abolished under diabetic conditions.


Subject(s)
Acid Anhydride Hydrolases/pharmacology , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/etiology , Kidney Cortex/blood supply , Kidney Medulla/blood supply , Purinergic P2 Receptor Agonists/pharmacology , Receptor, Adenosine A1/metabolism , Renal Circulation/drug effects , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Blood Flow Velocity , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/physiopathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/physiopathology , Kidney Cortex/metabolism , Kidney Medulla/metabolism , Male , Rats, Wistar , Receptor Cross-Talk , Receptors, Purinergic P2/metabolism , Signal Transduction
15.
Proc Natl Acad Sci U S A ; 115(21): 5600-5605, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29739889

ABSTRACT

Hypertonicity in renal medulla is critical for the kidney to produce concentrated urine. Renal medullary cells have to survive high medullary osmolarity during antidiuresis. Previous study reported that farnesoid X receptor (FXR), a nuclear receptor transcription factor activated by endogenous bile acids, increases urine concentrating ability by up-regulating aquaporin 2 expression in medullary collecting duct cells (MCDs). However, whether FXR is also involved in the maintenance of cell survival of MCDs under dehydration condition and hypertonic stress remains largely unknown. In the present study, we demonstrate that 24-hours water restriction selectively up-regulated renal medullary expression of FXR with little MCD apoptosis in wild-type mice. In contrast, water deprivation caused a massive apoptosis of MCDs in both global FXR gene-deficient mice and collecting duct-specific FXR knockout mice. In vitro studies showed that hypertonicity significantly increased FXR and tonicity response enhancer binding protein (TonEBP) expression in mIMCD3 cell line and primary cultured MCDs. Activation and overexpression of FXR markedly increased cell viability and decreased cell apoptosis under hyperosmotic conditions. In addition, FXR can increase gene expression and nuclear translocation of TonEBP. We conclude that FXR protects MCDs from hypertonicity-induced cell injury very likely via increasing TonEBP expression and nuclear translocation. This study provides insights into the molecular mechanism by which FXR enhances urine concentration via maintaining cell viability of MCDs under hyperosmotic condition.


Subject(s)
Kidney Concentrating Ability/physiology , Kidney Medulla/cytology , Kidney Tubules, Collecting/cytology , Osmotic Pressure/physiology , Receptors, Cytoplasmic and Nuclear/physiology , Stress, Physiological , Transcription Factors/metabolism , Animals , Gene Expression Regulation , Kidney Medulla/metabolism , Kidney Tubules, Collecting/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/genetics
16.
Biochem Genet ; 59(1): 62-82, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32767051

ABSTRACT

Development of efficient vectors for transfection is one of the major challenges in genetic engineering. Previous research demonstrated that cationic derivatives of polyisoprenoids (PTAI) may serve as carriers of nucleic acids. In the present study, the effectiveness of two PTAI-based formulations (PTAI-6-8 and 10-14) was investigated and compared to the commercial reagents. The purpose of applied gene therapy was to enhance the expression of vascular endothelial growth factor (VEGF-A) in the renal medulla of spontaneously hypertensive rats (SHR) and to test its potential as a novel antihypertensive intervention. In the first part of the study (in vitro), we confirmed that PTAI-based lipoplexes efficiently transfect XC rat sarcoma cells and are stable in 37 °C for 7 days. In the in vivo experiments, we administered selected lipoplexes directly to the kidneys of conscious SHR (via osmotic pumps). There were no blood pressure changes and VEGF-A level in renal medulla was significantly higher only for PTAI-10-14-based formulation. In conclusion, despite the promising results, we were not able to achieve VEGF-A expression level high enough to verify VEGF-A gene therapy usefulness in SHR. However, results of our study give important indications for the future development of PTAI-based DNA carriers and kidney-targeted gene delivery.


Subject(s)
Blood Pressure/genetics , Genetic Therapy/instrumentation , Genetic Vectors , Hypertension/therapy , Kidney Medulla/metabolism , Polyprenols/chemistry , Vascular Endothelial Growth Factor A/metabolism , Animals , Cell Line, Tumor , DNA/genetics , Glucose/metabolism , Hypertension/genetics , Male , Osmosis , Rats , Rats, Inbred SHR , Transfection
17.
J Am Soc Nephrol ; 31(7): 1555-1568, 2020 07.
Article in English | MEDLINE | ID: mdl-32487560

ABSTRACT

BACKGROUND: The physiologic role of renomedullary interstitial cells, which are uniquely and abundantly found in the renal inner medulla, is largely unknown. Endothelin A receptors regulate multiple aspects of renomedullary interstitial cell function in vitro. METHODS: To assess the effect of targeting renomedullary interstitial cell endothelin A receptors in vivo, we generated a mouse knockout model with inducible disruption of renomedullary interstitial cell endothelin A receptors at 3 months of age. RESULTS: BP and renal function were similar between endothelin A receptor knockout and control mice during normal and reduced sodium or water intake. In contrast, on a high-salt diet, compared with control mice, the knockout mice had reduced BP; increased urinary sodium, potassium, water, and endothelin-1 excretion; increased urinary nitrite/nitrate excretion associated with increased noncollecting duct nitric oxide synthase-1 expression; increased PGE2 excretion associated with increased collecting duct cyclooxygenase-1 expression; and reduced inner medullary epithelial sodium channel expression. Water-loaded endothelin A receptor knockout mice, compared with control mice, had markedly enhanced urine volume and reduced urine osmolality associated with increased urinary endothelin-1 and PGE2 excretion, increased cyclooxygenase-2 protein expression, and decreased inner medullary aquaporin-2 protein content. No evidence of endothelin-1-induced renomedullary interstitial cell contraction was observed. CONCLUSIONS: Disruption of renomedullary interstitial cell endothelin A receptors reduces BP and increases salt and water excretion associated with enhanced production of intrinsic renal natriuretic and diuretic factors. These studies indicate that renomedullary interstitial cells can modulate BP and renal function under physiologic conditions.


Subject(s)
Blood Pressure , Kidney Medulla/physiology , Receptor, Endothelin A/physiology , Aldosterone/blood , Animals , Arginine Vasopressin/urine , Calcium/metabolism , Diuresis/drug effects , Endothelin-1/pharmacology , Endothelin-1/urine , Epithelial Sodium Channels/metabolism , Female , Genotype , Glomerular Filtration Rate , Hyaluronic Acid/metabolism , Kidney Medulla/cytology , Kidney Medulla/metabolism , Male , Mice , Mice, Knockout , Models, Animal , Natriuresis/drug effects , Nitrates/urine , Nitrites/urine , Potassium/urine , RNA, Messenger/metabolism , Receptor, Endothelin A/genetics , Receptor, Endothelin A/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Sodium/urine , Sodium Chloride, Dietary/administration & dosage , Tamoxifen/pharmacology , Water/administration & dosage , Water/metabolism
18.
Genomics ; 112(3): 2633-2639, 2020 05.
Article in English | MEDLINE | ID: mdl-32070763

ABSTRACT

Camels as a sort of animal long living in desert have evolved stress-resistance characteristics to adapt to environment with high temperature and water shortage environment. However, the research of non-coding RNA (ncRNA)-mediated molecular regulation about how camel responds to arid condition in post-transcriptional regulation level is deficient. Under water-deprivation stress, by RNA-sequencing of camel renal medulla associated with regulating water metabolism, we detected significantly differential 575 alternative splicing events (ASEs) and 17 mRNAs, 26 miRNAs and 0 lncRNA. The down-regulated ACLY and LOC105061856, up-regulated PCBP2 and miR-195 potentially targeting LOC105061856 and PCBP2 mRNA were selected as candidate resistance-related genes. In quantitative experiment, the expression level of above four genes was consistent with RNA-seq data by qRT-PCR. The suppressive cell dehydration with down-regulated ACLY, inhibitive aerobic respiration with down-regulated LOC105061856 targeted by miR-195 and strong anti-oxidative capability with PCBP2 aimed by miR-195 may be regulatory modes of camel renal medulla adapting to water-deprivation condition.


Subject(s)
Camelus/genetics , Gene Expression Regulation/genetics , Kidney Medulla/metabolism , Alternative Splicing , Animals , Camelus/metabolism , Dehydration/genetics , Dehydration/metabolism , Dehydration/veterinary , Droughts , Female , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism
19.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525532

ABSTRACT

Numerous evidence corroborates roles of gap junctions/hemichannels in proper kidney development. We analyzed how Dab1 gene functional silencing influences expression and localization of Cx37, Cx40, Cx43, Cx45, Panx1 and renin in postnatal kidneys of yotari mice, by using immunohistochemistry and electron microscopy. Dab1 Δ102/221 might lead to the activation of c-Src tyrosine kinase, causing the upregulation of Cx43 in the medulla of yotari mice. The expression of renin was more prominent in yotari mice (p < 0.001). Renin granules were unusually present inside the vascular walls of glomeruli capillaries, in proximal and distal convoluted tubules and in the medulla. Disfunction of Cx40 is likely responsible for increased atypically positioned renin cells which release renin in an uncontrolled fashion, but this doesn't rule out simultaneous involvement of other Cxs, such as Cx45 which was significantly increased in the yotari cortex. The decreased Cx37 expression in yotari medulla might contribute to hypertension reduction provoked by high renin expression. These findings imply the relevance of Cxs/Panx1 as markers of impaired kidney function (high renin) in yotari mice and that they have a role in the preservation of intercellular signaling and implicate connexopathies as the cause of premature death of yotari mice.


Subject(s)
Connexin 43/genetics , Connexins/genetics , Kidney Glomerulus/metabolism , Nerve Tissue Proteins/genetics , Renin/genetics , Animals , Animals, Newborn , Connexin 43/metabolism , Connexins/metabolism , Gap Junctions/metabolism , Gap Junctions/pathology , Gene Expression Regulation, Developmental , Kidney Glomerulus/growth & development , Kidney Glomerulus/pathology , Kidney Medulla/growth & development , Kidney Medulla/metabolism , Kidney Medulla/pathology , Kidney Tubules/growth & development , Kidney Tubules/metabolism , Kidney Tubules/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/metabolism , Renin/metabolism , Signal Transduction , Gap Junction alpha-5 Protein , Gap Junction alpha-4 Protein
20.
Int J Mol Sci ; 22(10)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065436

ABSTRACT

High saturated fat diets have been associated with the development of obesity and hypertension, along with other pathologies related to the metabolic syndrome. In contrast, the Mediterranean diet, characterized by its high content of monounsaturated fatty acids, has been proposed as a dietary factor capable of positively regulating cardiovascular function. These effects have been linked to changes in the local renal renin angiotensin system (RAS) and the activity of the sympathetic nervous system. The main goal of this study was to analyze the role of two dietary fat sources on aminopeptidases activities involved in local kidney RAS. Male Wistar rats (six months old) were fed during 24 weeks with three different diets: the standard diet (S), the standard diet supplemented with virgin olive oil (20%) (VOO), or the standard diet enriched with butter (20%) plus cholesterol (0.1%) (Bch). Kidney samples were separated in medulla and cortex for aminopeptidase activities (AP) assay. Urine samples were collected for routine analysis by chemical tests. Aminopeptidase activities were determined by fluorometric methods in soluble (sol) and membrane-bound (mb) fractions of renal tissue, using arylamide derivatives as substrates. After the experimental period, the systolic blood pressure (SBP) values were similar in standard and VOO animals, and significantly lower than in the Bch group. At the same time, a significant increase in GluAP and IRAP activities were found in renal medulla of Bch animals. However, in VOO group the increase of GluAP activity in renal medulla was lower, while AspAP activity decreased in the renal cortex. Furthermore, the VOO diet also affected other aminopeptidase activities, such as TyrAP and pGluAP, related to the regulation of the sympathetic nervous system and the metabolic rate. These results support the beneficial effect of VOO in the regulation of SBP through changes in local AP activities of the kidney.


Subject(s)
Aminopeptidases/metabolism , Blood Pressure/drug effects , Kidney Cortex/drug effects , Kidney Medulla/drug effects , Olive Oil/pharmacology , Animals , Butter , Cholesterol/metabolism , Diet, Mediterranean , Dietary Fats/pharmacology , Hypertension/drug therapy , Hypertension/metabolism , Kidney Cortex/metabolism , Kidney Medulla/metabolism , Male , Obesity/drug therapy , Obesity/metabolism , Rats , Rats, Wistar , Renin-Angiotensin System/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL