Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 407
Filter
1.
Exp Eye Res ; 232: 109517, 2023 07.
Article in English | MEDLINE | ID: mdl-37211287

ABSTRACT

The cysteinyl leukotrienes (CysLTs) have important functions in the regulation of inflammation and cellular stress. Blocking the CysLT receptors (CysLTRs) with specific antagonists is beneficial against progression of retinopathies (e.g. diabetic retinopathy, wet AMD). However, the exact cellular localization of the CysLTRs and their endogenous ligands in the eye have not been elucidated in detail yet. It is also not known whether the expression patterns differ between humans and animal models. Therefore, the present study aimed to describe and compare the distribution of two important enzymes in CysLT biosynthesis, 5-lipoxygenase (5-LOX) and 5-lipoxygenase-activating protein (FLAP), and of CysLTR1 and CysLTR2 in healthy human, rat and mouse eyes. Human donor eyes (n = 10) and eyes from adult Sprague Dawley rats (n = 5) and CD1 mice (n = 8) of both sexes were collected. The eyes were fixed in 4% paraformaldehyde and cross-sections were investigated by immunofluorescence with specific antibodies against 5-LOX, FLAP (human tissue only), CysLTR1 and CysLTR2. Flat-mounts of the human choroid were prepared and processed similarly. Expression patterns were assessed and semiquantitatively evaluated using a confocal fluorescence microscope (LSM710, Zeiss). We observed so far unreported expression sites for CysLT system components in various ocular tissues. Overall, we detected expression of 5-LOX, CysLTR1 and CysLTR2 in the human, rat and mouse cornea, conjunctiva, iris, lens, ciliary body, retina and choroid. Importantly, expression profiles of CysLTR1 and CysLTR2 were highly similar between human and rodent eyes. FLAP was expressed in all human ocular tissues except the lens. Largely weak immunoreactivity of FLAP and 5-LOX was observed in a few, yet unidentified, cells of diverse ocular tissues, indicating low levels of CysLT biosynthesis in healthy eyes. CysLTR1 was predominantly detected in ocular epithelial cells, supporting the involvement of CysLTR1 in stress and immune responses. CysLTR2 was predominantly expressed in neuronal structures, suggesting neuromodulatory roles of CysLTR2 in the eye and revealing disparate functions of CysLTRs in ocular tissues. Taken together, we provide a comprehensive protein expression atlas of CysLT system components in the human and rodent eye. While the current study is purely descriptive and therefore does not allow significant functional conclusions yet, it represents an important basis for future studies in diseased ocular tissues in which distribution patterns or expression levels of the CysLT system might be altered. Furthermore, this is the first comprehensive study to elucidate expression patterns of CysLT system components in human and animal models that will help to identify and understand functions of the system as well as mechanisms of action of potential CysLTR ligands in the eye.


Subject(s)
Inflammation , Leukotrienes , Male , Adult , Female , Humans , Rats , Mice , Animals , Ligands , Rats, Sprague-Dawley , Leukotrienes/pharmacology
2.
Am J Respir Cell Mol Biol ; 63(1): 57-66, 2020 07.
Article in English | MEDLINE | ID: mdl-32182104

ABSTRACT

It is well known that the prevalence of asthma is higher in athletes, including Olympic athletes, than in the general population. In this study, we analyzed the mechanism of exercise-induced bronchoconstriction by using animal models of athlete asthma. Mice were made to exercise on a treadmill for a total duration of 1 week, 3 weeks, or 5 weeks. We analyzed airway responsiveness, BAL fluid, lung homogenates, and tissue histology for each period. In mice that were treated (i.e., the treatment model), treatments were administered from the fourth to the fifth week. We also collected induced sputum from human athletes with asthma and analyzed the supernatants. Airway responsiveness to methacholine was enhanced with repeated exercise stimulation, although the cell composition in BAL fluid did not change. Exercise induced hypertrophy of airway smooth muscle and subepithelial collagen deposition. Cysteinyl-leukotriene (Cys-LT) levels were significantly increased with exercise duration. Montelukast treatment significantly reduced airway hyperresponsiveness (AHR) and airway remodeling. Expression of PLA2G4 (phospholipase A2 group IV) and leukotriene C4 synthase in the airway epithelium was upregulated in the exercise model, and inhibition of PLA2 ameliorated AHR and airway remodeling, with associated lower levels of Cys-LTs. The levels of Cys-LTs in sputum from athletes did not differ between those with and without sputum eosinophilia. These data suggest that AHR and airway remodeling were caused by repeated and strenuous exercise. Cys-LTs from the airway epithelium, but not inflammatory cells, may play an important role in this mouse model.


Subject(s)
Airway Remodeling/physiology , Bronchoconstriction/physiology , Cysteine/metabolism , Group II Phospholipases A2/metabolism , Leukotrienes/metabolism , Physical Conditioning, Animal/physiology , Acetates/pharmacology , Airway Remodeling/drug effects , Animals , Asthma/drug therapy , Asthma/metabolism , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/metabolism , Bronchoconstriction/drug effects , Cyclopropanes , Female , Leukotrienes/pharmacology , Lung/drug effects , Lung/metabolism , Methacholine Chloride/pharmacology , Mice , Mice, Inbred BALB C , Quinolines/pharmacology , Respiratory Hypersensitivity/drug therapy , Respiratory Hypersensitivity/metabolism , Sulfides
3.
Gen Comp Endocrinol ; 262: 27-35, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29510153

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the superfamily of nuclear receptors. Three isoforms have been described: alpha (PPARα), delta (PPARδ), and gamma (PPARγ). PPARs heterodimerize with retinoid X receptors (RXRs: RXRα, RXRß and RXRγ). PPAR activity can be modulated by several ligands, including arachidonic acid (AA) metabolites. The aims of the study were to determine the effect of AA metabolites (prostaglandin [PG]E2, PGF2α, leukotriene [LT]B4, and LTC4) on mRNA (real-time PCR) and protein expression (Western blotting) of PPARα, PPARδ, and PPARγ, and on mRNA expression of RXRα, RXRß, and RXRγ, in bovine epithelial, stromal, and myometrial primary uterine cells and in bovine stromal cells with silenced PPAR genes (N = 10). All PPAR and RXR isoforms were expressed. Prostaglandins affected expression of PPARs only in stromal cells, whereas LTs modulated PPARγ mRNA expression in epithelial and myometrial primary cells. Blockade of signal transduction through PPARs prevented interactions between AA metabolites and PPARs and changed RXR expression comparing with primary stromal cells. In primary stromal uterine cells, mRNA expression of RXRs was higher than that of PPARs. In uterine stromal cells in which intracellular signaling through PPARs was blocked, RXRs seem to take over the role of PPARs and are pivotal for cell functions. This study revealed the reaction of PPARs and RXRs to agonists which naturally occur in the bovine uterus.


Subject(s)
Arachidonic Acid/metabolism , Gene Expression Regulation , PPAR gamma/genetics , Retinoid X Receptors/genetics , Uterus/cytology , Animals , Cattle , Dinoprost/pharmacology , Dinoprostone/pharmacology , Female , Gene Expression Regulation/drug effects , Leukotrienes/pharmacology , PPAR gamma/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retinoid X Receptors/metabolism , Stromal Cells/drug effects , Stromal Cells/metabolism
4.
Mol Pharmacol ; 91(5): 518-532, 2017 05.
Article in English | MEDLINE | ID: mdl-28254957

ABSTRACT

Pairing orphan G protein­coupled receptors (GPCRs) with their cognate endogenous ligands is expected to have a major impact on our understanding of GPCR biology. It follows that the reproducibility of orphan receptor ligand pairs should be of fundamental importance to guide meaningful investigations into the pharmacology and function of individual receptors. GPR17 is an orphan receptor characterized by some as a dualistic uracil nucleotide/cysteinyl leukotriene receptor and by others as inactive toward these stimuli altogether. Whereas regulation of central nervous system myelination by GPR17 is well established, verification of activity of its putative endogenous ligands has proven elusive so far. Herein we report that uracil nucleotides and cysteinyl leukotrienes do not activate human, mouse, or rat GPR17 in various cellular backgrounds, including primary cells, using eight distinct functional assay platforms based on labelfree pathway-unbiased biosensor technologies, as well as canonical second-messenger or biochemical assays. Appraisal of GPR17 activity can neither be accomplished with co-application of both ligand classes, nor with exogenous transfection of partner receptors (nucleotide P2Y12, cysteinyl-leukotriene CysLT1) to reconstitute the elusive pharmacology. Moreover, our study does not support the inhibition of GPR17 by the marketed antiplatelet drugs cangrelor and ticagrelor, previously suggested to antagonize GPR17. Whereas our data do not disagree with a role of GPR17 per se as an orchestrator of central nervous system functions, they challenge the utility of the proposed (ant)agonists as tools to imply direct contribution of GPR17 in complex biologic settings.


Subject(s)
Cysteine/pharmacology , Leukotrienes/pharmacology , Receptors, G-Protein-Coupled/metabolism , Uracil Nucleotides/pharmacology , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Animals , CHO Cells , Cell Membrane/drug effects , Cell Membrane/metabolism , Cricetinae , Cricetulus , HEK293 Cells , Humans , Ligands , Mice , Nerve Tissue Proteins/metabolism , Rats , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Ticagrelor
5.
Biochim Biophys Acta ; 1851(4): 383-96, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25240838

ABSTRACT

There is increasing evidence from various scientific groups that hepoxilins represent novel inflammatory mediators. In vitro studies have shown that the hepoxilins cause mobilization of intracellular calcium in human neutrophils, cause plasma leakage, and potently stimulate chemotaxis of human neutrophils. In vivo, the hepoxilin pathway is activated in conditions of inflammation, e.g. after pathogen infection, in inflamed conditions (psoriasis, arthritis), and hepoxilins promote inflammatory hyperalgesia and allodynia. Although much work has demonstrated an effect of hepoxilins on neutrophils, the hepoxilin pathway has been demonstrated in a variety of tissues, including the lung, brain, pituitary, pancreatic islets, skin, etc. A genetic defect linked to a deficiency in hepoxilin formation has been described and believed to be responsible for the scaly skin observed in ichthyosis. Despite their biological and chemical instability, the involvement of the hepoxilin pathway in pathology has been demonstrated in vitro and in vivo through either isolation of the hepoxilins themselves (or their metabolites) or implied through the use of stable hepoxilin analogs. These analogs have additionally shown efficacy in animal models of lung fibrosis, cancer, thrombosis and diabetes. Research on these compounds has merely scratched the surface, but results published to date have suggested that the hepoxilin pathway is a distinct and novel pathway leading to inflammation and hepoxilin antagonists may provide the means of controlling early aspects of the acute inflammatory phase. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".


Subject(s)
8,11,14-Eicosatrienoic Acid/metabolism , Inflammation Mediators/metabolism , Inflammation/metabolism , Leukotrienes/metabolism , Neoplasms/metabolism , Signal Transduction , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/chemistry , 8,11,14-Eicosatrienoic Acid/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Drug Design , Humans , Inflammation/physiopathology , Inflammation/prevention & control , Inflammation Mediators/chemistry , Leukotrienes/chemistry , Leukotrienes/pharmacology , Molecular Structure , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/physiopathology , Signal Transduction/drug effects , Structure-Activity Relationship
6.
Cells Tissues Organs ; 201(5): 319-32, 2016.
Article in English | MEDLINE | ID: mdl-27198524

ABSTRACT

Embryonic stem (ES) cells can differentiate into various kinds of cells, such as endothelial and hematopoietic cells. In addition, some evidence suggests that inflammatory mediators such as leukotrienes (LTs), which include the 5-lipoxygenase (LOX) family, can regulate endothelial cell differentiation. In the present study, the eicosanoid precursor arachidonic acid (AA) stimulated vasculogenesis of ES cells by increasing the number of fetal liver kinase-1+ vascular progenitor cells as well as vascular structures positive for platelet endothelial cell adhesion protein-1 and vascular endothelial cadherin. The stimulation of vasculogenesis and expression of the rate-limiting enzyme in the LT signaling pathway, 5-LOX-activating protein (FLAP), was blunted upon treatment with the FLAP inhibitors AM643 and REV5901. Vasculogenesis was significantly restored upon exogenous addition of LTs. Downstream of FLAP, the LTB4 receptor (BLT1) blocker U75302, the BLT2 receptor blocker LY255283 as well as the cysteinyl LT blocker BAY-u9773 inhibited vasculogenesis of ES cells. AA treatment of differentiating ES cells increased reactive oxygen species (ROS) generation, which was not affected upon either FLAP or cyclooxygenase-2 inhibition. Prevention of ROS generation by either the free radical scavengers vitamin E and N-(2-mercaptopropionyl)glycine or the NADPH oxidase inhibitor VAS2870 downregulated vasculogenesis of ES cells and blunted the provasculogenic effect of AA. In summary, our data demonstrate that proinflammatory AA stimulates vasculogenesis of ES cells via the LT pathway by mechanisms involving ROS generation.


Subject(s)
Arachidonic Acid/pharmacology , Leukotrienes/pharmacology , Mouse Embryonic Stem Cells/metabolism , Neovascularization, Physiologic/drug effects , Signal Transduction/drug effects , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology , 5-Lipoxygenase-Activating Protein Inhibitors/pharmacology , 5-Lipoxygenase-Activating Proteins/metabolism , Animals , Biosynthetic Pathways/drug effects , Embryoid Bodies/drug effects , Embryoid Bodies/metabolism , Mice , Mouse Embryonic Stem Cells/drug effects , Reactive Oxygen Species/metabolism , Receptors, Leukotriene/metabolism
7.
Arterioscler Thromb Vasc Biol ; 34(2): 321-30, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24285579

ABSTRACT

OBJECTIVE: Transgenic overexpression of the human cysteinyl leukotriene receptor 2 (CysLT2R) in murine endothelium exacerbates vascular permeability and ischemia/reperfusion injury. Here, we explore the underlying mechanisms of CysLT2R activation-mediated inflammation and delineate the relative contributions of endogenous murine CysLT2R and the transgene-derived receptor. APPROACH AND RESULTS: We created a novel mouse with only endothelial-expressed CysLT2R (endothelium-targeted overexpression mice [EC]/CysLT2R-knockout mice [KO]) by crossing EC with KO to dissect the role of endothelial CysLT2R in tissue injury. Surprisingly, we discovered that damage in EC/KO mice was not elevated (24% versus 47% EC) after ischemia/reperfusion. We examined vascular permeability and leukocyte recruitment/rolling responses in the cremaster vasculature after cysteinyl leukotriene (cysLT) stimulation. Mice possessing transgenic endothelial CysLT2R overexpression, whether EC or EC/KO, when stimulated with cysLTs, exhibited vascular hyperpermeability, declining leukocyte flux, and a transient increase in slow-rolling leukocyte fraction. Mice lacking endogenous CysLT2R (both KO [20 ± 3 cells/min] EC/KO [24 ± 3]) showed lower-rolling leukocyte flux versus wild-type (38 ± 6) and EC (35 ± 6) mice under unstimulated conditions. EC/KO mice differed from EC counterparts in that vascular hyperpermeability was not present in the absence of exogenous cysLTs. CONCLUSIONS: These results indicate that endothelial and nonendothelial CysLT2R niches have separate roles in mediating inflammatory responses. Endothelial receptor activation results in increased vascular permeability and leukocyte slow-rolling, facilitating leukocyte transmigration. Nonendothelial receptors, likely located on resident/circulating leukocytes, facilitate endothelial receptor activation and leukocyte transit. Activation of both receptor populations is required for injury exacerbation.


Subject(s)
Endothelial Cells/metabolism , Leukocytes/metabolism , Muscle, Skeletal/blood supply , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Receptors, Leukotriene/deficiency , Receptors, Leukotriene/metabolism , Animals , Capillary Permeability , Cysteine/pharmacology , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/immunology , Humans , Leukocyte Rolling , Leukocytes/drug effects , Leukocytes/immunology , Leukotrienes/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/immunology , Myocardial Reperfusion Injury/pathology , Myocardium/immunology , Myocardium/pathology , Receptors, Leukotriene/agonists , Receptors, Leukotriene/genetics , Time Factors
8.
Front Immunol ; 15: 1295150, 2024.
Article in English | MEDLINE | ID: mdl-38384456

ABSTRACT

Neutrophils play a primary role in protecting our body from pathogens. When confronted with invading bacteria, neutrophils begin to produce leukotriene B4, a potent chemoattractant that, in cooperation with the primary bacterial chemoattractant fMLP, stimulates the formation of swarms of neutrophils surrounding pathogens. Here we describe a complex redox regulation that either stimulates or inhibits fMLP-induced leukotriene synthesis in an experimental model of neutrophils interacting with Salmonella typhimurium. The scavenging of mitochondrial reactive oxygen species by mitochondria-targeted antioxidants MitoQ and SkQ1, as well as inhibition of their production by mitochondrial inhibitors, inhibit the synthesis of leukotrienes regardless of the cessation of oxidative phosphorylation. On the contrary, antioxidants N-acetylcysteine and sodium hydrosulfide promoting reductive shift in the reversible thiol-disulfide system stimulate the synthesis of leukotrienes. Diamide that oxidizes glutathione at high concentrations inhibits leukotriene synthesis, and the glutathione precursor S-adenosyl-L-methionine prevents this inhibition. Diamide-dependent inhibition is also prevented by diphenyleneiodonium, presumably through inhibition of NADPH oxidase and NADPH accumulation. Thus, during bacterial infection, maintaining the reduced state of glutathione in neutrophils plays a decisive role in the synthesis of leukotriene B4. Suppression of excess leukotriene synthesis is an effective strategy for treating various inflammatory pathologies. Our data suggest that the use of mitochondria-targeted antioxidants may be promising for this purpose, whereas known thiol-based antioxidants, such as N-acetylcysteine, may dangerously stimulate leukotriene synthesis by neutrophils during severe pathogenic infection.


Subject(s)
Leukotriene B4 , Neutrophils , Salmonella typhimurium , Acetylcysteine/pharmacology , Diamide/pharmacology , Leukotrienes/pharmacology , Chemotactic Factors , Oxidation-Reduction , Antioxidants/pharmacology , Glutathione/pharmacology , Sulfhydryl Compounds/pharmacology
9.
Ther Adv Respir Dis ; 18: 17534666241232284, 2024.
Article in English | MEDLINE | ID: mdl-38504551

ABSTRACT

Lung and hematopoietic stem cell transplantation are therapeutic modalities in chronic pulmonary and hematological diseases, respectively. One of the complications in these patients is the development of bronchiolitis obliterans syndrome (BOS). The efficacy and safety of available treatment strategies in BOS remain a challenge. A few mechanisms have been recognized for BOS in lung transplant and graft-versus-host disease (GVHD) patients involving the TH-1 and TH-2 cells, NF-kappa B, TGF-b, several cytokines and chemokines, and cysteinyl leukotrienes (CysLT). Montelukast is a highly selective CysLT receptor antagonist that has been demonstrated to exert anti-inflammatory and anti-fibrotic effects in abundant experiments. One area of interest for the use of montelukast is lung transplants or GVHD-associated BOS. Herein, we briefly review data regarding the mechanisms involved in BOS development and montelukast administration as a treatment modality for BOS, and finally, the possible relationship between CysLTs antagonism and BOS improvement will be discussed.


A review of the therapeutic potential and possible mechanism of Montelukast in the treatment of bronchiolitis obliterans syndrome following lung and hematopoietic stem cell transplantationLung and bone marrow transplantation are therapeutic modalities in chronic diseases of the lungs and the blood, respectively. One of the complications in these patients is the development of Bronchiolitis obliterans syndrome (BOS). The efficacy and safety of available treatment strategies in BOS remain a challenge. A few mechanisms for BOS in lung transplant and graft-versus-host disease (GVHD) patients involving many immune components have been recognized. Cysteinyl leukotrienes are products of plasma membrane phospholipids that increase smooth muscle contraction, microvascular permeability, and airway mucus secretion. Montelukast is a highly selective cysteinyl leukotriene receptor blocker demonstrated to exert anti-inflammatory and anti-fibrotic effects. One area of interest for the use of montelukast is in lung transplant- or GVHD-associated BOS. In this article, we briefly review data regarding the mechanisms involved in BOS development and montelukast administration as a treatment modality for BOS. Finally, the possible relationship between cysteinyl leukotriene inhibition and BOS improvement will be discussed.


Subject(s)
Acetates , Bronchiolitis Obliterans Syndrome , Bronchiolitis Obliterans , Cyclopropanes , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Lung Transplantation , Quinolines , Sulfides , Humans , Leukotriene Antagonists/adverse effects , Bronchiolitis Obliterans/diagnosis , Bronchiolitis Obliterans/drug therapy , Bronchiolitis Obliterans/etiology , Lung , Lung Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/drug therapy , Graft vs Host Disease/etiology , Leukotrienes/pharmacology , Leukotrienes/therapeutic use
10.
J Pharmacol Exp Ther ; 347(1): 38-46, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23908386

ABSTRACT

The orphan receptor GPR17 has been reported to be activated by UDP, UDP-sugars, and cysteinyl leukotrienes, and coupled to intracellular Ca(2+) mobilization and inhibition of cAMP accumulation, but other studies have reported either a different agonist profile or lack of agonist activity altogether. To determine if GPR17 is activated by uracil nucleotides and leukotrienes, the hemagglutinin-tagged receptor was expressed in five different cell lines and the signaling properties of the receptor were investigated. In C6, 1321N1, or Chinese hamster ovary (CHO) cells stably expressing GPR17, UDP, UDP-glucose, UDP-galactose, and cysteinyl leukotriene C4 (LTC4) all failed to promote inhibition of forskolin-stimulated cAMP accumulation, whereas both UDP and UDP-glucose promoted marked inhibition (>80%) of forskolin-stimulated cAMP accumulation in C6 and CHO cells expressing the P2Y14 receptor. Likewise, none of these compounds promoted accumulation of inositol phosphates in COS-7 or human embryonic kidney 293 cells transiently transfected with GPR17 alone or cotransfected with Gαq/i5, which links Gi-coupled receptors to the Gq-regulated phospholipase C (PLC) signaling pathway, or PLCε, which is activated by the Gα12/13 signaling pathway. Moreover, none of these compounds promoted internalization of GPR17 in 1321N1-GPR17 cells. Consistent with previous reports, coexpression experiments of GPR17 with cysteinyl leukotriene receptor 1 (CysLTR1) suggested that GPR17 acts as a negative regulator of CysLTR1. Taken together, these data suggest that UDP, UDP-glucose, UDP-galactose, and LTC4 are not the cognate ligands of GPR17.


Subject(s)
Cysteine/metabolism , Leukotrienes/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Receptors, Purinergic P2Y/metabolism , Uracil Nucleotides/metabolism , Animals , CHO Cells , COS Cells , Chlorocebus aethiops , Cricetinae , Cricetulus , Cysteine/pharmacology , HEK293 Cells , Humans , Leukotrienes/pharmacology , Uracil Nucleotides/pharmacology , Uridine Diphosphate Glucose/metabolism , Uridine Diphosphate Glucose/pharmacology
11.
FASEB J ; 26(3): 1100-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22131271

ABSTRACT

Leukotrienes have been implicated in the pathogenesis of degenerative diabetic retinopathy, with research focusing primarily on leukotriene B(4), with little attention devoted to the cysteinyl leukotrienes (cysLTs), which act through cysLT receptors (CysLT(1)R and CysLT(2)R). We demonstrate here the presence of CysLT(2)R in pericytes and endothelial cells of superficial retinal vasculature using an indirect assay by assessment of ß-galactosidase expression in CysLT(2)R-knockout (KO) mice. Retinal damage was induced in KO and wild-type (WT) mice using an established oxygen-induced retinopathy (OIR) model. CysLT(2)R expression following OIR was intensely up-regulated compared to sham-treated controls. Staining with Griffonia simplicifolia lectin revealed enhanced tissue damage (as assessed by vasoobliteration/vasoproliferation) in KO mice compared to WT controls, yet the opposite was true with respect to retinal edema. However, vascular endothelial growth factor receptor 1 (VEGFR1) transcripts were increased by OIR similarly with respect to genotype. Intravitreal application of exogenous cysLTs elicited greater vasculature leakage (assessed ex vivo) in eyes from WT mice compared to KO mice. While mRNA encoding enzymes for various components of the leukotriene cascade were detected in sham- and OIR-treated retinas, only prostaglandins and hydroxyeicosatetraenoic acids, but not leukotrienes, were detected in A23187-treated retina preparations. Together, these results implicate the CysLT(2)R in the progression of ischemic retinopathy.


Subject(s)
Disease Models, Animal , Papilledema/genetics , Receptors, Leukotriene/genetics , Retinal Diseases/genetics , Retinal Neovascularization/genetics , Albumins/metabolism , Animals , Calcimycin/pharmacology , Calcium Ionophores/pharmacology , Capillary Permeability/drug effects , Cysteine/pharmacology , Endothelium, Vascular/metabolism , Gene Expression , Hydroxyeicosatetraenoic Acids/metabolism , Immunohistochemistry , Leukotrienes/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Oxygen , Papilledema/metabolism , Pericytes/metabolism , Prostaglandins/metabolism , Receptors, Leukotriene/deficiency , Retina/drug effects , Retina/metabolism , Retinal Diseases/chemically induced , Retinal Diseases/metabolism , Retinal Neovascularization/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism
12.
J Allergy Clin Immunol ; 129(4): 1136-42, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22391114

ABSTRACT

BACKGROUND: Allergic asthma is characterized by reversible airway obstruction and bronchial hyperresponsiveness associated with T(H)2 cell-mediated inflammation. Cysteinyl leukotrienes (CysLTs) are potent lipid mediators involved in bronchoconstriction, mucus secretion, and cell trafficking in asthmatic patients. Recent data have implicated CysLTs in the establishment and amplification of T(H)2 responses in murine models, although the precise mechanisms are unresolved. OBJECTIVES: Preliminary microarray studies suggested that human T(H)2 cells might selectively express cysteinyl leukotriene receptor 1 (CYSLTR1) mRNA. We sought to establish whether human T(H)2 cells are indeed a CysLT target cell type. METHODS: We examined the expression of CYSLTR1 using real-time PCR in human T(H)1 and T(H)2 cells. We functionally assessed cysteinyl leukotriene receptor 1 protein (CysLT(1)) expression using calcium flux, cyclic AMP, and chemotaxis assays. RESULTS: We show that human T(H)2 cells selectively express CYSLTR1 mRNA at high levels compared with T(H)1 cells after in vitro differentiation from naive precursors. Human T(H)2 cells are selectively responsive to CysLTs in a calcium flux assay when compared with T(H)1 cells with a rank order of potency similar to that described for CysLT(1) (leukotriene [LT] D(4) > LTC(4) > LTE(4)). We also show that LTD(4)-induced signaling in T(H)2 cells is mediated through CysLT(1) coupled to G(α)q and G(α)i proteins, and both pathways can be completely inhibited by selective CysLT(1) antagonists. LTD(4) is also found to possess potent chemotactic activity for T(H)2 cells at low nanomolar concentrations. CONCLUSIONS: These findings suggest a novel mechanism of action for CysLTs in the pathogenesis of asthma and provide a potential explanation for the anti-inflammatory effects of CysLT(1) antagonists.


Subject(s)
Cysteine/pharmacology , Immunologic Factors/pharmacology , Leukotrienes/pharmacology , Receptors, Leukotriene/genetics , Th2 Cells/immunology , Calcium Signaling/immunology , Chemotaxis/drug effects , Chemotaxis/immunology , Cysteine/metabolism , GTP-Binding Protein alpha Subunits/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunologic Factors/metabolism , Leukotriene D4/pharmacology , Leukotrienes/metabolism , Protein Binding/drug effects , Receptors, Leukotriene/metabolism , Th2 Cells/drug effects , Th2 Cells/metabolism
13.
J Bone Miner Res ; 38(8): 1135-1153, 2023 08.
Article in English | MEDLINE | ID: mdl-37314430

ABSTRACT

Leukotrienes (LTs) are derived from arachidonic acid metabolism by the 5-lipoxygenase (5-LO) enzyme. The production of LTs is stimulated in the pathogenesis of rheumatoid arthritis (RA), osteoarthritis, and periodontitis, with a relevant contribution to bone resorption. However, its role in bone turnover, particularly the suppression of bone formation by modulating the function of osteoclasts and osteoblasts, remains unclear. We investigated the effects of LTs on bone metabolism and their impact on osteogenic differentiation and osteoclastogenesis using a 5-LO knockout (KO) mouse model. Results from micro-computed tomography (µCT) analysis of femur from 8-week-old 5-LO-deficient mice showed increased cortical bone and medullary region in females and males and decreased trabecular bone in females. In the vertebra, we observed increased marrow area in both females and males 5-LO KO and decreased trabecular bone only in females 5-LO KO. Immunohistochemistry (IHC) analysis showed higher levels of osteogenic markers tissue-nonspecific alkaline phosphatase (TNAP) and osteopontin (OPN) and lower expression of osteoclastogenic marker tartrate-resistant acid phosphatase (TRAP) in the femurs of 5-LO KO mice versus wild-type (WT). Alkaline phosphatase activity and mineralization assay results showed that the 5-LO absence enhances osteoblasts differentiation and mineralization but decreases the proliferation. Alkaline phosphatase (ALP), Bglap, and Sp7 gene expression were higher in 5-LO KO osteoblasts compared to WT cells. Eicosanoids production was higher in 5-LO KO osteoblasts except for thromboxane 2, which was lower in 5-LO-deficient mice. Proteomic analysis identified the downregulation of proteins related to adenosine triphosphate (ATP) metabolism in 5-LO KO osteoblasts, and the upregulation of transcription factors such as the adaptor-related protein complex 1 (AP-1 complex) in long bones from 5-LO KO mice leading to an increased bone formation pattern in 5-LO-deficient mice. We observed enormous differences in the morphology and function of osteoclasts with reduced bone resorption markers and impaired osteoclasts in 5-LO KO compared to WT osteoclasts. Altogether, these results demonstrate that the absence of 5-LO is related to the greater osteogenic profile. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Resorption , Osteogenesis , Male , Female , Mice , Animals , Alkaline Phosphatase/metabolism , X-Ray Microtomography , Proteomics , Osteoclasts/metabolism , Osteoblasts/metabolism , Bone Resorption/pathology , Cell Differentiation , Mice, Knockout , Leukotrienes/metabolism , Leukotrienes/pharmacology
14.
Am J Pathol ; 178(6): 2682-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21641390

ABSTRACT

Cysteinyl leukotrienes (cysLTs: LTC4, LTD4, and LTE4) are pro-inflammatory lipid molecules synthesized from arachidonic acid. They exert their actions on at least two cysLT receptors (CysLT1R and CysLT2R). Endothelial expression and activation of these receptors is linked to vasoactive responses and to the promotion of vascular permeability. Here we track the expression pattern of CysLT2R in a loss-of-function murine model (CysLT2R-LacZ) to neurons of the myenteric and submucosal plexus in the small intestine, colonic myenteric plexus, dorsal root ganglia, and nodose ganglion. Cysteinyl leukotriene (LTC4/D4) stimulation of colonic submucosal venules elicited a greater permeability response in wild-type mice. In a dextran sulfate sodium-induced colon inflammation model, the disease activity index and colonic edema (measured by wet:dry weights and submucosal thickness) were significantly reduced in knockout (KO) mice compared to controls. Tumor necrosis factor-α levels in colon tissue were significantly lower in KO mice; however, myeloperoxidase activity was similar in both the KO and wild-type groups. Finally, patch-clamp recordings of basal neuronal activity of colonic-projecting nociceptive neurons from dorsal root ganglia (T9-13) revealed significantly higher excitability in KO neurons compared to wild type. These results suggest that a lack of neuronal expression of CysLT2R in the murine colonic myenteric plexus attenuates colitis disease progression via a reduction in inflammation-associated tissue edema and increases neuronal sensitivity to nociceptive stimuli.


Subject(s)
Gastrointestinal Tract/metabolism , Receptors, Leukotriene/metabolism , Action Potentials/drug effects , Animals , Capillary Permeability/drug effects , Colitis/complications , Colitis/metabolism , Colitis/pathology , Colon/drug effects , Colon/innervation , Colon/pathology , Colon/physiopathology , Cysteine/pharmacology , Dextran Sulfate , Edema/complications , Edema/pathology , Edema/physiopathology , Extravasation of Diagnostic and Therapeutic Materials , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/metabolism , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Ganglia, Spinal/physiopathology , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/pathology , Gastrointestinal Tract/physiopathology , Intestinal Mucosa/blood supply , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Leukotrienes/pharmacology , Mice , Mice, Knockout , Receptors, Leukotriene/deficiency , Serum Albumin/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Venules/drug effects , Venules/metabolism , Venules/pathology , Venules/physiopathology
15.
Inflamm Res ; 61(7): 707-18, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22450700

ABSTRACT

OBJECTIVE: 15(S)-Hydroxyeicosatetraenoic acid [15(S)-HETE] and 15(S)-hydroperoxyeicosatetraenoic acid [15(S)-HPETE] are the products of arachidonic acid formed in the 15-lipoxygenase pathway. They have opposing effects on the inflammatory process. The present study was designed to examine the role of these metabolites on angiogenesis, which is critically associated with inflammatory conditions. METHODS: Chick chorio-allantoic membrane (CAM), rat aortic rings and human umbilical vein endothelial cells (HUVECs) in culture were used to study the effect of 15(S)-HETE and 15(S)-HPETE on angiogenesis. Biochemical markers of angiogenesis were analysed by ELISA. RESULTS: 15(S)-HETE increased vessel density in chick CAM, induced sprouting in rat aortic rings and increased endothelial cell-cell contact and formation of tubular network-like structures in HUVECs. Furthermore, it up-regulated the expression of CD31, E-selectin and vascular endothelial growth factor (VEGF) in HUVECs, indicating its pro-angiogenic effect. 15(S)-HPETE, on the other hand, decreased vessel density in chick CAM, down-regulated the expression of E-selectin (<35 %), VEGF (<90 %) and CD31 (<50 %) and did not produce sprouting in aortic rings, suggesting an anti-angiogenic property. 15(S)-HETE-mediated up-regulation of CD 31 and VEGF was reversed by treatment with 15(S)-HPETE. CONCLUSION: These results indicate the divergent effects of hydroxy and hydroperoxy products of 15-LOX on angiogenesis, highlighting the role of these products in the co-dependence of inflammation and angiogenesis.


Subject(s)
Hydroxyeicosatetraenoic Acids/pharmacology , Leukotrienes/pharmacology , Lipid Peroxides/pharmacology , Neovascularization, Physiologic/drug effects , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , Arachidonate 15-Lipoxygenase/metabolism , Cells, Cultured , Chickens , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/physiology , Humans , In Vitro Techniques , Rats , Rats, Sprague-Dawley
16.
Plast Reconstr Surg ; 150(1): 92e-104e, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35536768

ABSTRACT

BACKGROUND: Burns are severe injuries often associated with impaired wound healing. Impaired healing is caused by multiple factors, including dysregulated inflammatory responses at the wound site. Interestingly, montelukast, an antagonist for cysteinyl leukotrienes and U.S. Food and Drug Administration approved for treatment of asthma and allergy, was previously shown to enhance healing in excision wounds and to modulate local inflammation. METHODS: In this study, the authors examined the effect of montelukast on wound healing in a mouse model of scald burn injury. Burn wound tissues isolated from montelukast- and vehicle-treated mice at various times after burn injury were analyzed for wound areas ( n = 34 to 36), reepithelialization ( n = 14), inflammation ( n = 8 to 9), and immune cell infiltration ( n = 3 to 6) and proliferation ( n = 7 to 8). RESULTS: In contrast to previously described beneficial effects in excision wounds, this study shows that montelukast delays burn wound healing by impairing the proliferation of keratinocytes and endothelial cells. This occurs largely independently of inflammatory responses at the wound site, suggesting that montelukast impairs specifically the proliferative phase of wound healing in burns. Wound healing rates in mice in which leukotrienes are not produced were not affected by montelukast. CONCLUSION: Montelukast delays wound healing mainly by reducing the proliferation of local cells after burn injury. CLINICAL RELEVANCE STATEMENT: Although additional and clinical studies are necessary, our study suggests that burn patients who are on montelukast may exhibit delayed healing, necessitating extra observation.


Subject(s)
Burns , Endothelial Cells , Acetates , Animals , Burns/complications , Burns/drug therapy , Cyclopropanes , Inflammation , Leukotrienes/pharmacology , Leukotrienes/therapeutic use , Mice , Quinolines , Sulfides , Wound Healing/physiology
17.
Cancer Prev Res (Phila) ; 15(10): 637-640, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36193659

ABSTRACT

The role of chronic inflammation and arachidonic acid (AA) metabolism in tumor progression has been well characterized for variety of cancers, with compelling data for colon cancer. Several preclinical and clinical studies primarily focused on inhibiting the cyclooxygenase pathways using NSAIDs and aspirin for colon cancer prevention. However, emerging evidence clearly supports the pro-tumorigenic role of 5-lipoxygenase and its downstream leukotriene pathway within AA metabolism. As discussed in the current issue, targeting the leukotriene pathway by cysteinyl leukotriene receptor antagonist (LTRA) montelukast suppressed formation of aberrant crypt foci (ACF) and cell proliferation in colonic epithelium, suggesting the potential of LTRAs for colon cancer prevention. Although this is a short clinical chemoprevention trial to explore the effects of LTRAs against ACF development, it is a significant and timely study opening avenues to further explore the possibilities of using LTRAs in other inflammation-associated precancerous lesions as well. In this spotlight commentary, we highlight the implications of their data and the opportunities for developing LTRAs as potential candidates for colorectal cancer interception. See related article by Higurashi et al., p. 661.


Subject(s)
Aberrant Crypt Foci , Colonic Neoplasms , Aberrant Crypt Foci/pathology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arachidonate 5-Lipoxygenase/pharmacology , Arachidonic Acid/metabolism , Aspirin/pharmacology , Chemoprevention , Colon/pathology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/prevention & control , Humans , Inflammation/pathology , Leukotriene Antagonists/pharmacology , Leukotriene Antagonists/therapeutic use , Leukotrienes/pharmacology , Prostaglandin-Endoperoxide Synthases/pharmacology
18.
Cell Physiol Biochem ; 28(5): 793-804, 2011.
Article in English | MEDLINE | ID: mdl-22178932

ABSTRACT

Neural stem and progenitor cells serve as a reservoir for new neurons in the adult brain throughout lifetime. One of the critical steps determining the net production of new neurons is neural progenitor proliferation, which needs to be tightly controlled. Since inflammation has detrimental effects on neurogenesis and the 5-lipoxygenase/leukotriene pathway is involved in inflammatory processes, we investigated the effects of leukotrienes and montelukast, a small molecule inhibitor of the leukotriene receptors CysLT(1)R and GPR17, on neural stem and progenitor cell proliferation. We demonstrate expression of the leukotriene receptor GPR17 by neural progenitors and by neural stem cells. Stimulation with excess amounts of leukotrienes did not affect progenitor proliferation, whereas blockade of GPR17 with montelukast strongly elevated neural stem and progenitor proliferation, while maintaining their differentiation fate and potential. This effect was associated with increased ERK1/2 phosphorylation suggesting an involvement of the EGF signaling cascade. Based on our results, montelukast and the inhibition of the 5-LOX pathway might be potent candidates for future therapies employing neurogenesis to promote structural and functional improvement in neurodegeneration, neuropsychiatric disease and ageing.


Subject(s)
Leukotriene Antagonists/pharmacology , Neural Stem Cells/metabolism , Receptors, Leukotriene/metabolism , Acetates/pharmacology , Animals , Cell Proliferation/drug effects , Cyclopropanes , Female , Leukotrienes/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neural Stem Cells/drug effects , Neurogenesis , Phosphorylation , Quinolines/pharmacology , Rats , Receptors, G-Protein-Coupled/metabolism , Receptors, Leukotriene/chemistry , Signal Transduction , Sulfides
19.
Clin Exp Allergy ; 41(2): 204-17, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21121979

ABSTRACT

BACKGROUND: Cysteinyl leukotrienes (cysLTs) are suggested to be implicated in the process of airway remodelling in asthma. OBJECTIVE: We investigated the potential for cysLTs to modulate vascular endothelial growth factor (VEGF) expression, a growth factor involved in the angiogenesis of airway remodelling. METHODS: VEGF mRNA and protein were quantified by real-time PCR and ELISA, respectively. VEGF promoter activation was assessed using luciferase gene-tagged promoter constructs. RESULTS: We found that LTD(4) induction of VEGF in human monocytes and bronchial smooth muscle cells is cysLT1 dependent. Stimulation of HEK293 cells stably expressing cysLT1 or cysLT2 with cysLTs showed a concentration-dependent activation of the VEGF promoter and a time-dependent increase in VEGF mRNA and protein. For the cysLT1-mediated response, mutations of hypoxia-induced factor-1 (HIF-1) sites failed to reduce cysLT-induced VEGF promoter activation and 5' deletions showed that the proximal region containing one AP-1 and four specificity protein 1 (Sp1) sites was necessary. Pretreatment with inhibitors of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), but not p38, and an overexpression of dominant negative forms of c-Jun, c-Fos or Ras suggested the implication of mitogen-activated protein kinases and AP-1. Mutation of the AP-1-binding element failed to prevent VEGF transactivation suggesting that AP-1 might not act directly on the promoter. Moreover, inhibition of Sp1-dependent transcription by mithramycin completely inhibited VEGF promoter transactivation and VEGF mRNA expression by LTD(4) . Finally, mutations of Sp1 binding elements prevented VEGF promoter transactivation. CONCLUSION AND CLINICAL RELEVANCE: Our data indicate for the first time that cysLTs can transcriptionally activate VEGF production via cysLT1 receptors, with the involvement of JNK, ERK, the AP-1 complex and Sp1. These findings suggest that cysLTs may be important in the angiogenic process of airway remodelling and potentially provide a previously unknown benefit of using cysLT1 receptor antagonists in the prevention or treatment of airway remodelling in asthma.


Subject(s)
Bronchi/cytology , Cysteine , Leukotrienes/pharmacology , Monocytes/drug effects , Muscle, Smooth/cytology , Muscle, Smooth/drug effects , Vascular Endothelial Growth Factor A/biosynthesis , Cysteine/analysis , HEK293 Cells , Humans , Leukotrienes/chemistry , Monocytes/metabolism , Muscle, Smooth/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Leukotriene/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/immunology
20.
Anesthesiology ; 115(4): 804-11, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21934409

ABSTRACT

BACKGROUND: Sepsis impairs hypoxic pulmonary vasoconstriction (HPV) in patients and animal models, contributing to systemic hypoxemia. Concentrations of cysteinyl leukotrienes are increased in the bronchoalveolar lavage fluid of patients with sepsis, but the contribution of cysteinyl leukotrienes to the impairment of HPV is unknown. METHODS: Wild-type mice, mice deficient in leukotriene C(4) synthase, the enzyme responsible for cysteinyl leukotriene synthesis, and mice deficient in cysteinyl leukotriene receptor 1 were studied 18 h after challenge with either saline or endotoxin. HPV was measured by the increase in left pulmonary vascular resistance induced by left mainstem bronchus occlusion. Concentrations of cysteinyl leukotrienes were determined in the bronchoalveolar lavage fluid. RESULTS: In the bronchoalveolar lavage fluid of all three strains, cysteinyl leukotrienes were not detectable after saline challenge; whereas endotoxin challenge increased cysteinyl leukotriene concentrations in wild-type mice and mice deficient in cysteinyl leukotriene receptor 1, but not in mice deficient in leukotriene C(4) synthase. HPV did not differ among the three mouse strains after saline challenge (120 ± 26, 114 ± 16, and 115 ± 24%, respectively; mean ± SD). Endotoxin challenge markedly impaired HPV in wild-type mice (41 ± 20%) but only marginally in mice deficient in leukotriene C(4) synthase (96 ± 16%, P < 0.05 vs. wild-type mice), thereby preserving systemic oxygenation. Although endotoxin modestly decreased HPV in mice deficient in cysteinyl leukotriene receptor 1 (80 ± 29%, P < 0.05 vs. saline challenge), the magnitude of impairment was markedly less than in endotoxin-challenged wild-type mice. CONCLUSION: Cysteinyl leukotrienes importantly contribute to endotoxin-induced impairment of HPV in part via a cysteinyl leukotriene receptor 1-dependent mechanism.


Subject(s)
Endotoxemia/physiopathology , Hypoxia/physiopathology , Leukotrienes/pharmacology , Pulmonary Circulation/drug effects , Vasoconstriction/drug effects , Animals , Bronchi/drug effects , Bronchoalveolar Lavage Fluid/cytology , Glutathione Transferase/metabolism , Hemodynamics/drug effects , Hemodynamics/physiology , Leukocyte Count , Leukotrienes/metabolism , Mice , Mice, Inbred C57BL , Neutrophils/drug effects , Neutrophils/enzymology , Organ Size/drug effects , Oxygen Consumption/drug effects , Peroxidase/metabolism , Receptors, Leukotriene/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL