Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.296
Filter
1.
Plant Physiol ; 195(3): 2456-2471, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38498597

ABSTRACT

Synthetic biology provides emerging tools to produce valuable compounds in plant hosts as sustainable chemical production platforms. However, little is known about how supply and utilization of precursors is coordinated at the interface of plant primary and specialized metabolism, limiting our ability to efficiently produce high levels of target specialized metabolites in plants. L-Tyrosine is an aromatic amino acid precursor of diverse plant natural products including betalain pigments, which are used as the major natural food red colorants and more recently a visual marker for plant transformation. Here, we studied the impact of enhanced L-tyrosine supply on the production of betalain pigments by expressing arogenate dehydrogenase (TyrA) from table beet (Beta vulgaris, BvTyrAα), which has relaxed feedback inhibition by L-tyrosine. Unexpectedly, betalain levels were reduced when BvTyrAα was coexpressed with the betalain pathway genes in Nicotiana benthamiana leaves; L-tyrosine and 3,4-dihydroxy-L-phenylalanine (L-DOPA) levels were drastically elevated but not efficiently converted to betalains. An additional expression of L-DOPA 4,5-dioxygenase (DODA), but not CYP76AD1 or cyclo-DOPA 5-O-glucosyltransferase, together with BvTyrAα and the betalain pathway, drastically enhanced betalain production, indicating that DODA is a major rate-limiting step of betalain biosynthesis in this system. Learning from this initial test and further debottlenecking the DODA step maximized betalain yield to an equivalent or higher level than that in table beet. Our data suggest that balancing between enhanced supply ("push") and effective utilization ("pull") of precursor by alleviating a bottleneck step is critical in successful plant synthetic biology to produce high levels of target compounds.


Subject(s)
Beta vulgaris , Betalains , Nicotiana , Plants, Genetically Modified , Tyrosine , Betalains/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Tyrosine/metabolism , Beta vulgaris/genetics , Beta vulgaris/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Dioxygenases/metabolism , Dioxygenases/genetics , Gene Expression Regulation, Plant , Levodopa/metabolism
2.
BMC Microbiol ; 24(1): 260, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997651

ABSTRACT

Interspecies pathways in the gut microbiome have been shown to metabolize levodopa, the primary treatment for Parkinson's disease, and reduce its bioavailability. While the enzymatic reactions have been identified, the ability to establish the resulting macromolecules as biomarkers of microbial metabolism remains technically challenging. In this study, we leveraged an untargeted mass spectrometry-based approach to investigate volatile organic compounds (VOCs) produced during levodopa metabolism by Enterococcus faecalis, Clostridium sporogenes, and Eggerthella lenta. We cultured these organisms with and without their respective bioactive metabolites and detected levodopa-induced shifts in VOC profiles. We then utilized bioinformatics to identify significant differences in 2,6-dimethylpyrazine, 4,6-dimethylpyrimidine, and 4,5-dimethylpyrimidine associated with its biotransformation. Supplementing cultures with inhibitors of levodopa-metabolizing enzymes revealed specific modulation of levodopa-associated diazines, verifying their relationship to its metabolism. Furthermore, functional group analysis depicts strain-specific VOC profiles that reflect interspecies differences in metabolic activity that can be leveraged to assess microbiome functionality in individual patients. Collectively, this work identifies previously uncharacterized metabolites of microbe-mediated levodopa metabolism to determine potential indicators of this activity and further elucidate the metabolic capabilities of different gut bacteria.


Subject(s)
Enterococcus faecalis , Gastrointestinal Microbiome , Levodopa , Volatile Organic Compounds , Levodopa/metabolism , Volatile Organic Compounds/metabolism , Enterococcus faecalis/metabolism , Humans , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Clostridium/metabolism , Clostridium/classification , Mass Spectrometry , Biotransformation
3.
Nature ; 557(7704): 177-182, 2018 05.
Article in English | MEDLINE | ID: mdl-29720658

ABSTRACT

Loss of dopamine in Parkinson's disease is hypothesized to impede movement by inducing hypo- and hyperactivity in striatal spiny projection neurons (SPNs) of the direct (dSPNs) and indirect (iSPNs) pathways in the basal ganglia, respectively. The opposite imbalance might underlie hyperkinetic abnormalities, such as dyskinesia caused by treatment of Parkinson's disease with the dopamine precursor L-DOPA. Here we monitored thousands of SPNs in behaving mice, before and after dopamine depletion and during L-DOPA-induced dyskinesia. Normally, intermingled clusters of dSPNs and iSPNs coactivated before movement. Dopamine depletion unbalanced SPN activity rates and disrupted the movement-encoding iSPN clusters. Matching their clinical efficacy, L-DOPA or agonism of the D2 dopamine receptor reversed these abnormalities more effectively than agonism of the D1 dopamine receptor. The opposite pathophysiology arose in L-DOPA-induced dyskinesia, during which iSPNs showed hypoactivity and dSPNs showed unclustered hyperactivity. Therefore, both the spatiotemporal profiles and rates of SPN activity appear crucial to striatal function, and next-generation treatments for basal ganglia disorders should target both facets of striatal activity.


Subject(s)
Dopamine/metabolism , Dyskinesias/pathology , Dyskinesias/physiopathology , Neurons/metabolism , Parkinsonian Disorders/pathology , Parkinsonian Disorders/physiopathology , Animals , Calcium Signaling , Dopamine/deficiency , Dyskinesias/etiology , Dyskinesias/metabolism , Female , Levodopa/metabolism , Levodopa/pharmacology , Male , Mice , Models, Biological , Movement/drug effects , Neostriatum/metabolism , Neostriatum/pathology , Neostriatum/physiopathology , Parkinsonian Disorders/metabolism , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/agonists , Receptors, Dopamine D2/metabolism
4.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892114

ABSTRACT

This study presents the effects of treating polystyrene (PS) cell culture plastic with oxidoreductase enzyme laccase and the catechol substrates caffeic acid (CA), L-DOPA, and dopamine on the culturing of normal human epidermal melanocytes (NHEMs) and human embryonal carcinoma cells (NTERA-2). The laccase-substrate treatment improved PS hydrophilicity and roughness, increasing NHEM and NTERA-2 adherence, proliferation, and NHEM melanogenesis to a level comparable with conventional plasma treatment. Cell adherence dynamics and proliferation were evaluated. The NHEM endpoint function was quantified by measuring melanin content. PS surfaces treated with laccase and its substrates demonstrated the forming of polymer-like structures. The surface texture roughness gradient and the peak curvature were higher on PS treated with a combination of laccase and substrates than laccase alone. The number of adherent NHEM and NTERA-2 was significantly higher than on the untreated surface. The proliferation of NHEM and NTERA-2 correspondingly increased on treated surfaces. NHEM melanin content was enhanced 6-10-fold on treated surfaces. In summary, laccase- and laccase-substrate-modified PS possess improved PS surface chemistry/hydrophilicity and altered roughness compared to untreated and plasma-treated surfaces, facilitating cellular adherence, subsequent proliferation, and exertion of the melanotic phenotype. The presented technology is easy to apply and creates a promising custom-made, substrate-based, cell-type-specific platform for both 2D and 3D cell culture.


Subject(s)
Caffeic Acids , Cell Proliferation , Dopamine , Laccase , Melanins , Melanocytes , Polystyrenes , Humans , Laccase/metabolism , Melanocytes/metabolism , Melanocytes/drug effects , Cell Proliferation/drug effects , Polystyrenes/chemistry , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Dopamine/metabolism , Melanins/metabolism , Cell Adhesion/drug effects , Levodopa/pharmacology , Levodopa/metabolism , Levodopa/chemistry , Surface Properties , Cell Line, Tumor , Embryonal Carcinoma Stem Cells/metabolism , Embryonal Carcinoma Stem Cells/drug effects
5.
Prep Biochem Biotechnol ; 54(8): 1098-1105, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38445841

ABSTRACT

Tyrosinase, an enzyme involved in browning reactions in plants/crops exposed to mechanical injury, was isolated from the pulp of some different locally available bananas (M. cavendish, M. acuminata, and M. paradisiaca). Tyrosinase from the pulps was extracted, purified, immobilized, and characterized. Thereafter, the potentials of the immobilized tyrosinase in the possible production of l-3,4-dihydroxyphenylalanine (L-DOPA) in an improvised batch reactor was exploited using tyrosine and ascorbate as the substrates. L-DOPA production was monitored via thin-layer chromatography and spectrophotometry (Arnow's method). L-DOPA is a drug that is used in the treatment of Parkinson's disease. Hence, this study exploited a non-chemical route for its synthesis using the tyrosinase obtained from the banana pulps. The purified tyrosinase had an optimum pH and temperature of 6.5 and 7.0, respectively. The molecular weight of the purified tyrosinase was 45 kDa. Quercetin and resorcinol both competitively inhibited the purified tyrosinase from the three cultivars. Immobilized M. cavendish tyrosinase produced the highest concentration (0.60 mM) of L-DOPA after 8 h in an improvised batch reactor. The tyrosinase in the banana pulps serves as a cheap and readily available green route for the possible production of L-DOPA.


Subject(s)
Enzymes, Immobilized , Levodopa , Monophenol Monooxygenase , Musa , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/chemistry , Monophenol Monooxygenase/isolation & purification , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/isolation & purification , Musa/chemistry , Levodopa/metabolism , Levodopa/biosynthesis , Levodopa/isolation & purification , Hydrogen-Ion Concentration , Temperature
6.
J Proteome Res ; 22(6): 1959-1968, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37146082

ABSTRACT

Post-translational modifications (PTMs) alter the function and fate of proteins and cells in almost every conceivable way. Protein modifications can occur as a result of specific regulating actions of enzymes, such as tyrosine kinases phosphorylating tyrosine residues or by nonenzymatic reactions, such as oxidation related to oxidative stress and diseases. While many studies have addressed the multisite, dynamic, and network-like properties of PTMs, only little is known of the interplay of the same site modifications. In this work, we studied the enzymatic phosphorylation of oxidized tyrosine (l-DOPA) residues using synthetic insulin receptor peptides, in which tyrosine residues were replaced with l-DOPA. The phosphorylated peptides were identified by liquid chromatography-high-resolution mass spectrometry and the site of phosphorylation by tandem mass spectrometry. The results clearly show that the oxidized tyrosine residues are phosphorylated, displaying a specific immonium ion peak in the MS2 spectra. Furthermore, we detected this modification in our reanalysis (MassIVE ID: MSV000090106) of published bottom-up phosphoproteomics data. The modification, where both oxidation and phosphorylation take place at the same amino acid, has not yet been published in PTM databases. Our data indicate that there can be multiple PTMs that do not exclude each other at the same modification site.


Subject(s)
Levodopa , Tyrosine , Phosphorylation , Tyrosine/metabolism , Levodopa/metabolism , Peptides/chemistry , Tandem Mass Spectrometry/methods , Protein Processing, Post-Translational
7.
Yeast ; 40(5-6): 214-230, 2023 May.
Article in English | MEDLINE | ID: mdl-37078622

ABSTRACT

L -Tyrosine derivatives are widely applied in the pharmaceutical, food, and chemical industries. Their production is mainly confined to chemical synthesis and plant extract. Microorganisms, as cell factories, exhibit promising advantages for valuable chemical production to fulfill the increase in the demand of global markets. Yeast has been used to produce natural products owing to its robustness and genetic maneuverability. Focusing on the progress of yeast cell factories for the production of L -tyrosine derivatives, we summarized the emerging metabolic engineering approaches in building L -tyrosoine-overproducing yeast and constructing cell factories of three typical chemicals and their derivatives: tyrosol, p-coumaric acid, and L -DOPA. Finally, the challenges and opportunities of L -tyrosine derivatives production in yeast cell factories were also discussed.


Subject(s)
Saccharomyces cerevisiae , Tyrosine , Tyrosine/genetics , Tyrosine/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Metabolic Engineering , Levodopa/genetics , Levodopa/metabolism
8.
Cell Mol Neurobiol ; 43(6): 2743-2759, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37074484

ABSTRACT

Parkinson's disease (PD) is one of the most common degenerative brain disorders caused by the loss of dopaminergic neurons in the substantia nigra (SN). Lewy bodies and -synuclein accumulation in the SN are hallmarks of the neuropathology of PD. Due to lifestyle changes and prolonged L-dopa administration, patients with PD frequently have vitamin deficiencies, especially folate, vitamin B6, and vitamin B12. These disorders augment circulating levels of Homocysteine with the development of hyperhomocysteinemia, which may contribute to the pathogenesis of PD. Therefore, this review aimed to ascertain if hyperhomocysteinemia may play a part in oxidative and inflammatory signaling pathways that contribute to PD development. Hyperhomocysteinemia is implicated in the pathogenesis of neurodegenerative disorders, including PD. Hyperhomocysteinemia triggers the development and progression of PD by different mechanisms, including oxidative stress, mitochondrial dysfunction, apoptosis, and endothelial dysfunction. Particularly, the progression of PD is linked with high inflammatory changes and systemic inflammatory disorders. Hyperhomocysteinemia induces immune activation and oxidative stress. In turn, activated immune response promotes the development and progression of hyperhomocysteinemia. Therefore, hyperhomocysteinemia-induced immunoinflammatory disorders and abnormal immune response may aggravate abnormal immunoinflammatory in PD, leading to more progression of PD severity. Also, inflammatory signaling pathways like nuclear factor kappa B (NF-κB) and nod-like receptor pyrin 3 (NLRP3) inflammasome and other signaling pathways are intricate in the pathogenesis of PD. In conclusion, hyperhomocysteinemia is involved in the development and progression of PD neuropathology either directly via induction degeneration of dopaminergic neurons or indirectly via activation of inflammatory signaling pathways.


Subject(s)
Hyperhomocysteinemia , Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , Hyperhomocysteinemia/pathology , Levodopa/metabolism , Levodopa/pharmacology , Substantia Nigra/metabolism , Neurodegenerative Diseases/metabolism , Dopaminergic Neurons/metabolism
9.
Proc Natl Acad Sci U S A ; 117(14): 7719-7728, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32213582

ABSTRACT

Chitin is the most abundant renewable nitrogenous material on earth and is accessible to humans in the form of crustacean shell waste. Such waste has been severely underutilized, resulting in both resource wastage and disposal issues. Upcycling chitin-containing waste into value-added products is an attractive solution. However, the direct conversion of crustacean shell waste-derived chitin into a wide spectrum of nitrogen-containing chemicals (NCCs) is challenging via conventional catalytic processes. To address this challenge, in this study, we developed an integrated biorefinery process to upgrade shell waste-derived chitin into two aromatic NCCs that currently cannot be synthesized from chitin via any chemical process (tyrosine and l-DOPA). The process involves a pretreatment of chitin-containing shell waste and an enzymatic/fermentative bioprocess using metabolically engineered Escherichia coli The pretreatment step achieved an almost 100% recovery and partial depolymerization of chitin from shrimp shell waste (SSW), thereby offering water-soluble chitin hydrolysates for the downstream microbial process under mild conditions. The engineered E. coli strains produced 0.91 g/L tyrosine or 0.41 g/L l-DOPA from 22.5 g/L unpurified SSW-derived chitin hydrolysates, demonstrating the feasibility of upcycling renewable chitin-containing waste into value-added NCCs via this integrated biorefinery, which bypassed the Haber-Bosch process in providing a nitrogen source.


Subject(s)
Chitin/chemistry , Nitrogen/chemistry , Waste Products/analysis , Acetylglucosamine/metabolism , Animals , Carbon/pharmacology , Chitosan/chemistry , Crustacea , Escherichia coli/genetics , Genetic Engineering , Glucose/metabolism , Hydrolysis , Levodopa/metabolism , Minerals/chemistry , Nitrogen/pharmacology , Polymerization , Tyrosine/metabolism
10.
J Basic Microbiol ; 63(6): 622-631, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36734183

ABSTRACT

Lincomycin is one of the most important antibiotics. However, transcriptional regulation network of secondary metabolism in Streptomyces lincolnensis, the lincomycin producer, remained obscure. AdpA from S. lincolnensis (namely AdpAlin ) has been proved to activate lincomycin biosynthesis. Here we found that both lincomycin and melanin took l-tyrosine as precursor, and AdpAlin activated melanin biosynthesis as well. Three tyrosinases, MelC2, MelD2, and MelE, and one tyrosine peroxygenase, LmbB2, participated in lincomycin and melanin biosynthesis in different ways. For melanin biosynthesis, MelC2 was the only key enzyme required. For lincomycin biosynthesis, MelD2 and LmbB2 were positive factors and were suggested to convert l-tyrosine to l-dihydroxyphenylalanine (l-DOPA). Otherwise, MelC2 and MelE were negative factors for lincomycin biosynthesis and they were supposed to oxidize l-DOPA to generate melanin and certain unknown metabolite, respectively. Based on in silico analysis combined with electrophoretic mobility shift assays (EMSAs), we proved that AdpAlin directly interacted with promoters of melC, melD, and melE by binding to putative AdpA-binding sites in vitro. Moreover, in vivo experiments revealed that AdpAlin positively regulated the transcription of melC and melE, but negatively regulated melD. In conclusion, AdpAlin was the switch of secondary metabolism in S. lincolnensis, and it modulated precursor flux of lincomycin and melanin biosynthesis by directly activating melC, melE, and lmbB1/lmbB2 or repressing melD.


Subject(s)
Lincomycin , Melanins , Melanins/metabolism , Secondary Metabolism , Levodopa/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Tyrosine/metabolism
11.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834195

ABSTRACT

L-DOPA, the precursor of catecholamines, exerts a pro-locomotor action in several vertebrate species, including newborn rats. Here, we tested the hypothesis that decreasing the degradation of monoamines can promote the pro-locomotor action of a low, subthreshold dose of L-DOPA in five-day-old rats. The activity of the degrading pathways involving monoamine oxidases or catechol-O-methyltransferase was impaired by injecting nialamide or tolcapone, respectively. At this early post-natal stage, the capacity of the drugs to trigger locomotion was investigated by monitoring the air-stepping activity expressed by the animals suspended in a harness above the ground. We show that nialamide (100 mg/kg) or tolcapone (100 mg/kg), without effect on their own promotes maximal expression of air-stepping sequences in the presence of a sub-effective dose of L-DOPA (25 mg/kg). Tissue measurements of monoamines (dopamine, noradrenaline, serotonin and some of their metabolites) in the cervical and lumbar spinal cord confirmed the regional efficacy of each inhibitor toward their respective enzyme. Our experiments support the idea that the raise of monoamines boost L-DOPA's locomotor action. Considering that both inhibitors differently altered the spinal monoamines levels in response to L-DOPA, our data also suggest that maximal locomotor response can be reached with different monoamines environment.


Subject(s)
Catechol O-Methyltransferase , Levodopa , Rats , Animals , Levodopa/pharmacology , Levodopa/metabolism , Tolcapone/pharmacology , Animals, Newborn , Nialamide , Locomotion
12.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37511603

ABSTRACT

Numerous in vitro and in vivo models of Parkinson's disease (PD) demonstrate that pituitary adenylate cyclase-activating polypeptide (PACAP) conveys its strong neuroprotective actions mainly via its specific PAC1 receptor (PAC1R) in models of PD. We recently described the decrease in PAC1R protein content in the basal ganglia of macaques in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD that was partially reversed by levodopa therapy. In this work, we tested whether these observations occur also in the rotenone model of PD in the rat. The rotarod test revealed motor skill deterioration upon rotenone administration, which was reversed by benserazide/levodopa (B/L) treatment. The sucrose preference test suggested increased depression level while the open field test showed increased anxiety in rats rendered parkinsonian, regardless of the received B/L therapy. Reduced dopaminergic cell count in the substantia nigra pars compacta (SNpc) diminished the dopaminergic fiber density in the caudate-putamen (CPu) and decreased the peptidergic cell count in the centrally projecting Edinger-Westphal nucleus (EWcp), supporting the efficacy of rotenone treatment. RNAscope in situ hybridization revealed decreased PACAP mRNA (Adcyap1) and PAC1R mRNA (Adcyap1r1) expression in the CPu, globus pallidus, dopaminergic SNpc and peptidergic EWcp of rotenone-treated rats, but no remarkable downregulation occurred in the insular cortex. In the entopeduncular nucleus, only the Adcyap1r1 mRNA was downregulated in parkinsonian animals. B/L therapy attenuated the downregulation of Adcyap1 in the CPu only. Our current results further support the evolutionarily conserved role of the PACAP/PAC1R system in neuroprotection and its recruitment in the development/progression of neurodegenerative states such as PD.


Subject(s)
Edinger-Westphal Nucleus , Parkinson Disease , Animals , Rats , Basal Ganglia/metabolism , Dopamine/metabolism , Down-Regulation , Edinger-Westphal Nucleus/metabolism , Levodopa/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Rotenone/metabolism , Substantia Nigra/metabolism
13.
Arch Toxicol ; 96(12): 3279-3290, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36104498

ABSTRACT

3,4-Methylenedioximethamphetamine (MDMA; "ecstasy") is a psychotropic drug with well-known neurotoxic effects mediated by hitherto not fully understood mechanisms. The Na+- and K+-activated adenosine 5'-triphosphatase (Na+/K+ ATPase), by maintaining the ion gradient across the cell membrane, regulates neuronal excitability. Thus, a perturbation of its function strongly impacts cell homeostasis, ultimately leading to neuronal dysfunction and death. Nevertheless, whether MDMA affects the Na+/K+ ATPase remains unknown. In this study, we used synaptosomes obtained from whole mouse brain to test the effects of MDMA, three of its major metabolites [α-methyldopamine, N-methyl-α-methyldopamine and 5-(glutathion-S-yl)-α-methyldopamine], serotonin (5-HT), dopamine, 3,4-dihydroxy-L-phenylalanine (L-Dopa) and 3,4-dihydroxyphenylacetic acid (DOPAC) on the Na+/K+ ATPase function. A concentration-dependent increase of Na+/K+ ATPase activity was observed in synaptosomes exposed to the tested compounds (concentrations ranging from 0.0625 to 200Ā ĀµM). These effects were independent of protein kinases A and C activities. Nevertheless, a rescue of the compounds' effects was observed in synaptosomes pre-incubated with the antioxidant N-acetylcysteine (1Ā mM), suggesting a role for reactive species-regulated pathways on the Na+/K+ ATPase effects. In agreement with this hypothesis, a similar increase in the pump activity was found in synaptosomes exposed to the chemical generator of superoxide radicals, phenazine methosulfate (1-250Ā ĀµM). This study demonstrates the ability of MDMA metabolites, monoamine neurotransmitters, L-Dopa and DOPAC to alter the Na+/K+ ATPase function. This could represent a yet unknown mechanism of action of MDMA and its metabolites in the brain.


Subject(s)
N-Methyl-3,4-methylenedioxyamphetamine , Animals , Mice , N-Methyl-3,4-methylenedioxyamphetamine/toxicity , Synaptosomes/metabolism , Serotonin/metabolism , 3,4-Dihydroxyphenylacetic Acid/metabolism , 3,4-Dihydroxyphenylacetic Acid/pharmacology , Dopamine/metabolism , Acetylcysteine/pharmacology , Antioxidants/pharmacology , Levodopa/metabolism , Levodopa/pharmacology , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/pharmacology , Superoxides/metabolism , Methylphenazonium Methosulfate/metabolism , Methylphenazonium Methosulfate/pharmacology , Brain , Neurotransmitter Agents/metabolism , Neurotransmitter Agents/pharmacology , Adenosine/metabolism , Protein Kinases/metabolism
14.
Can J Microbiol ; 68(7): 493-499, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35303412

ABSTRACT

Paraquat (1,10-dimethyl-4,4-bipyridinium dichloride; PQ) is a free-radical producing herbicide that affects cell membranes and can upset the environmental balance of microorganisms present in soil, such as Cryptococcus spp. This study aimed to evaluate the in vitro activity of PQ against Cryptococcus spp. in planktonic and biofilm forms, as well as the protective effect of antioxidant agents against the antifungal effect of PQ and the kinetics of melanin production in response to PQ. Susceptibility to PQ was evaluated by microdilution. Cryptococcus sp. strains exposed to PQ were grown in media with ascorbic acid (AA) and glutathione (GSH). Melanin production was assessed in the presence of l-3,4-dihydroxyphenylalanine (l-DOPA) + PQ. The minimum inhibitory concentration of PQ against Cryptococcus spp. ranged from 8 to 256 Āµg/mL. Furthermore, PQ reduced biofilm formation. AA and GSH restored the fungal growth of Cryptococcus spp. exposed to PQ. In addition, l-DOPA + PQ delayed melanin production by 24 and 48 h for C. deuterogattii and C. neoformans sensu lato, respectively, suggesting that PQ induces a fitness trade-off in melanin production. Taken together, our data suggest that the antifungal effect of PQ against Cryptococcus spp. possibly exerts selective pressures interfering with biofilm formation and melanin production by these yeasts.


Subject(s)
Cryptococcus gattii , Cryptococcus neoformans , Herbicides , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Cryptococcus gattii/metabolism , Cryptococcus neoformans/metabolism , Herbicides/metabolism , Herbicides/pharmacology , Levodopa/metabolism , Levodopa/pharmacology , Melanins/metabolism , Melanins/pharmacology , Microbial Sensitivity Tests , Paraquat/metabolism , Paraquat/pharmacology
15.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232359

ABSTRACT

Since the discovery of striatal neurons expressing dopamine-synthesizing enzymes, researchers have attempted to identify their phenotype and functional significance. In this study, it was shown that in transgenic mice expressing green fluorescent protein (GFP) under the tyrosine hydroxylase (TH) gene promoter, (i) there are striatal neurons expressing only TH, only aromatic L-amino acid decarboxylase (AADC), or both enzymes of dopamine synthesis; (ii) striatal neurons expressing dopamine-synthesizing enzymes are not dopaminergic since they lack a dopamine transporter; (iii) monoenzymatic neurons expressing individual complementary dopamine-synthesizing enzymes produce this neurotransmitter in cooperation; (iv) striatal nerve fibers containing only TH, only AADC, or both enzymes project into the lateral ventricles, providing delivery pathways for L-3,4-dihydroxyphenylalanine and dopamine to the cerebrospinal fluid; and (v) striatal GFP neurons express receptor genes for various signaling molecules, i.e., classical neurotransmitters, neuropeptides, and steroids, indicating fine regulation of these neurons. Based on our data, it is assumed that the synthesis of dopamine by striatal neurons is a compensatory response to the death of nigral dopaminergic neurons in Parkinson's disease, which opens broad prospects for the development of a fundamentally novel antiparkinsonian therapy.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Tyrosine 3-Monooxygenase , Animals , Corpus Striatum/metabolism , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Levodopa/metabolism , Mice , Neurons/metabolism , Phenotype , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
16.
Prep Biochem Biotechnol ; 52(3): 331-343, 2022.
Article in English | MEDLINE | ID: mdl-34283005

ABSTRACT

L-DOPA, a precursor of dopamine, is the drug of choice for Parkinson's disease, which persists due to decreased levels of dopamine in the brain. Present study emphasis the microbial production of L-DOPA rather than the biotransformation of L-DOPA by L-tyrosine. The production of L-DOPA by bacterial isolates had gained more acceptance due to its more straightforward extraction and downstream processes. Pseudomonas fluorescens was used to produce the L-DOPA in a bioreactor system under submerged condition. The design of experiment-based Taguchi orthogonal array method was adopted for the optimization of production. L-9 orthogonal array using the analysis of mean approach was used to study the effect of different factors viz NaCl, lactose, tryptone, and inducer on the microbial production of L-DOPA. The method mentioned above is less time consuming and does not require any harsh chemicals, proving it to be an eco-friendly process. After optimizing selected factors, i.e., NaCl (1.2 g/l), lactose (1.5 g/l), tryptone (4 g/l), and inducer (0.1 g/l), 16.9 % of enhancement in L-DOPA production with 66.6% of process cost saving was observed. The production of L-DOPA was increased from 3.426 Ā± 0.08 g/l to 4.123 Ā± 0.05 g/l after optimization. Subsequently, unstructured kinetic models were adopted to simulate the fermentation kinetics and understand the metabolic process. Fisher' F test and determination coefficients (R2) confirmed that the Velhurst-Pearl logistic equation, Luedeking-Piret equation, and modified Luedeking-Piret equation was best fitted with the biomass production, product formation, and substrate utilization, respectively.


Subject(s)
Antiparkinson Agents/metabolism , Levodopa/metabolism , Models, Biological , Prodrugs/metabolism , Pseudomonas fluorescens/metabolism , Biotransformation , Kinetics , Lactose/chemistry , Sodium Chloride/chemistry , Tyrosine/metabolism
17.
Molecules ; 27(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36557931

ABSTRACT

In this study, Mucuna pruriens extracts were used to verify their application as a natural-based raw material with anti-inflammatory function. A nitric oxide inhibition activity assay showed that M. pruriens extracted with hot water (MW), M. pruriens extracted with 70% ethanol (ME), and M. pruriens extracted with 70% acetone (MA) presented NO inhibition activity; among them, MW and ME demonstrated the best activity and were selected for Western blot analysis. After identifying the expression patterns of inflammation-related proteins, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), c-jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB), through Western blots, both MW and ME showed inhibition patterns. As a result of analyzing L-DOPA contained in M. pruriens through ultra-performance liquid chromatography (UPLC), high L-DOPA content was detected in MW, ME, and MA. Therefore, it can be concluded that M. pruriens extracts have the potential for use as an anti-inflammatory material.


Subject(s)
Mucuna , Animals , Mice , Mucuna/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Levodopa/metabolism , Anti-Inflammatory Agents/chemistry , Macrophages/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Cyclooxygenase 2/metabolism , RAW 264.7 Cells
18.
Biochemistry ; 60(32): 2492-2507, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34324302

ABSTRACT

Dioxygenase enzymes are essential protein catalysts for the breakdown of catecholic rings, structural components of plant woody tissue. This powerful chemistry is used in nature to make antibiotics and other bioactive materials or degrade plant material, but we have a limited understanding of the breadth and depth of substrate space for these potent catalysts. Here we report steady-state and pre-steady-state kinetic analysis of dopamine derivatives substituted at the 6-position as substrates of L-DOPA dioxygenase, and an analysis of that activity as a function of the electron-withdrawing nature of the substituent. Steady-state and pre-steady-state kinetic data demonstrate the dopamines are impaired in binding and catalysis with respect to the cosubstrate molecular oxygen, which likely afforded spectroscopic observation of an early reaction intermediate, the semiquinone of dopamine. The reaction pathway of dopamine in the pre-steady state is consistent with a nonproductive mode of binding of oxygen at the active site. Despite these limitations, L-DOPA dioxygenase is capable of binding all of the dopamine derivatives and catalyzing multiple turnovers of ring cleavage for dopamine, 6-bromodopamine, 6-carboxydopamine, and 6-cyanodopamine. 6-Nitrodopamine was a single-turnover substrate. The variety of substrates accepted by the enzyme is consistent with an interplay of factors, including the capacity of the active site to bind large, negatively charged groups at the 6-position and the overall oxidizability of each catecholamine, and is indicative of the utility of extradiol cleavage in semisynthetic and bioremediation applications.


Subject(s)
Dioxygenases/metabolism , Dopamine/analogs & derivatives , Levodopa/metabolism , Catalysis , Catalytic Domain , Catechols/chemistry , Catechols/metabolism , Cyclization , Dioxygenases/chemistry , Dopamine/chemical synthesis , Dopamine/metabolism , Kinetics , Levodopa/chemistry , Models, Molecular , Molecular Docking Simulation , Oxygenases/chemistry , Substrate Specificity
19.
Gene Ther ; 28(12): 760-770, 2021 12.
Article in English | MEDLINE | ID: mdl-33707771

ABSTRACT

L-Dopa-induced dyskinesia (LID) is associated with the upregulation of striatal ∆FosB in animal models and patients with Parkinson's disease (PD). A mechanistic role of ∆FosB is suspected because its transgenic overexpression leads to the early appearance of LID in rodents and primates. This study in rodents is aimed at exploring the therapeutic potential of striatal ∆FosB gene suppression to control LID in patients with PD. To determine the effect of reducing striatal ∆FosB expression, we used RNAi gene knockdown in a rat model of PD and assessed abnormal involuntary movements (AIMs) in response to L-Dopa. Rats with dopamine depletion received striatal injections of rAAV-∆FosB shRNA or a control virus before exposure to chronic L-Dopa treatment. The development of AIMs during the entire L-Dopa treatment period was markedly inhibited by ∆FosB gene knockdown and its associated molecular changes. The antiparkinsonian action of L-Dopa was unchanged by ∆FosB gene knockdown. These results suggest a major role for ∆FosB in the development of LID and support exploring strategies to reduce striatal ∆FosB levels in patients with PD.


Subject(s)
Dyskinesia, Drug-Induced , Levodopa , Animals , Antiparkinson Agents/adverse effects , Antiparkinson Agents/metabolism , Corpus Striatum/metabolism , Disease Models, Animal , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/genetics , Humans , Levodopa/adverse effects , Levodopa/metabolism , Oxidopamine , Rats
20.
Neurogenetics ; 22(4): 251-262, 2021 10.
Article in English | MEDLINE | ID: mdl-34213677

ABSTRACT

Monoamine neurotransmitter disorders present predominantly with neurologic features, including dystonic or dyskinetic cerebral palsy and movement disorders. Genetic conditions that lead to secondary defects in the synthesis, catabolism, transport, and metabolism of biogenic amines can lead to neurotransmitter abnormalities, which can present with similar features. Eleven patients with secondary neurotransmitter abnormalities were enrolled between 2011 and 2015. All patients underwent research-based whole exome and/or whole genome sequencing (WES/WGS). A trial of treatment with levodopa/carbidopa and 5-hydroxytryptophan was initiated. In six families with abnormal neurotransmitter profiles and neurological phenotypes, variants in known disease-causing genes (KCNJ6, SCN2A, CSTB in 2 siblings, NRNX1, KIF1A and PAK3) were identified, while one patient had a variant of uncertain significance in a candidate gene (DLG4) that may explain her phenotype. In 3 patients, no compelling candidate genes were identified. A trial of neurotransmitter replacement therapy led to improvement in motor and behavioral symptoms in all but two patients. The patient with KCNJ6 variant did not respond to L-dopa therapy, but rather experienced increased dyskinetic movements even at low dose of medication. The patient's symptoms harboring the NRNX1 deletion remained unaltered. This study demonstrates the utility of genome-wide sequencing in further understanding the etiology and pathophysiology of neurometabolic conditions, and the potential of secondary neurotransmitter deficiencies to serve as novel therapeutic targets. As there was a largely favorable response to therapy in our case series, a careful trial of neurotransmitter replacement therapy should be considered in patients with cerebrospinal fluid (CSF) monoamines below reference range.


Subject(s)
Biogenic Amines/metabolism , Levodopa/genetics , Neurotransmitter Agents/cerebrospinal fluid , p21-Activated Kinases/deficiency , Adolescent , Adult , Carbidopa/metabolism , Child , Child, Preschool , Drug Combinations , Female , Humans , Kinesins/metabolism , Levodopa/metabolism , Levodopa/therapeutic use , Male , Young Adult , p21-Activated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL