Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
FASEB J ; 38(4): e23480, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38354025

ABSTRACT

Accumulating evidence suggests that dysregulation of FOXO3a plays a significant role in the progression of various malignancies, including hepatocellular carcinoma (HCC). FOXO3a inactivation, driven by oncogenic stimuli, can lead to abnormal cell growth, suppression of apoptosis, and resistance to anticancer drugs. Therefore, FOXO3a emerges as a potential molecular target for the development of innovative treatments in the era of oncology. Linagliptin (LNGTN), a DPP-4 inhibitor known for its safe profile, has exhibited noteworthy anti-inflammatory and anti-oxidative properties in previous in vivo studies. Several potential molecular mechanisms have been proposed to explain these effects. However, the capacity of LNGTN to activate FOXO3a through AMPK activation has not been investigated. In our investigation, we examined the potential repurposing of LNGTN as a hepatoprotective agent against diethylnitrosamine (DENA) intoxication. Additionally, we assessed LNGTN's impact on apoptosis and autophagy. Following a 10-week administration of DENA, the liver underwent damage marked by inflammation and early neoplastic alterations. Our study presents the first experimental evidence demonstrating that LNGTN can reinstate the aberrantly regulated FOXO3a activity by elevating the nuclear fraction of FOXO3a in comparison to the cytosolic fraction, subsequent to AMPK activation. Moreover, noteworthy inactivation of NFκB induced by LNGTN was observed. These effects culminated in the initiation of apoptosis, the activation of autophagy, and the manifestation of anti-inflammatory, antiproliferative, and antiangiogenic outcomes. These effects were concomitant with improved liver function and microstructure. In conclusion, our findings open new avenues for the development of novel therapeutic strategies targeting the AMPK/FOXO3a signaling pathway in the management of chronic liver damage.


Subject(s)
Carcinoma, Hepatocellular , Dipeptidyl-Peptidase IV Inhibitors , Liver Neoplasms , Animals , Rats , Linagliptin/pharmacology , AMP-Activated Protein Kinases , Diethylnitrosamine/toxicity , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/chemically induced , Liver Neoplasms/drug therapy , Hypoglycemic Agents , Protease Inhibitors , Antiviral Agents , Anti-Inflammatory Agents
2.
Biochem Biophys Res Commun ; 703: 149611, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38354463

ABSTRACT

Uterine fibroid is the most common non-cancerous tumor with no satisfactory options for long-term pharmacological treatment. Fibroblast activation protein-α (FAP) is one of the critical enzymes that enhances the fibrosis in uterine fibroids. Through STITCH database mining, we found that dipeptidyl peptidase-4 inhibitors (DPP4i) have the potential to inhibit the activity of FAP. Both DPP4 and FAP belong to the dipeptidyl peptidase family and share a similar catalytic domain. Hence, ligands which have a binding affinity with DPP4 could also bind with FAP. Among the DPP4i, linagliptin exhibited the highest binding affinity (Dock score = -8.562 kcal/mol) with FAP. Our study uncovered that the differences in the S2 extensive-subsite residues between DPP4 and FAP could serve as a basis for designing selective inhibitors specifically targeting FAP. Furthermore, in a dynamic environment, linagliptin was able to destabilize the dimerization interface of FAP, resulting in potential inhibition of its biological activity. True to the in-silico results, linagliptin reduced the fibrotic process in estrogen and progesterone-induced fibrosis in rat uterus. Furthermore, linagliptin reduced the gene expression of transforming growth factor-ß (TGF-ß), a critical factor in collagen secretion and fibrotic process. Masson trichrome staining confirmed that the anti-fibrotic effects of linagliptin were due to its ability to reduce collagen deposition in rat uterus. Altogether, our research proposes that linagliptin has the potential to be repurposed for the treatment of uterine fibroids.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Leiomyoma , Rats , Animals , Female , Linagliptin/pharmacology , Linagliptin/therapeutic use , Transforming Growth Factor beta , Dipeptidyl Peptidase 4/metabolism , Drug Repositioning , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Fibrosis , Leiomyoma/drug therapy , Collagen , Transforming Growth Factors
3.
Biochem Biophys Res Commun ; 711: 149897, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38608433

ABSTRACT

PURPOSE: Dipeptidyl peptidase-4 (DPP-4) inhibitors are oral hypoglycemic drugs and are used for type II diabetes. Previous studies showed that DPP-4 expression is observed in several tumor types and DPP-4 inhibitors suppress the tumor progression on murine tumor models. In this study, we evaluated the role of DPP-4 and the antitumor effect of a DPP-4 inhibitor, linagliptin, on glioblastoma (GBM). METHODS: We analyzed DPP-4 expression in glioma patients by the public database. We also analyzed DPP-4 expression in GBM cells and the murine GBM model. Then, we evaluated the cell viability, cell proliferation, cell migration, and expression of some proteins on GBM cells with linagliptin. Furthermore, we evaluated the antitumor effect of linagliptin in the murine GBM model. RESULTS: The upregulation of DPP-4 expression were observed in human GBM tissue and murine GBM model. In addition, DPP-4 expression levels were found to positively correlate with the grade of glioma patients. Linagliptin suppressed cell viability, cell proliferation, and cell migration in GBM cells. Linagliptin changed the expression of phosphorylated NF-kB, cell cycle, and cell adhesion-related proteins. Furthermore, oral administration of linagliptin decreases the tumor progression in the murine GBM model. CONCLUSION: Inhibition of DPP-4 by linagliptin showed the antitumor effect on GBM cells and the murine GBM model. The antitumor effects of linagliptin is suggested to be based on the changes in the expression of several proteins related to cell cycle and cell adhesion via the regulation of phosphorylated NF-kB. This study suggested that DPP-4 inhibitors could be a new therapeutic strategy for GBM.


Subject(s)
Brain Neoplasms , Cell Movement , Cell Proliferation , Dipeptidyl Peptidase 4 , Dipeptidyl-Peptidase IV Inhibitors , Disease Progression , Glioblastoma , Linagliptin , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Linagliptin/pharmacology , Linagliptin/therapeutic use , Animals , Humans , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dipeptidyl Peptidase 4/metabolism , Mice , Cell Proliferation/drug effects , Cell Movement/drug effects , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Male , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
4.
Toxicol Appl Pharmacol ; 491: 117048, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39102946

ABSTRACT

Cisplatin (CDDP) often leads to kidney impairment, limiting its effectiveness in cancer treatment. The lack of mitophagy in proximal tubules exacerbates this issue. Hence, targeting SIRT-3 and PGC1-α shows promise in mitigating CDDP-induced kidney damage. The potential renoprotective effects of linagliptin, however, remain poorly understood. This study represents the first exploration of linagliptin's impact on CDDP-induced kidney impairment in rats, emphasizing its potential role in mitophagic pathways. The experiment involved four rat groups: Group (I) received saline only, Group (II) received a single intraperitoneal injection of CDDP at 6 mg/kg. Groups (III) and (IV) received linagliptin at 6 and 10 mg/kg p.o., respectively, seven days before CDDP administration, continuing for an additional four days. Various parameters, including renal function tests, oxidative stress, TNF-α, IL-1ß, IL-6, PGC-1α, FOXO-3a, p-ERK1, and the gene expression of SIRT-3 and P62 in renal tissue, were assessed. Linagliptin improved renal function, increased antioxidant enzyme activity, and decreased IL-1ß, TNF-α, and IL-6 expression. Additionally, linagliptin significantly upregulated PGC-1α and PINK-1/Parkin-2 expression while downregulating P62 expression. Moreover, linagliptin activated FOXO-3a and SIRT-3, suggesting a potential enhancement of mitophagy. Linagliptin demonstrated a positive impact on various factors related to kidney health in the context of CDDP-induced impairment. These findings suggest a potential role for linagliptin in improving cancer treatment outcomes. Clinical trials are warranted to further investigate and validate its efficacy in a clinical setting.


Subject(s)
Cisplatin , Linagliptin , Mitophagy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Ubiquitin-Protein Ligases , Animals , Linagliptin/pharmacology , Cisplatin/toxicity , Mitophagy/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Male , Rats , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Sirtuin 3/metabolism , Sirtuin 3/genetics , Protein Kinases/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Rats, Wistar , Antineoplastic Agents/toxicity , Oxidative Stress/drug effects , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Kidney Diseases/pathology , Sirtuins
5.
Mol Biol Rep ; 51(1): 608, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704766

ABSTRACT

BACKGROUND: Tacrolimus (TAC) is a frequently used immunosuppressive medication in organ transplantation. However, its nephrotoxic impact limits its long-term usage. This study aims to investigate the effect of linagliptin (Lina) on TAC-induced renal injury and its underlying mechanisms. METHODS AND RESULTS: Thirty-two Sprague Dawley rats were treated with TAC (1.5 mg/kg/day, subcutaneously) and/or Lina (5 mg/kg/day, orally) for 4 weeks. Histological examination was conducted, and serum and urinary biomarkers were measured to assess kidney function and integrity. Furthermore, ELISA, Western blot analysis and immunohistochemical assay were employed to determine signaling molecules of oxidative stress, profibrogenic, hypoxic, and apoptotic proteins. Tacrolimus caused renal dysfunction and histological deterioration evidenced by increased serum creatinine, blood urea nitrogen (BUN), urinary cystatin C, and decreased serum albumin as well as elevated tubular injury and interstitial fibrosis scores. Additionally, TAC significantly increased the expression of collagen type-1, alpha-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and transforming growth factor-beta1 (TGF-ß1) renal content. Moreover, TAC decreased the expression of nuclear factor erythroid-2-related factor2 (Nrf2), heme oxygenase 1 (HO-1), and mitochondrial superoxide dismutase (SOD2). In addition, TAC increased protein expression of hypoxia-inducible factor1-alpha (HIF-1α), connective tissue growth factor (CTGF), inducible nitric oxide synthase (iNOS), 8-hydroxy-2-deoxyguanosine (8-OHdG), as well as nitric oxide (NO), 4-hydroxynonenal, caspase-3 and Bax renal contents. Furthermore, TAC decreased Bcl-2 renal contents. The Lina administration markedly attenuated these alterations. CONCLUSION: Lina ameliorated TAC-induced kidney injury through modulation of oxidative stress, hypoxia, and apoptosis related proteins.


Subject(s)
Acute Kidney Injury , Kidney , Linagliptin , NF-E2-Related Factor 2 , Oxidative Stress , Animals , Male , Rats , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Connective Tissue Growth Factor/drug effects , Connective Tissue Growth Factor/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunosuppressive Agents/pharmacology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Linagliptin/pharmacology , NF-E2-Related Factor 2/drug effects , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Plasminogen Activator Inhibitor 1/drug effects , Plasminogen Activator Inhibitor 1/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Tacrolimus/pharmacology , Tacrolimus/toxicity , Heme Oxygenase-1/drug effects , Heme Oxygenase-1/metabolism
6.
Biol Pharm Bull ; 47(5): 1008-1020, 2024.
Article in English | MEDLINE | ID: mdl-38797693

ABSTRACT

The dipeptidyl peptidase-4 (DPP-4) inhibitors, a novel anti-diabetic medication family, are renoprotective in diabetes, but a comparable benefit in chronic non-diabetic kidney diseases is still under investigation. This study aimed to elucidate the molecular mechanisms of linagliptin's (Lina) protective role in a rat model of chronic kidney injury caused by tacrolimus (TAC) independent of blood glucose levels. Thirty-two adult male Sprague Dawley rats were equally randomized into four groups and treated daily for 28 d as follows: The control group; received olive oil (1 mL/kg/d, subcutaneously), group 2; received Lina (5 mg/kg/d, orally), group 3; received TAC (1.5 mg/kg/d, subcutaneously), group 4; received TAC plus Lina concomitantly in doses as the same previous groups. Blood and urine samples were collected to investigate renal function indices and tubular injury markers. Additionally, signaling molecules, epithelial-mesenchymal transition (EMT), and fibrotic-related proteins in kidney tissue were assessed by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis, immunohistochemical and histological examinations. Tacrolimus markedly induced renal injury and fibrosis as indicated by renal dysfunction, histological damage, and deposition of extracellular matrix (ECM) proteins. It also increased transforming growth factor ß1 (TGF-ß1), Smad4, p-extracellular signal-regulated kinase (ERK)1/2/ERK1/2, and p-P38/P38 mitogen-activated protein kinase (MAPK) protein levels. These alterations were markedly attenuated by the Lina administration. Moreover, Lina significantly inhibited EMT, evidenced by inhibiting Vimentin and α-smooth muscle actin (α-SMA) and elevating E-cadherin. Furthermore, Lina diminished hypoxia-related protein levels with a subsequent reduction in Snail and Twist expressions. We concluded that Lina may protect against TAC-induced interstitial fibrosis by modulating TGF-ß1 mediated EMT via Smad-dependent and independent signaling pathways.


Subject(s)
Epithelial-Mesenchymal Transition , Fibrosis , Linagliptin , Rats, Sprague-Dawley , Tacrolimus , Transforming Growth Factor beta1 , Animals , Linagliptin/pharmacology , Linagliptin/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Male , Tacrolimus/pharmacology , Transforming Growth Factor beta1/metabolism , Signal Transduction/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Rats , Smad Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Immunosuppressive Agents/pharmacology
7.
Cell Biochem Funct ; 42(2): e3898, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38088568

ABSTRACT

Type 1 diabetes mellitus (T1DM) is one of the main causes of ovarian atresia, but its molecular effect on the ovaries is not fully understood. Accumulating evidence suggests that T1DM causes excessive endoplasmic reticulum (ER) stress and insufficient adaptive unfolded protein response that triggers proapoptotic signaling pathways in ovarian tissue. In addition, problems such as amenorrhea and infertility, which are frequently seen in women with T1DM, continue despite the intensification of insulin therapy and improvement of metabolic control. Therefore new, and adjunctive treatments for women with T1DM need to be explored. We aimed to examine how the use of linagliptin, which has blood sugar-lowering effects and high antioxidant activity, together with insulin affects the expression levels of proteins and genes that play a role in ER stress in type 1 diabetic mouse ovaries. Eighty-four Balb/C 6-week-old female mice were randomly divided into seven groups: control, vehicle, diabetes + insulin, diabetes + linagliptin, diabetes + linagliptin + insulin, diabetes + TUDCA, and diabetes + TUDCA + insulin. TUDCA (an inhibitor of ER stress) groups are positive control groups created to compare linagliptin groups in terms of ER stress. Linagliptin and TUDCA were given by oral gavage and 1U insulin was administered subcutaneously for 2 weeks. A significant decrease was observed in the MDA and NOX1 levels and the number of atretic follicles in the ovaries of the diabetes + linagliptin + insulin group compared to the diabetes + insulin group. The use of linagliptin and insulin increased the expression of pro-survival XBP1s transmembrane protein and decreased the expression of proapoptotic ATF4, pJNK1/2, cleaved caspase 12, and cleaved caspase 3 in mouse ovaries. Our study provides new therapeutic evidence that linagliptin administered in addition to insulin induces ER stress mechanism-dependent survival in ovaries with type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Taurochenodeoxycholic Acid , Mice , Animals , Female , Humans , Linagliptin/pharmacology , Linagliptin/therapeutic use , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Ovary/metabolism , Unfolded Protein Response
8.
Clin Exp Pharmacol Physiol ; 51(5): e13854, 2024 05.
Article in English | MEDLINE | ID: mdl-38527859

ABSTRACT

Sotagliflozin is the first dual SGLT1/2 inhibitor antidiabetic drug approved by the US Food and Drug Administration for the management of heart failure. SGLT1/2 inhibition is observed to potentiate the secretion of the incretin hormone, glucagon-like peptide-1 (GLP-1). The current preclinical research sought to investigate the effect of sotagliflozin on the secretion of fat-regulating peptides such as GLP-1, glucagon and fibroblast growth factor 21 (FGF21) and their prospective association with sotagliflozin's potential beneficial effects on dyslipidaemia. During an oral fat tolerance test in mice, sotagliflozin substantially increased GLP-1 and insulin concentrations. Although sotagliflozin alone did not ameliorate postprandial lipemia, its combination with linagliptin (DPP-IV inhibitor) significantly improved lipid tolerance comparable to orlistat (lipase inhibitor). In a triton-induced hypertriglyceridemia model, sotagliflozin, along with other medications (fenofibrate, exenatide and linagliptin) reduced fat excursion; however, co-administration with linagliptin provided no extra advantage. Furthermore, sotagliflozin stimulated glucagon secretion in the alpha TC1.6 cells and healthy mice, which resulted in an increased circulating FGF21 and ß-hydroxybutyrate concentration. Finally, chronic treatment of sotagliflozin in high-fat diet (HFD)-fed obese mice resulted in reduced body weight gain, liver triglyceride, cholesterol, interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-α) levels compared with the placebo group. However, the addition of linagliptin did not provide any additional benefit. In conclusion, sotagliflozin was found to have an effect on GLP-1 and also stimulate the release of glucagon and FGF21, which are important for regulating fat metabolism. Therefore, sotagliflozin might represent a potential therapeutic approach for the treatment of diabetic dyslipidemia and steatohepatitis.


Subject(s)
Dyslipidemias , Fibroblast Growth Factors , Glucagon , Glycosides , Mice , Animals , Glucagon/metabolism , Glucagon-Like Peptide 1/metabolism , Linagliptin/pharmacology , Insulin/metabolism , Dyslipidemias/drug therapy , Blood Glucose/metabolism
9.
Oral Dis ; 30(7): 4195-4208, 2024 10.
Article in English | MEDLINE | ID: mdl-38376102

ABSTRACT

OBJECTIVES: Uncertainties remain regarding the effect of elevated glucose levels on lymphatic metastasis of cancer cells. Our study elucidated the mechanisms linking high glucose to lymphangiogenesis and lymphatic barrier-related factors and investigated the protective role of linagliptin against lymphatic barrier dysfunction. MATERIALS AND METHODS: A CAL-27-LEC co-culture system was established. Sodium fluorescein permeability assay observed lymphatic endothelial cell permeability. Western blotting and RT-qPCR detected protein and mRNA expression under different conditions, respectively. CCK-8, scratch wound healing, and transwell assays revealed cell migration and proliferation. Tube formation experiment tested capacity for endothelial tube formation. Immunohistochemical staining analyzed tissue sections from 43 oral cancer individuals with/without diabetes. RESULTS: In high-glucose co-culture system, we observed increased lymphatic barrier permeability and decreased expression of ZO-1 and occludin, two tight-junction proteins; conversely, the expression of PAR2, a high permeability-related protein, was increased. Following linagliptin treatment, the expression levels of VEGF-C, VEGFR-3, and PAR2 decreased, while those of ZO-1 and occludin increased. Considerably higher levels of LYVE-1 expression in individuals with diabetes than in those without diabetes. CONCLUSIONS: By ameliorating the high glucose-induced disruption of the lymphatic endothelial barrier, linagliptin may reduce lymphangiogenesis and exhibit an inhibitory effect on lymphatic metastasis in oral cancer patients with diabetes.


Subject(s)
Glucose , Linagliptin , Lymphangiogenesis , Mouth Neoplasms , Humans , Linagliptin/pharmacology , Linagliptin/therapeutic use , Lymphangiogenesis/drug effects , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/drug therapy , Glucose/metabolism , Coculture Techniques , Cell Movement/drug effects , Vascular Endothelial Growth Factor C/metabolism , Cell Proliferation/drug effects , Occludin/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Zonula Occludens-1 Protein/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , Cell Line, Tumor , Permeability/drug effects , Vesicular Transport Proteins/metabolism
10.
Int J Mol Sci ; 25(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474255

ABSTRACT

Linagliptin is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor that indirectly elevates the glucagon-like peptide-1 (GLP-1) level. The aim of the present study was to check whether linagliptin has an influence on neurotransmission in rat brain. Rats were acutely and chronically exposed to linagliptin (10 and 20 mg/kg, intraperitoneally (i.p.)). Twenty-four hours later, the striatum and hippocampus were selected for further studies. In neurochemical experiments, using high-performance liquid chromatography with electrochemical detection (HPLC-ED), the concentrations of three major neurotransmitters-dopamine, serotonin and noradrenaline-and their metabolites were measured. The analysis of mRNA expression of dopamine (D1 and D2), serotonin (5-HT-1 and 5-HT-2) and noradrenaline (α1 and α2a) receptors was also investigated using real-time quantitative reverse transcription polymerase chain reaction (RQ-PCR) in the same brain areas. Linagliptin has the ability to influence the dopaminergic system. In the striatum, the elevation of dopamine and its metabolites was observed after repeated administration of that linagliptin, and in the hippocampus, a reduction in dopamine metabolism was demonstrated. Acute linagliptin exposure increases the serotonin level in both areas, while after chronic linagliptin administration a tendency for the mRNA expression of serotoninergic receptors (5-HT1A and 5-HT2A) to increase was observed. A single instance of exposure to linagliptin significantly modified the noradrenaline level in the striatum and intensified noradrenaline turnover in the hippocampus. The recognition of the interactions in the brain between DPP-4 inhibitors and neurotransmitters and/or receptors is a crucial step for finding novel discoveries in the pharmacology of DPP-4 inhibitors and raises hope for further applications of DPP-4 inhibitors in clinical practices.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Linagliptin , Rats , Animals , Linagliptin/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Serotonin , Dopamine , Norepinephrine , Dipeptidyl Peptidase 4/metabolism , Hippocampus/metabolism , Neurotransmitter Agents , RNA, Messenger
11.
Int J Mol Sci ; 25(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39201570

ABSTRACT

Individuals suffering from diabetic polyneuropathy (DPN) experience debilitating symptoms such as pain, paranesthesia, and sensory disturbances, prompting a quest for effective treatments. Dipeptidyl-peptidase (DPP)-4 inhibitors, recognized for their potential in ameliorating DPN, have sparked interest, yet the precise mechanism underlying their neurotrophic impact on the peripheral nerve system (PNS) remains elusive. Our study delves into the neurotrophic effects of DPP-4 inhibitors, including Diprotin A, linagliptin, and sitagliptin, alongside pituitary adenylate cyclase-activating polypeptide (PACAP), Neuropeptide Y (NPY), and Stromal cell-derived factor (SDF)-1a-known DPP-4 substrates with neurotrophic properties. Utilizing primary culture dorsal root ganglia (DRG) neurons, we meticulously evaluated neurite outgrowth in response to these agents. Remarkably, all DPP-4 inhibitors and PACAP demonstrated a significant elongation of neurite length in DRG neurons (PACAP 0.1 µM: 2221 ± 466 µm, control: 1379 ± 420, p < 0.0001), underscoring their potential in nerve regeneration. Conversely, NPY and SDF-1a failed to induce neurite elongation, accentuating the unique neurotrophic properties of DPP-4 inhibition and PACAP. Our findings suggest that the upregulation of PACAP, facilitated by DPP-4 inhibition, plays a pivotal role in promoting neurite elongation within the PNS, presenting a promising avenue for the development of novel DPN therapies with enhanced neurodegenerative capabilities.


Subject(s)
Diabetic Neuropathies , Dipeptidyl-Peptidase IV Inhibitors , Ganglia, Spinal , Neuronal Outgrowth , Pituitary Adenylate Cyclase-Activating Polypeptide , Animals , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Neuronal Outgrowth/drug effects , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Mice , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Chemokine CXCL12/metabolism , Neurons/drug effects , Neurons/metabolism , Linagliptin/pharmacology , Dipeptidyl Peptidase 4/metabolism , Sitagliptin Phosphate/pharmacology , Cells, Cultured , Neurites/drug effects , Neurites/metabolism , Oligopeptides
12.
Biochem Biophys Res Commun ; 635: 84-91, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36265286

ABSTRACT

Natriuresis is closely linked to glomerular hemodynamics in diabetic kidney disease (DKD), and is known to be influenced by inhibition of sodium-glucose cotransporter 2 (SGLT2) or dipeptidyl peptidase-4 (DPP-4). In the present study, we investigated whether dual inhibition of SGLT2 and DPP-4 exerts an additive effect on promoting natriuresis and how it ameliorates glomerular hemodynamic abnormalities via the natriuretic effect in DKD. Eight-week-old male KK/Ta-Ins2Akita (KK/Ta-Akita) mice which develop progressive DKD were orally once-daily given either SGLT2 inhibitor empagliflozin (30 mg/kg) alone, DPP-4 inhibitor linagliptin (5 mg/kg) alone or a combination of empagliflozin (30 mg/kg) plus linagliptin (5 mg/kg) for 6 weeks. In vehicle-treated control KK/Ta-Akita mouse group, markedly enhanced glomerular albumin filtration and glomerular filtration rate (GFR) were observed. These renal alterations were dramatically attenuated in KK/Ta-Akita mouse group treated with a combination of empagliflozin plus linagliptin. Notably, the combination therapy provided greater reduction in glomerular albumin filtration and GFR along with higher urinary excretion of sodium and a potential afferent arteriolar vasoconstrictor adenosine than the empagliflozin monotherapy. Significant reduction in urinary excretion levels of a potential afferent arteriolar vasodilator prostaglandin E2 (PGE2) relative to the baseline values was observed after the combination therapy but not the monotherapy. These results suggest that dual inhibition of SGLT2 and DPP-4 highly promotes a distal tubular sodium delivery and thereby contributes to the appropriate modulation of preglomerular arteriolar tone and intraglomerular pressure via an increase in adenosine release and a reduction in PGE2 secretion from macula densa in DKD.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Linagliptin , Animals , Male , Mice , Adenosine , Albumins , Dinoprostone , Hemodynamics , Insulin , Linagliptin/pharmacology , Linagliptin/therapeutic use , Natriuresis , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use
13.
Toxicol Appl Pharmacol ; 438: 115906, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35122774

ABSTRACT

Ulcerative colitis is a chronic inflammatory disease, profoundly affecting the patient's quality of life and is associated with various complications. Linagliptin, a potent DPP- IV inhibitor, shows favorable anti-inflammatory effects in several animal model pathologies. To this end, the present study aimed to investigate the anti-inflammatory effect of linagliptin in a rat model of acetic acid-induced colitis. Moreover, the molecular mechanisms behind this effect were addressed. Accordingly, colitis was established by the administration of a 2 ml 6% acetic acid intrarectally and treatment with linagliptin (5 mg/kg) started 24 h after colitis induction and continued for 7 days. On one hand, the DPP-IV inhibitor alleviated the severity of colitis as evidenced by a decrease of disease activity index (DAI) scores, colon weight/length ratio, macroscopic damage, and histopathological deteriorations. Additionally, linagliptin diminished colon inflammation via attenuation of TNF-α, IL-6, and NF-κB p65 besides restoration of anti-inflammatory cytokine IL-10. On the other hand, linagliptin increased levels of p-AMPK, SIRT1, and PGC-1α while abolishing the increment in p-JAK2 and p-STAT3. In parallel linagliptin reduced mTOR levels and upregulated expression levels of SHP and MKP-1 which is postulated to mediate AMPK-driven JAK2/STAT3 inhibition. Based on these findings, linagliptin showed promising anti-inflammatory activity against acetic acid-induced colitis that is mainly attributed to the activation of the AMPK-SIRT1-PGC-1α pathway as well as suppression of the JAK2/STAT3 signaling pathway that might be partly mediated through AMPK activation.


Subject(s)
Acetic Acid/pharmacology , Colitis/chemically induced , Colitis/drug therapy , Janus Kinase 2/metabolism , Linagliptin/pharmacology , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Colitis/metabolism , Cytokines/metabolism , Disease Models, Animal , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats , Sirtuin 1/metabolism
14.
Mol Cell Biochem ; 477(4): 995-1007, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34988855

ABSTRACT

Systemic sclerosis (SSc) is a connective tissue disease that often causes pulmonary fibrosis. Dipeptidyl peptidase 4 (DPP4) inhibitor has shown anti-fibrotic properties in various fibrotic diseases. However, only two studies have reported its anti-fibrosis effects in pulmonary fibrosis, and the mechanism is not completely clear. In the present study, we further investigated the protective effects of linagliptin, a highly specific DPP4 inhibitor, on pulmonary fibrosis in SSc mouse model and the potential mechanisms. The results showed that linagliptin ameliorated pulmonary fibrosis in SSc mouse model, as evidenced by improved pathological changes of lung and body weight loss induced by BLM. Linagliptin also reduced BLM-induced oxidative stress, inflammation in lung in vivo. We revealed that linagliptin attenuated BLM-induced endothelial-to-mesenchymal transition (EndMT) in vitro and in vivo. BLM-induced enhanced migration ability of endothelial cells was also alleviated by linagliptin. Moreover, we confirmed that the Akt/mammalian target of rapamycin pathway was involved in BLM-induced EndMT in vivo, which was suppressed by linagliptin. In summary, we further confirmed the therapeutic effects of linagliptin on pulmonary fibrosis in SSc mouse model, which is based on its inhibitory effects on EndMT, oxidative stress, and inflammation.


Subject(s)
Bleomycin/adverse effects , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Endothelial Cells/metabolism , Linagliptin/pharmacology , Pulmonary Fibrosis/drug therapy , Scleroderma, Systemic/drug therapy , Animals , Bleomycin/pharmacology , Disease Models, Animal , Female , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Scleroderma, Systemic/chemically induced , Scleroderma, Systemic/metabolism
15.
Int J Mol Sci ; 23(6)2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35328486

ABSTRACT

The pathophysiology of sepsis involves inflammation and hypercoagulability, which lead to microvascular thrombosis and compromised organ perfusion. Dipeptidyl peptidase (DPP)-4 inhibitors, e.g., linagliptin, are commonly used anti-diabetic drugs known to exert anti-inflammatory effects. However, whether these drugs confer an anti-thrombotic effect that preserves organ perfusion in sepsis remains to be investigated. In the present study, human umbilical vein endothelial cells (HUVECs) were treated with linagliptin to examine its anti-inflammatory and anti-thrombotic effects under tumor necrosis factor (TNF)-α treatment. To validate findings from in vitro experiments and provide in vivo evidence for the identified mechanism, a mouse model of lipopolysaccharide (LPS)-induced systemic inflammatory response syndrome was used, and pulmonary microcirculatory thrombosis was measured. In TNF-α-treated HUVECs and LPS-injected mice, linagliptin suppressed expressions of interleukin-1ß (IL-1ß) and intercellular adhesion molecule 1 (ICAM-1) via a nuclear factor-κB (NF-κB)-dependent pathway. Linagliptin attenuated tissue factor expression via the Akt/endothelial nitric oxide synthase pathway. In LPS-injected mice, linagliptin pretreatment significantly reduced thrombosis in the pulmonary microcirculation. These anti-inflammatory and anti-thrombotic effects were independent of blood glucose level. Together the present results suggest that linagliptin exerts protective effects against endothelial inflammation and microvascular thrombosis in a mouse model of sepsis.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Sepsis , Thrombosis , Animals , Dipeptidyl Peptidase 4 , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Humans , Hypoglycemic Agents/pharmacology , Inflammation/drug therapy , Linagliptin/pharmacology , Linagliptin/therapeutic use , Lipopolysaccharides/pharmacology , Mice , Microcirculation , Sepsis/complications , Sepsis/drug therapy , Thrombosis/drug therapy , Thrombosis/etiology , Tumor Necrosis Factor-alpha/pharmacology
16.
Molecules ; 27(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35458676

ABSTRACT

(1) Background: Recent data indicate that receptors for GLP-1 peptide are involved in the activity of the mesolimbic system. Thus, the purpose of the present study was to examine the effect of the selective dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin, on morphine dependence in mice. (2) Methods: Morphine dependence in mice was obtained by administration of increasing doses of morphine for eight consecutive days, twice a day. On the 9th day of the experiment, the naloxone-induced (2 mg/kg, ip) morphine withdrawal signs (jumping) were assessed. Moreover, behavioral effects of short-term (60 h after morphine discontinuation) and long-term (14 days after morphine discontinuation) morphine withdrawal were observed. In terms of behavioral effects, the depressive effect in the forced swim test and anxiety in the elevated plus maze test were investigated. Locomotor activity of mice was also studied. (3) Results: The administration of linagliptin (10 and 20 mg/kg, ip) for 8 consecutive days before morphine injections significantly diminished the number of naloxone-induced morphine withdrawal signs (jumping) in mice. In addition, the cessation of morphine administration induced depressive behavior in mice which were observed during short- and long-term morphine withdrawal. Linagliptin administered during morphine withdrawal significantly reduced the depressive behavior in studied mice. Furthermore, the short-term morphine withdrawal evoked anxiety which also was reduced by linagliptin in mice. (4) Conclusions: The present study reveals that GLP-1 receptors are involved in morphine dependence. What is more, linagliptin might be a valuable drug in attenuating the physical symptoms of morphine dependence. It might be also a useful drug in reducing emotional disturbances which may develop during the morphine withdrawal period.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Morphine Dependence , Substance Withdrawal Syndrome , Animals , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Glucagon-Like Peptide 1 , Hypoglycemic Agents/pharmacology , Linagliptin/pharmacology , Mice , Morphine/adverse effects , Morphine Dependence/drug therapy , Naloxone/pharmacology , Substance Withdrawal Syndrome/drug therapy
17.
Diabetologia ; 64(6): 1235-1245, 2021 06.
Article in English | MEDLINE | ID: mdl-33559704

ABSTRACT

AIMS/HYPOTHESIS: Type 2 diabetes, particularly with concomitant CVD, is associated with an increased risk of cognitive impairment. We assessed the effect on accelerated cognitive decline (ACD) of the DPP-4 inhibitor linagliptin vs the sulfonylurea glimepiride in individuals with type 2 diabetes. METHODS: The CAROLINA-COGNITION study was part of the randomised, double-blind, active-controlled CAROLINA trial that evaluated the cardiovascular safety of linagliptin vs glimepiride in individuals with age ≥40 and ≤85 years and HbA1c 48-69 mmol/mol (6.5-8.5%) receiving standard care, excluding insulin therapy. Participants were randomised 1:1 using an interactive telephone- and web-based system and treatment assignment was determined by a computer-generated random sequence with stratification by center. The primary cognitive outcome was occurrence of ACD at end of follow-up, defined as a regression-based index score ≤16th percentile on either the Mini-Mental State Examination (MMSE) or a composite measure of attention and executive functioning, in participants with a baseline MMSE score ≥24. Prespecified additional analyses included effects on ACD at week 160, in subgroups (sex, age, race, ethnicity, depressive symptoms, cardiovascular risk, duration of type 2 diabetes, albuminuria), and absolute changes in cognitive performance. Participants, caregivers, and people involved in measurements, examinations or adjudication, were all masked to treatment assignment. RESULTS: Of 6033 participants recruited from hospital and primary care sites, 3163 (38.0% female, mean age/diabetes duration 64/7.6 years, MMSE score 28.5, HbA1c 54 mmol/mol [7.1%]) represent the CAROLINA-COGNITION cohort. Over median 6.1 years, ACD occurred in 27.8% (449/1618, linagliptin) vs 27.6% (426/1545, glimepiride), OR 1.01 (95% CI 0.86, 1.18). Also, no differences in ACD were observed at week 160 (OR 1.07 [0.91, 1.25]), between treatments across subgroups, or for absolute cognitive changes. CONCLUSIONS/INTERPRETATION: In a large, international outcome trial in people with relatively early type 2 diabetes at elevated cardiovascular risk, no difference in risk for ACD was observed between linagliptin and glimepiride over 6.1 years. FUNDING: This study was sponsored by Boehringer Ingelheim. TRIAL REGISTRATION: ClinicalTrials.gov NCT01243424.


Subject(s)
Cognition/drug effects , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Linagliptin/pharmacology , Sulfonylurea Compounds/pharmacology , Aged , Blood Glucose , Diabetes Mellitus, Type 2/psychology , Double-Blind Method , Female , Humans , Hypoglycemic Agents/therapeutic use , Linagliptin/therapeutic use , Male , Middle Aged , Neuropsychological Tests , Sulfonylurea Compounds/therapeutic use , Treatment Outcome
18.
J Cell Mol Med ; 25(2): 729-741, 2021 01.
Article in English | MEDLINE | ID: mdl-33295687

ABSTRACT

The metabolic syndrome (MetS) is an escalating problem worldwide, causing left ventricular stiffening, an early characteristic of diastolic dysfunction for which no treatment exists. As diastolic dysfunction and stiffening in MetS patients are associated with increased circulating dipeptidyl peptidase-4 (DPP-4) levels, we investigated whether the clinically approved DPP-4 inhibitor linagliptin reduces left ventricular stiffness in MetS-induced cardiac disease. Sixteen-week-old obese ZSF1 rats, displaying the MetS and left ventricular stiffness, received linagliptin-supplemented or placebo diet for four weeks. Linagliptin significantly reduced obesity, hyperlipidaemia, and hyperglycaemia and improved left ventricular relaxation. This improved relaxation was related to decreased cardiac fibrosis and cardiomyocyte passive stiffness (Fpassive ). The reduced Fpassive was the result of titin isoform switching from the stiff N2B to the more flexible N2BA and increased phosphorylation of total titin and specifically its N2Bus region (S4080 and S3391). Importantly, DPP-4 directly cleaved titin in vitro, resulting in an increased Fpassive , which was prevented by simultaneous administration of linagliptin. In conclusion, linagliptin improves left ventricular stiffness in obese ZSF1 rats by preventing direct DPP4-mediated titin cleavage, as well as by modulating both titin isoform levels and phosphorylation. Reducing left ventricular stiffness by administering linagliptin might prevent MetS-induced early diastolic dysfunction in human.


Subject(s)
Linagliptin/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Animals , Connectin/pharmacology , Heart Diseases/metabolism , Male , Mice, Obese , Myocardium/metabolism , Obesity/metabolism , Phosphorylation/drug effects , Protein Processing, Post-Translational , Rats
19.
J Biol Chem ; 295(10): 3213-3227, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31988243

ABSTRACT

Glucocorticoids are potent endogenous anti-inflammatory molecules, and their cognate receptor, glucocorticoid receptor (GR), is expressed in nearly all immune cells. Macrophages are heterogeneous immune cells having a central role in both tissue homeostasis and inflammation and also play a role in the pathogenesis of some inflammatory diseases. Paradoxically, glucocorticoids have only a limited efficacy in controlling the resolution of these macrophage-related diseases. Here, we report that the transcriptomes of monocyte-like THP-1 cells and macrophage-like THP-1 cells (THP1-MΦ) have largely conserved gene expression patterns. In contrast, the differentiation to THP1-MΦ significantly altered the sensitivity of gene transcription to glucocorticoids. Among glucocorticoid-regulated genes, we identified the exopeptidase dipeptidyl peptidase-4 (DPP4) as a critical glucocorticoid-responsive gene in THP1-MΦ. We found that GR directly induces DPP4 gene expression by binding to two glucocorticoid-responsive elements (GREs) within the DPP4 promoter. Additionally, we show that glucocorticoid-induced DPP4 expression is blocked by the GR antagonist RU-486 and by GR siRNA transfection and that DPP4 enzyme activity is reduced by DPP4 inhibitors. Of note, glucocorticoids highly stimulated macrophage mobility; unexpectedly, DPP4 mediated the glucocorticoid-induced macrophage migration, and siRNA-mediated knockdowns of GR and DPP4 blocked dexamethasone-induced THP1-MΦ migration. Moreover, glucocorticoid-induced DPP4 activation was also observed in proinflammatory M1-polarized murine macrophages, as well as peritoneal macrophages, and was associated with increased macrophage migration. Our results indicate that glucocorticoids directly up-regulate DPP4 expression and thereby induce migration in macrophages, potentially explaining why glucocorticoid therapy is less effective in controlling macrophage-dominated inflammatory disorders.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Glucocorticoids/pharmacology , Transcriptome/drug effects , Animals , Cell Differentiation/drug effects , Cell Movement/drug effects , Dexamethasone/pharmacology , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/genetics , Glucocorticoids/metabolism , Humans , Linagliptin/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Monocytes/cytology , Monocytes/metabolism , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Regulatory Elements, Transcriptional/genetics , Sitagliptin Phosphate/pharmacology , THP-1 Cells , Up-Regulation/drug effects
20.
Arterioscler Thromb Vasc Biol ; 40(3): e65-e77, 2020 03.
Article in English | MEDLINE | ID: mdl-31893947

ABSTRACT

OBJECTIVE: In patients with diabetes mellitus, increased platelet reactivity predicts cardiac events. Limited evidence suggests that DPP-4 (dipeptidyl peptidase 4) influences platelets via GLP-1 (glucagon-like peptide 1)-dependent effects. Because DPP-4 inhibitors are frequently used in diabetes mellitus to improve the GLP-1-regulated glucose metabolism, we characterized the role of DPP-4 inhibition and of native intact versus DPP-4-cleaved GLP-1 on flow-dependent thrombus formation in mouse and human blood. Approach and Results: An ex vivo whole blood microfluidics model was applied to approach in vivo thrombosis and study collagen-dependent platelet adhesion, activation, and thrombus formation under shear-flow conditions by multiparameter analyses. In mice, in vivo inhibition or genetic deficiency of DPP-4 (Dpp4-/-), but not of GLP-1-receptors (Glp1r-/-), suppressed flow-dependent platelet aggregation. In human blood, GLP-1(7-36), but not DPP-4-cleaved GLP-1(9-36), reduced thrombus volume by 32% and impaired whole blood thrombus formation at both low/venous and high/arterial wall-shear rates. These effects were enforced upon ADP costimulation and occurred independently of plasma factors and leukocytes. Human platelets did not contain detectable levels of GLP-1-receptor transcripts. Also, GLP-1(7-36) did not inhibit collagen-induced aggregation under conditions of stirring or stasis of platelets, pointing to a marked flow-dependent role. CONCLUSIONS: Native, intact GLP-1 is a natural suppressor of thrombus growth under physiological flow conditions, with DPP-4 inhibition and increased intact GLP-1 suppressing platelet aggregation under flow without a main relevance of GLP-1-receptor on platelets.


Subject(s)
Blood Platelets/drug effects , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Fibrinolytic Agents/pharmacology , Glucagon-Like Peptide 1/metabolism , Linagliptin/pharmacology , Sitagliptin Phosphate/pharmacology , Thrombosis/prevention & control , Animals , Blood Platelets/metabolism , Dipeptidyl Peptidase 4/genetics , Glucagon-Like Peptide 1/analogs & derivatives , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Mice, Inbred C57BL , Mice, Knockout , Peptide Fragments/metabolism , Platelet Aggregation/drug effects , Signal Transduction , Thrombosis/enzymology , Thrombosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL