Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.018
Filter
1.
Int Immunol ; 36(1): 33-43, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38006376

ABSTRACT

We previously demonstrated that Alcaligenes-derived lipid A (ALA), which is produced from an intestinal lymphoid tissue-resident commensal bacterium, is an effective adjuvant for inducing antigen-specific immune responses. To understand the immunologic characteristics of ALA as a vaccine adjuvant, we here compared the adjuvant activity of ALA with that of a licensed adjuvant (monophosphoryl lipid A, MPLA) in mice. Although the adjuvant activity of ALA was only slightly greater than that of MPLA for subcutaneous immunization, ALA induced significantly greater IgA antibody production than did MPLA during nasal immunization. Regarding the underlying mechanism, ALA increased and activated CD11b+ CD103- CD11c+ dendritic cells in the nasal tissue by stimulating chemokine responses. These findings revealed the superiority of ALA as a mucosal adjuvant due to the unique immunologic functions of ALA in nasal tissue.


Subject(s)
Alcaligenes , Lipid A , Animals , Mice , Lipid A/pharmacology , Adjuvants, Immunologic/pharmacology , Dendritic Cells
2.
Chemistry ; 30(32): e202400429, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38587187

ABSTRACT

Agonists of Toll like receptors (TLRs) have attracted interest as adjuvants and immune modulators. A crystal structure of TLR4/MD2 with E. coli LPS indicates that the fatty acid at C-2 of the lipid A component of LPS induces dimerization of two TLR4-MD2 complexes, which in turn initiates cell signaling leading to the production of (pro)inflammatory cytokines. To probe the importance of the (R)-3-hydroxymyristate at C-2 of lipid A, a range of bis- and mono-phosphoryl lipid A derivatives with different modifications at C-2 were prepared by a strategy in which 2-methylnaphthyl ethers were employed as permanent protecting group that could be readily removed by catalytic hydrogenation. The C-2 amine was protected as 9-fluorenylmethyloxycarbamate, which at a later stage could be removed to give a free amine that was modified by different fatty acids. LPS and the synthetic lipid As induced the same cytokines, however, large differences in activity were observed. A compound having a hexanoyl moiety at C-2 still showed agonistic properties, but further shortening to a butanoyl abolished activity. The modifications had a larger influence on monophosphoryl lipid As. The lipid As having a butanoyl moiety at C-2 could selectively antagonize TRIF associated cytokines induced by LPS or lipid A.


Subject(s)
Cytokines , Lipid A , Lipopolysaccharides , Lipid A/chemistry , Lipid A/pharmacology , Lipid A/analogs & derivatives , Lipid A/chemical synthesis , Cytokines/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/chemistry , Humans , Lymphocyte Antigen 96/metabolism , Lymphocyte Antigen 96/chemistry , Drug Design , Structure-Activity Relationship , Signal Transduction/drug effects
3.
J Nanobiotechnology ; 22(1): 483, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138475

ABSTRACT

The mortality of ovarian cancer (OC) has long been the highest among gynecological malignancies. Although OC is considered to be an immunogenic tumor, the effect of immunotherapy is not satisfactory. The immunosuppressive microenvironment is one reason for this, and the absence of recognized effective antigens for vaccines is another. Chemotherapy, as one of the most commonly used treatment for OC, can produce chemotherapy-associated antigens (CAAs) during treatment and show the effect of in situ vaccine. Herein, we designed an antigen capture nano-vaccine NP-TP1@M-M with tumor targeting peptide TMTP1 and dendritic cell (DC) receptor mannose assembled on the surface and adjuvant monophosphoryl lipid A (MPLA) encapsulated in the core of poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles. PLGA itself possessed the ability of antigen capture. TMTP1 was a tumor-homing peptide screened by our research team, which held extensive and excellent tumor targeting ability. After these modifications, NP-TP1@M-M could capture and enrich more tumor-specific antigens after chemotherapy, stimulate DC maturation, activate the adaptive immunity and combined with immune checkpoint blockade to maximize the release of the body's immune potential, providing an eutherapeutic strategy for the treatment of OC.


Subject(s)
Antigens, Neoplasm , B7-H1 Antigen , Cancer Vaccines , Nanoparticles , Ovarian Neoplasms , Female , Ovarian Neoplasms/drug therapy , Animals , Mice , Cancer Vaccines/therapeutic use , Nanoparticles/chemistry , Cell Line, Tumor , Antigens, Neoplasm/immunology , Humans , Dendritic Cells/drug effects , Peptides/chemistry , Peptides/pharmacology , Lipid A/analogs & derivatives , Lipid A/chemistry , Lipid A/pharmacology , Immunotherapy/methods , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Inbred BALB C , Immune Checkpoint Inhibitors/pharmacology , Nanovaccines
4.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34561306

ABSTRACT

The COVID-19 pandemic highlights the importance of efficient and safe vaccine development. Vaccine adjuvants are essential to boost and tailor the immune response to the corresponding pathogen. To allow for an educated selection, we assessed the effect of different adjuvants on human monocyte-derived dendritic cells (DCs) and their ability to polarize innate and adaptive immune responses. In contrast to commonly used adjuvants, such as aluminum hydroxide, Toll-like receptor (TLR) agonists induced robust phenotypic and functional DC maturation. In a DC-lymphocyte coculture system, we investigated the ensuing immune reactions. While monophosphoryl lipid A synthetic, a TLR4 ligand, induced checkpoint inhibitors indicative for immune exhaustion, the TLR7/8 agonist Resiquimod (R848) induced prominent type-1 interferon and interleukin 6 responses and robust CTL, B-cell, and NK-cell proliferation, which is particularly suited for antiviral immune responses. The recently licensed COVID-19 vaccines, BNT162b and mRNA-1273, are both based on single-stranded RNA. Indeed, we could confirm that the cytokine profile induced by lipid-complexed RNA was almost identical to the pattern induced by R848. Although this awaits further investigation, our results suggest that their efficacy involves the highly efficient antiviral response pattern stimulated by the RNAs' TLR7/8 activation.


Subject(s)
Adjuvants, Immunologic/pharmacology , COVID-19/immunology , Dendritic Cells/immunology , Immunity, Cellular/drug effects , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Aged , Female , Humans , Imidazoles/pharmacology , Lipid A/analogs & derivatives , Lipid A/pharmacology , Male , Middle Aged , Toll-Like Receptors/immunology
5.
J Neuroinflammation ; 19(1): 12, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996472

ABSTRACT

BACKGROUND: Innate immune pre-stimulation can prevent the development of depression-like behaviors in chronically stressed mice; however, whether the same stimulation prevents the development of anxiety-like behaviors in animals remains unclear. We addressed this issue using monophosphoryl lipid A (MPL), a derivative of lipopolysaccharide (LPS) that lacks undesirable properties of LPS but still keeps immune-enhancing activities. METHODS: The experimental mice were pre-injected intraperitoneally with MPL before stress exposure. Depression was induced through chronic social defeat stress (CSDS). Behavioral tests were conducted to identify anxiety-like behaviors. Real-time polymerase chain reaction (PCR) and biochemical assays were employed to examine the gene and protein expression levels of pro-inflammatory markers. RESULTS: A single MPL injection at the dose of 400 and 800 µg/kg 1 day before stress exposure prevented CSDS-induced anxiety-like behaviors, and a single MPL injection (400 µg/kg) five but not 10 days before stress exposure produced similar effect. The preventive effect of MPL on anxiety-like behaviors was also observed in CSDS mice who received a second MPL injection 10 days after the first MPL injection or a 4 × MPL injection 10 days before stress exposure. MPL pre-injection also prevented the production of pro-inflammatory cytokines in the hippocampus and medial prefrontal cortex in CSDS mice, and inhibiting the central immune response by minocycline pretreatment abrogated the preventive effect of MPL on CSDS-induced anxiety-like behaviors and pro-inflammatory cytokine productions in the brain. CONCLUSIONS: Pre-stimulation of the innate immune system by MPL can prevent chronic stress-induced anxiety-like behaviors and neuroinflammatory responses in the brain in mice.


Subject(s)
Anxiety/immunology , Immunity, Innate/drug effects , Lipid A/analogs & derivatives , Prefrontal Cortex/drug effects , Social Defeat , Stress, Psychological/immunology , Animals , Depression/immunology , Lipid A/pharmacology , Lipopolysaccharides/pharmacology , Male , Mice , Prefrontal Cortex/immunology , Social Behavior
6.
Semin Immunol ; 39: 4-13, 2018 10.
Article in English | MEDLINE | ID: mdl-30396811

ABSTRACT

The development of the CAF family adjuvant was initiated around 20 years ago when Statens Serum Institut was preparing its first generation protein based recombinant subunit vaccine against tuberculosis for clinical testing, but realized that there were no clinically relevant adjuvants available that would support the strong CMI response needed. Since then the aim for the adjuvant research at Statens Serum Institut has been to provide adjuvants with distinct immunogenicity profiles correlating with protection for any given infectious disease. Two of the adjuvants CAF01 and CAF09 are currently being evaluated in human clinical trials. The purpose of this review is to give an overview of the immunocorrelates of those CAF adjuvants furthest in development. We further aim at giving an overview of the mechanism of action of the CAF adjuvants.


Subject(s)
Adjuvants, Immunologic/pharmacology , Glycolipids/pharmacology , Immunity, Cellular/drug effects , Immunogenicity, Vaccine , Lipid A/analogs & derivatives , Quaternary Ammonium Compounds/pharmacology , Tuberculosis, Pulmonary/prevention & control , Adjuvants, Immunologic/chemistry , Animals , Glycolipids/chemistry , Humans , Immunity, Humoral/drug effects , Lipid A/chemistry , Lipid A/pharmacology , Liposomes/administration & dosage , Liposomes/chemistry , Liposomes/immunology , Mice , Quaternary Ammonium Compounds/chemistry , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/microbiology , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/microbiology , Th2 Cells/drug effects , Th2 Cells/immunology , Th2 Cells/microbiology , Tuberculosis Vaccines/administration & dosage , Tuberculosis Vaccines/chemistry , Tuberculosis Vaccines/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology
7.
Semin Immunol ; 39: 30-34, 2018 10.
Article in English | MEDLINE | ID: mdl-30122362

ABSTRACT

The discovery and wide spread use of vaccines have saved millions of lives in the past few decades. Vaccine adjuvants represent an integral part of the modern vaccines. Despite numerous efforts, however, only a handful of vaccine adjuvants is currently available for human use. A comprehensive understanding of the mechanisms of action of adjuvants is pivotal to harness the potential of existing and new adjuvants in mounting desirable immune responses to counter human pathogens. Decomposing the host response to vaccines and its components at systems level has recently been made possible owing to the recent advancements in Omics technology and cutting edge immunological assays powered by systems biology approaches. This approach has begun to shed light on the molecular signatures of several human vaccines and adjuvants. This review is an attempt to provide an overview of the recent efforts in systems analysis of vaccine adjuvants that are currently in clinic.


Subject(s)
Adjuvants, Immunologic/pharmacology , HIV Infections/prevention & control , Immunogenicity, Vaccine , Influenza, Human/prevention & control , Malaria, Falciparum/prevention & control , Systems Analysis , Adjuvants, Immunologic/chemistry , Animals , Drug Combinations , Glucosides/chemistry , Glucosides/pharmacology , HIV Infections/immunology , HIV Infections/virology , Humans , Immunity, Innate/drug effects , Influenza, Human/immunology , Influenza, Human/virology , Lipid A/chemistry , Lipid A/pharmacology , Liposomes/administration & dosage , Liposomes/chemistry , Liposomes/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Polysorbates/chemistry , Polysorbates/pharmacology , Squalene/chemistry , Squalene/pharmacology , Systems Biology , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/microbiology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Vaccines/administration & dosage , Vaccines/chemistry , Vaccines/immunology , alpha-Tocopherol/chemistry , alpha-Tocopherol/pharmacology
8.
Semin Immunol ; 39: 22-29, 2018 10.
Article in English | MEDLINE | ID: mdl-30366662

ABSTRACT

Lipopolysaccharide (LPS) is a well-defined agonist of Toll-like receptor (TLR) 4 that activates innate immune responses and influences the development of the adaptive response during infection with Gram-negative bacteria. Many years ago, Dr. Edgar Ribi separated the adjuvant activity of LPS from its toxic effects, an effort that led to the development of monophosphoryl lipid A (MPL). MPL, derived from Salmonella minnesota R595, has progressed through clinical development and is now used in various product-enabling formulations to support the generation of antigen-specific responses in several commercial and preclinical vaccines. We have generated several synthetic lipid A molecules, foremost glucopyranosyl lipid adjuvant (GLA) and second-generation lipid adjuvant (SLA), and have advanced these to clinical trial for various indications. In this review we summarize the potential and current positioning of TLR4-based adjuvant formulations in approved and emerging vaccines.


Subject(s)
Adjuvants, Immunologic/pharmacology , Alum Compounds/pharmacology , Glucosides/pharmacology , Immunogenicity, Vaccine , Lipid A/analogs & derivatives , Tuberculosis/prevention & control , Adjuvants, Immunologic/chemistry , Alum Compounds/chemistry , Animals , Glucosides/chemistry , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Leishmaniasis/immunology , Leishmaniasis/parasitology , Leishmaniasis/prevention & control , Leprosy/immunology , Leprosy/parasitology , Leprosy/prevention & control , Lipid A/chemistry , Lipid A/pharmacology , Liposomes/administration & dosage , Liposomes/chemistry , Liposomes/immunology , Malaria/immunology , Malaria/parasitology , Malaria/prevention & control , Mice , Schistosomiasis/immunology , Schistosomiasis/parasitology , Schistosomiasis/prevention & control , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/microbiology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Tuberculosis/immunology , Tuberculosis/microbiology , Vaccines/administration & dosage , Vaccines/chemistry , Vaccines/immunology
9.
Cancer Immunol Immunother ; 70(3): 689-700, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32902663

ABSTRACT

Monophosphoryl lipid A (MPLA) is a toll-like receptor 4 ligand that promotes immune activation in mice and humans, without undesired inflammation. Immunotherapy by the combining immune checkpoint blockade and MPLA has shown promising anti-cancer effects in both mice and humans. In this study, we explored how MPLA enhanced the anti-cancer effects of anti-PD-L1 antibodies (Abs). Anti-cancer immunity induced by the combination of anti-PD-L1 Abs and MPLA failed in CD4 and CD8 cell-depleted mice. Moreover, the combination treatment of anti-PD-L1 Abs and MPLA synergistically enhanced the activation of plasmacytoid dendritic cells (pDCs) in the mouse in vivo, while conventional DCs were not. In addition, mice treated with anti-PD-L1 Abs and MPLA were not protected from B16 melanoma by blockade of interferon-alpha receptor (IFNAR). The combination of anti-PD-L1 Abs and MPLA also promoted human peripheral blood pDC activation and induced IFN-α-dependent T cell activation. Therefore, these results demonstrate that MPLA enhances anti-PD-L1 Ab-mediated anti-cancer immunity through the activation and IFN-α production of pDCs.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Dendritic Cells/drug effects , Dendritic Cells/immunology , Immune Checkpoint Inhibitors/pharmacology , Lipid A/analogs & derivatives , Animals , Biomarkers , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Dendritic Cells/metabolism , Female , Humans , Immunophenotyping , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipid A/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Melanoma, Experimental , Mice
10.
J Virol ; 94(6)2020 02 28.
Article in English | MEDLINE | ID: mdl-31827000

ABSTRACT

Generating durable humoral immunity through vaccination depends upon effective interactions of follicular helper T (Tfh) cells with germinal center (GC) B cells. Th1 polarization of Tfh cells is an important process shaping the success of Tfh-GC B cell interactions by influencing costimulatory and cytokine-dependent Tfh help to B cells. However, the question remains as to whether adjuvant-dependent modulation of Tfh cells enhances HIV-1 vaccine-induced antienvelope (anti-Env) antibody responses. We investigated whether an HIV-1 vaccine platform designed to increase the number of Th1-polarized Tfh cells enhances the magnitude and quality of anti-Env antibodies. Utilizing a novel interferon-induced protein 10 (IP-10)-adjuvanted HIV-1 DNA prime followed by a monophosphoryl lipid A and QS-21 (MPLA+QS-21)-adjuvanted Env protein boost (DIP-10 PALFQ) in macaques, we observed higher anti-Env serum IgG titers with greater cross-clade reactivity, specificity for V1V2, and effector functions than in macaques primed with DNA lacking IP-10 and boosted with MPLA-plus-alum-adjuvanted Env protein (DPALFA) The DIP-10 PALFQ vaccine regimen elicited higher anti-Env IgG1 and lower IgG4 antibody levels in serum, showing for the first time that adjuvants can dramatically impact the IgG subclass profile in macaques. The DIP-10 PALFQ regimen also increased vaginal and rectal IgA antibodies to a greater extent. Within lymph nodes, we observed augmented GC B cell responses and the promotion of Th1 gene expression profiles in GC Tfh cells. The frequency of GC Tfh cells correlated with both the magnitude and avidity of anti-Env serum IgG. Together, these data suggest that adjuvant-induced stimulation of Th1-Tfh cells is an effective strategy for enhancing the magnitude and quality of anti-Env antibody responses.IMPORTANCE The results of the RV144 trial demonstrated that vaccination could prevent HIV transmission in humans and that longevity of anti-Env antibodies may be key to this protection. Efforts to improve upon the prime-boost vaccine regimen used in RV144 have indicated that booster immunizations can increase serum anti-Env antibody titers but only transiently. Poor antibody durability hampers efforts to develop an effective HIV-1 vaccine. This study was designed to identify the specific elements involved in the immunological mechanism necessary to produce robust HIV-1-specific antibodies in rhesus macaques. By clearly defining immune-mediated pathways that improve the magnitude and functionality of the anti-HIV-1 antibody response, we will have the foundation necessary for the rational development of an HIV-1 vaccine.


Subject(s)
AIDS Vaccines/pharmacology , HIV Antibodies/immunology , HIV-1/immunology , Immunization, Secondary , Immunoglobulin G/immunology , Th1 Cells/immunology , AIDS Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Female , Germinal Center/immunology , Germinal Center/pathology , Humans , Lipid A/analogs & derivatives , Lipid A/pharmacology , Macaca mulatta , Saponins/pharmacology , Th1 Cells/pathology
11.
J Surg Res ; 261: 74-84, 2021 05.
Article in English | MEDLINE | ID: mdl-33421796

ABSTRACT

BACKGROUND: Although the ability of ß-D-glucan and monophosphoryl lipid A (MPLA) to modulate immune responses has been studied in human primary cells, their effect on sterile inflammation models such as necrotizing pancreatitis has never been investigated. MATERIALS AND METHODS: 85 male New Zealand rabbits were assigned into following groups: A: control, B: pretreatment with ß-D-glucan 3 d before pancreatitis, C: pretreatment with MPLA 3 d before pancreatitis, D: pretreatment with ß-D-glucan and laminarin 3 d before pancreatitis, E: treatment with ß-D-glucan 1 d after pancreatitis, and F: MPLA 1 d after pancreatitis. Pancreatitis was induced by sodium taurocholate injection into the pancreatic duct and parenchyma. Survival was recorded for 21 d. On days 1, 3, and 7, blood was collected for amylase measurement. Peripheral blood mononuclear cells were isolated and stimulated for tumor necrosis factor alpha and interleukin 10 production. Pancreatic necrosis and tissue bacterial load were assessed. RESULTS: 21-d survival was prolonged after pretreatment or treatment with ß-D-glucan; this benefit was lost with laminarin administration. At sacrifice, pancreatic inflammatory alterations were more prominent in the control group. Bacterial load was lower after pretreatment or treatment with ß-D-glucan and MPLA. Tumor necrosis factor alpha production from stimulated peripheral blood mononuclear cells was significantly decreased, whereas interleukin 10 production remained unaltered after pretreatment or treatment with ß-D- glucan. CONCLUSIONS: ß-D-glucan reduces mortality of experimental pancreatitis in vivo. This is mediated through attenuation of cytokine production and prevention of bacterial translocation.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Immunomodulation , Lipid A/analogs & derivatives , Pancreatitis, Acute Necrotizing/drug therapy , Proteoglycans/therapeutic use , Adjuvants, Immunologic/pharmacology , Amylases/blood , Animals , Bacterial Translocation/drug effects , Drug Evaluation, Preclinical , Glucans , Lipid A/pharmacology , Lipid A/therapeutic use , Male , Pancreatitis, Acute Necrotizing/blood , Pancreatitis, Acute Necrotizing/mortality , Proteoglycans/pharmacology , Rabbits , Taurocholic Acid , Tumor Necrosis Factor-alpha/metabolism
12.
Molecules ; 26(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34684874

ABSTRACT

Gram-negative bacterial cell surface component lipopolysaccharide (LPS) and its active principle, lipid A, exhibit immunostimulatory effects and have the potential to act as adjuvants. However, canonical LPS acts as an endotoxin by hyperstimulating the immune response. Therefore, LPS and lipid A must be structurally modified to minimize their toxic effects while maintaining their adjuvant effect for application as vaccine adjuvants. In the field of chemical ecology research, various biological phenomena occurring among organisms are considered molecular interactions. Recently, the hypothesis has been proposed that LPS and lipid A mediate bacterial-host chemical ecology to regulate various host biological phenomena, mainly immunity. Parasitic and symbiotic bacteria inhabiting the host are predicted to possess low-toxicity immunomodulators due to the chemical structural changes of their LPS caused by co-evolution with the host. Studies on the chemical synthesis and functional evaluation of their lipid As have been developed to test this hypothesis and to apply them to low-toxicity and safe adjuvants.


Subject(s)
Adjuvants, Immunologic/pharmacology , Bacteria/immunology , Endotoxins/immunology , Lipid A/pharmacology , Lipopolysaccharides/immunology , Adjuvants, Immunologic/chemistry , Animals , Bacteria/drug effects , Endotoxins/metabolism , Humans , Lipid A/chemistry , Lipopolysaccharides/chemistry
13.
Angew Chem Int Ed Engl ; 60(18): 10023-10031, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33522128

ABSTRACT

Alcaligenes faecalis is the predominant Gram-negative bacterium inhabiting gut-associated lymphoid tissues, Peyer's patches. We previously reported that an A. faecalis lipopolysaccharide (LPS) acted as a weak agonist for Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD-2) receptor as well as a potent inducer of IgA without excessive inflammation, thus suggesting that A. faecalis LPS might be used as a safe adjuvant. In this study, we characterized the structure of both the lipooligosaccharide (LOS) and LPS from A. faecalis. We synthesized three lipid A molecules with different degrees of acylation by an efficient route involving the simultaneous introduction of 1- and 4'-phosphates. Hexaacylated A. faecalis lipid A showed moderate agonistic activity towards TLR4-mediated signaling and the ability to elicit a discrete interleukin-6 release in human cell lines and mice. It was thus found to be the active principle of the LOS/LPS and a promising vaccine adjuvant candidate.


Subject(s)
Alcaligenes faecalis/chemistry , Lipid A/chemistry , Lipopolysaccharides/chemistry , Animals , Carbohydrate Conformation , Cell Line , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Lipid A/pharmacology , Lipopolysaccharides/isolation & purification , Lipopolysaccharides/pharmacology , Mice , Toll-Like Receptor 4/agonists
14.
J Cell Mol Med ; 24(7): 3917-3930, 2020 04.
Article in English | MEDLINE | ID: mdl-32135028

ABSTRACT

Radiation protection on male testis is an important task for ionizing radiation-related workers or people who receive radiotherapy for tumours near the testicle. In recent years, Toll-like receptors (TLRs), especially TLR4, have been widely studied as a radiation protection target. In this study, we detected that a low-toxicity TLR4 agonist monophosphoryl lipid A (MPLA) produced obvious radiation protection effects on mice testis. We found that MPLA effectively alleviated testis structure damage and cell apoptosis induced by ionizing radiation (IR). However, as the expression abundance differs a lot in distinct cells and tissues, MPLA seemed not to directly activate TLR4 singling pathway in mice testis. Here, we demonstrated a brand new mechanism for MPLA producing radiation protection effects on testis. We observed a significant activation of TLR4 pathway in macrophages after MPLA stimulation and identified significant changes in macrophage-derived exosomes protein expression. We proved that after MPLA treatment, macrophage-derived exosomes played an important role in testis radiation protection, and specially, G-CSF and MIP-2 in exosomes are the core molecules in this protection effect.


Subject(s)
Abnormalities, Radiation-Induced/genetics , Lipid A/analogs & derivatives , Testis/injuries , Toll-Like Receptor 4/genetics , Abnormalities, Radiation-Induced/drug therapy , Abnormalities, Radiation-Induced/pathology , Animals , Disease Models, Animal , Exosomes/drug effects , Humans , Lipid A/chemistry , Lipid A/genetics , Lipid A/pharmacology , Male , Mice , Radiation Protection , Testis/drug effects , Testis/pathology , Testis/radiation effects , Toll-Like Receptor 4/agonists
15.
Am J Physiol Renal Physiol ; 319(1): F8-F18, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32421349

ABSTRACT

Sepsis is the leading cause of acute kidney injury in critically ill patients. Tumor necrosis factor-α (TNF-α) has been implicated in the pathogenesis of septic kidney injury; however, the sites and mechanisms of renal TNF-α production during sepsis remain to be defined. In the present study, we showed that TNF-α expression is increased in medullary thick ascending limbs (MTALs) of mice with sepsis induced by cecal ligation and puncture. Treatment with lipopolysaccharide (LPS) for 3 h in vitro also increased MTAL TNF-α production. Sepsis and LPS increased MTAL TNF-α expression through activation of the myeloid differentiation factor 88 (MyD88)-IL-1 receptor-associated kinase 1-ERK signaling pathway. Pretreatment with monophosphoryl lipid A (MPLA), a nontoxic immunomodulator that protects against bacterial infection, eliminated the sepsis- and LPS-induced increases in MTAL TNF-α production. The suppressive effect of MPLA on TNF-α was mediated through activation of a phosphatidylinositol 3-kinase-dependent pathway that inhibits MyD88-dependent ERK activation. This likely involves MPLA-phosphatidylinositol 3-kinase-mediated induction of Tollip, which negatively regulates the MyD88-ERK pathway by inhibiting activation of IL-1 receptor-associated kinase 1. These regulatory mechanisms are similar to those previously shown to mediate the effect of MPLA to prevent sepsis-induced inhibition of MTAL [Formula: see text] absorption. These results identify the MTAL as a site of local TNF-α production in the kidney during sepsis and identify molecular mechanisms that can be targeted to attenuate renal TNF-α expression. The ability of MPLA pretreatment to suppress MyD88-dependent ERK signaling in the MTAL during sepsis has the dual beneficial effects of protecting tubule transport functions and attenuating harmful proinflammatory responses.


Subject(s)
Cytokines/metabolism , Kidney Medulla/drug effects , Lipid A/analogs & derivatives , Loop of Henle/drug effects , Sepsis/metabolism , Animals , Kidney Medulla/metabolism , Lipid A/pharmacology , Lipopolysaccharides/pharmacology , Loop of Henle/metabolism , Male , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Signal Transduction/drug effects
16.
Eur J Immunol ; 49(12): 2134-2145, 2019 12.
Article in English | MEDLINE | ID: mdl-31489613

ABSTRACT

The 3-O-desacyl-4'-monophosphoryl lipid A (MPL) activates immunity through Toll-like receptor 4 (TLR4) signaling. The Adjuvant System AS01 contains MPL and is used in the candidate malaria vaccine and the licensed zoster vaccine. Recent studies reported that AS01 adjuvant activity depends on a transient inflammation at the site of vaccination, but the role of stromal or structural cells in the adjuvant effect is unknown. We investigated this question in mouse models by assessing the role of TLR4 on hematopoietic versus resident structural cells during immunization with AS01-adjuvanted vaccines. We first established that TLR4-deficient animals had a reduced immune response to an AS01-adjuvanted vaccine. Using bone marrow chimera, we consistently found that Tlr4 expression in radio-sensitive cells, i.e., hematopoietic cells, was required for an optimal adjuvant effect on antibody and T-cell responses. At day 1 after injection, the pro-inflammatory reaction at the site of injection was strongly dependent on TLR4 signaling in hematopoietic cells. Similarly, activation of dendritic cells in muscle-draining lymph nodes was strictly associated with the radio-sensitive cells expressing Tlr4. Altogether, these data suggest that MPL-mediated TLR4-signaling in hematopoietic cells is critical in the mode of action of AS01.


Subject(s)
Adjuvants, Immunologic/pharmacology , Hematopoietic Stem Cells/immunology , Lipid A/analogs & derivatives , Saponins/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/immunology , Animals , Drug Combinations , Female , Hematopoietic Stem Cells/cytology , Humans , Lipid A/pharmacology , Male , Mice , Mice, Knockout , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptor 4/genetics , Vaccines/pharmacology
17.
Metab Eng ; 57: 193-202, 2020 01.
Article in English | MEDLINE | ID: mdl-31786244

ABSTRACT

Monophosphoryl lipid A (MPLA) species, including MPL (a trade name of GlaxoSmithKline) and GLA (a trade name of Immune Design, a subsidiary of Merck), are widely used as an adjuvant in vaccines, allergy drugs, and immunotherapy to boost the immune response. Even though MPLA is a derivative of lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, bacterial strains producing MPLA have not been found in nature nor engineered. In fact, MPLA generation involves expensive and laborious procedures based on synthetic routes or chemical transformation of precursors isolated from Gram-negative bacteria. Here, we report the engineering of an Escherichia coli strain for in situ production and accumulation of MPLA. Furthermore, we establish a succinct method for purifying MPLA from the engineered E. coli strain. We show that the purified MPLA (named EcML) stimulates the mouse immune system to generate antigen-specific IgG antibodies similarly to commercially available MPLA, but with a dramatically reduced manufacturing time and cost. Our system, employing the first engineered E. coli strain that directly produces the adjuvant EcML, could transform the current standard of industrial MPLA production.


Subject(s)
Adjuvants, Immunologic , Escherichia coli , Lipid A/analogs & derivatives , Metabolic Engineering , Adjuvants, Immunologic/biosynthesis , Adjuvants, Immunologic/genetics , Adjuvants, Immunologic/isolation & purification , Adjuvants, Immunologic/pharmacology , Animals , Antibody Formation/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Immunoglobulin G/biosynthesis , Lipid A/biosynthesis , Lipid A/genetics , Lipid A/isolation & purification , Lipid A/pharmacology , Mice , Mice, Inbred BALB C
18.
Cell Immunol ; 355: 104149, 2020 09.
Article in English | MEDLINE | ID: mdl-32619809

ABSTRACT

Toll-like receptor (TLR)4 and TLR9 agonists, MPL and CpG, are used as adjuvants in vaccines and have been investigated for their combined potential. However, how these two combined agonists regulate transcriptional changes in innate immune cells and cells at the site of vaccination has not been thoroughly investigated. Here, we utilized transcriptomics to investigate how CpG, MPL, and CpG + MPL impact gene expression in dendritic cells (DC) in vitro. Principal component analysis of transcriptional changes after single and combined treatment indicated that CpG, MPL, and CpG + MPL caused distinct gene signatures. CpG + MPL induced antiviral gene expression and activated the interferon regulatory factor pathway. In vitro changes were associated with lower in vivo morbidity upon viral challenge, elevated systemic cytokine protein production, local cytokine mRNA expression, and increased migratory monocyte derived DC populations in the draining lymph node following vaccination with CpG + MPL. This report suggests that CpG + MPL enhances transcription of antiviral and inflammatory genes and increases DC migration.


Subject(s)
Dendritic Cells/drug effects , Lipid A/analogs & derivatives , Oligodeoxyribonucleotides/pharmacology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 9/agonists , Animals , CpG Islands , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Gene Expression/drug effects , Immunity, Innate/drug effects , Lipid A/pharmacology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Vaccines/immunology , Vaccines/metabolism
19.
Osteoarthritis Cartilage ; 28(5): 658-668, 2020 05.
Article in English | MEDLINE | ID: mdl-31734268

ABSTRACT

OBJECTIVE: Links between pain and joint degradation are poorly understood. We investigated the role of activation of Toll-like receptors (TLR) by cartilage metabolites in initiating and maintaining the inflammatory loop in OA causing joint destruction. METHODS: Synovial membrane explants (SMEs) were prepared from OA patients' synovial biopsies. SMEs were cultured for 10 days under following conditions: culture medium alone, OSM + TNFα, TLR2 agonist - Pam2CSK4, Pam3CSK4 or synthetic aggrecan 32-mer, TLR4 agonist - Lipid A. Release of pro-inflammatory and degradation biomarkers (acMMP3 and C3M) were measured by ELISA in conditioned media along with IL-6. Additionally, human cartilage was digested with ADAMTS-5, with or without the ADAMTS-5 inhibiting nanobody - M6495. Digested cartilage solution (DCS) and synthetic 32-mer were tested for TLR activation in SEAP based TLR reporter assay. RESULTS: Western blotting confirmed TLR2 and TLR4 in untreated OA synovial biopsies. TLR agonists showed an increase in release of biomarkers - acMMP3 and C3M in SME. Synthetic 32-mer showed no activation in the TLR reporter assay. ADAMTS-5 degraded cartilage fragments activated TLR2 in vitro. Adding M6495 - an anti-ADAMTS-5 inhibiting nanobody®, blocked ADAMTS-5-mediated DCS TLR2 activation. CONCLUSION: TLR2 is expressed in synovium of OA patients and their activation by synthetic ligands causes increased tissue turnover. ADAMTS-5-mediated cartilage degradation leads to release of aggrecan fragments which activates the TLR2 receptor in vitro. M6495 suppressed cartilage degradation by ADAMTS-5, limiting the activation of TLR2. In conclusion, pain and joint destruction may be linked to generation of ADAMTS-5 cartilage metabolites.


Subject(s)
ADAMTS5 Protein/metabolism , Cartilage, Articular/metabolism , Inflammation/metabolism , Synovial Membrane/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , ADAMTS5 Protein/drug effects , Aged , Aged, 80 and over , Aggrecans/metabolism , Blotting, Western , Cartilage, Articular/drug effects , Female , Humans , In Vitro Techniques , Interleukin-6/metabolism , Lipid A/pharmacology , Lipopeptides/pharmacology , Male , Matrix Metalloproteinase 3/drug effects , Matrix Metalloproteinase 3/metabolism , Middle Aged , Oligopeptides/pharmacology , Single-Domain Antibodies/pharmacology , Synovial Membrane/drug effects , Toll-Like Receptor 2/agonists , Toll-Like Receptor 4/agonists , Toll-Like Receptor 9/agonists , Tumor Necrosis Factor-alpha/pharmacology
20.
Nano Lett ; 19(7): 4237-4249, 2019 07 10.
Article in English | MEDLINE | ID: mdl-30868883

ABSTRACT

Among approaches of current cancer immunotherapy, a dendritic cell (DC)-targeted vaccine based on nanotechnology could be a promising way to efficiently induce potent immune responses. To enhance DC targeting and vaccine efficiency, we included imiquimod (IMQ), a toll-like receptor 7/8 (TLR 7/8) agonist, and monophosphoryl lipid A (MPLA), a TLR4 agonist, to synthesize lipid-polymer hybrid nanoparticles using PCL-PEG-PCL and DOTAP (IMNPs) as well as DSPE-PEG-mannose (MAN-IMNPS). The spatiotemporal delivery of MPLA (within the outer lipid layer) to extracellular TLR4 and IMQ (in the hydrophobic core of NPs) to intracellular TLR7/8 can activate DCs synergistically to improve vaccine efficacy. Ovalbumin (OVA) as a model antigen was readily absorbed by positively charged DOTAP and showed a quick release in vitro. Our results demonstrated that this novel nanovaccine enhanced cellular uptake, cytokine production, and maturation of DCs. Compared with the quick metabolism of free OVA-agonists, the depot effect of OVA-IMNPs was observed, whereas MAN-OVA-IMNPs promoted trafficking to secondary lymphoid organs. After immunization with a subcutaneous injection, the nanovaccine, especially MAN-OVA-IMNPs, induced more antigen-specific CD8+ T cells, greater lymphocyte activation, stronger cross-presentation, and more generation of memory T cells, antibody, IFN-γ, and granzyme B. Prophylactic vaccination of MAN-OVA-IMNPs significantly delayed tumor development and prolonged the survival in mice. The therapeutic tumor challenge indicated that MAN-OVA-IMNPs prohibited tumor progression more efficiently than other formulations, and the combination with an immune checkpoint blockade further enhanced antitumor effects. Hence, the DC-targeted vaccine codelivery with IMQ and MPLA adjuvants by hybrid cationic nanoparticles in a spatiotemporal manner is a promising multifunctional antigen delivery system in cancer immunotherapy.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Dendritic Cells/immunology , Drug Delivery Systems , Imiquimod , Immunotherapy , Lipid A/analogs & derivatives , Nanoparticles , Neoplasms, Experimental , Toll-Like Receptors/agonists , Animals , Antigens, Neoplasm/immunology , Antigens, Neoplasm/pharmacology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cancer Vaccines/immunology , Cancer Vaccines/pharmacokinetics , Cancer Vaccines/pharmacology , Dendritic Cells/pathology , Imiquimod/immunology , Imiquimod/pharmacokinetics , Imiquimod/pharmacology , Lipid A/immunology , Lipid A/pharmacokinetics , Lipid A/pharmacology , Mice , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Toll-Like Receptors/immunology
SELECTION OF CITATIONS
SEARCH DETAIL