Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.222
Filter
1.
Annu Rev Biochem ; 83: 99-128, 2014.
Article in English | MEDLINE | ID: mdl-24580642

ABSTRACT

Lipopolysaccharide molecules represent a unique family of glycolipids based on a highly conserved lipid moiety known as lipid A. These molecules are produced by most gram-negative bacteria, in which they play important roles in the integrity of the outer-membrane permeability barrier and participate extensively in host-pathogen interplay. Few bacteria contain lipopolysaccharide molecules composed only of lipid A. In most forms, lipid A is glycosylated by addition of the core oligosaccharide that, in some bacteria, provides an attachment site for a long-chain O-antigenic polysaccharide. The complexity of lipopolysaccharide structures is reflected in the processes used for their biosynthesis and export. Rapid growth and cell division depend on the bacterial cell's capacity to synthesize and export lipopolysaccharide efficiently and in large amounts. We review recent advances in those processes, emphasizing the reactions that are essential for viability.


Subject(s)
Lipopolysaccharides/biosynthesis , Lipopolysaccharides/metabolism , Adenosine Triphosphate/metabolism , Bacteria , Bacterial Physiological Phenomena , Bacterial Proteins/metabolism , Biological Transport , Cell Membrane/metabolism , Glycolipids/metabolism , Glycosylation , Gram-Negative Bacteria/metabolism , O Antigens/metabolism , Permeability , Polysaccharides/metabolism
2.
Nature ; 584(7821): 479-483, 2020 08.
Article in English | MEDLINE | ID: mdl-32788728

ABSTRACT

Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipinĀ transporter6-9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10-12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery.


Subject(s)
Cell Membrane/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/chemistry , Escherichia coli/pathogenicity , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Amino Acid Motifs , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/metabolism , Binding Sites , Cell Membrane/metabolism , Enzyme Stability , Escherichia coli/cytology , Escherichia coli/drug effects , Genes, Essential , Hydrolases/chemistry , Hydrolases/metabolism , Lipid A/chemistry , Lipid A/metabolism , Lipopolysaccharides/biosynthesis , Microbial Sensitivity Tests , Microbial Viability/drug effects , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Periplasm/chemistry , Periplasm/metabolism , Protein Binding , Virulence
3.
J Biol Chem ; 300(4): 107143, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458396

ABSTRACT

A promising yet clinically unexploited antibiotic target in difficult-to-treat Gram-negative bacteria is LpxC, the key enzyme in the biosynthesis of lipopolysaccharides, which are the major constituents of the outer membrane. Despite the development of dozens of chemically diverse LpxC inhibitor molecules, it is essentially unknown how bacteria counteract LpxC inhibition. Our study provides comprehensive insights into the response against five different LpxC inhibitors. All compounds bound to purified LpxC from Escherichia coli. Treatment of E.Ā coli with these compounds changed the cell shape and stabilized LpxC suggesting that FtsH-mediated proteolysis of the inactivated enzyme is impaired. LpxC inhibition sensitized E.Ā coli to vancomycin and rifampin, whichĀ poorly cross the outer membrane of intact cells. Four ofĀ the five compounds led to an accumulation of lyso-phosphatidylethanolamine, a cleavage product of phosphatidylethanolamine, generated by the phospholipase PldA. The combined results suggested an imbalance in lipopolysaccharides and phospholipid biosynthesis, which was corroborated by the global proteome response to treatment with the LpxC inhibitors. Apart from LpxC itself, FabA and FabB responsible for the biosynthesis of unsaturated fatty acids were consistently induced. Upregulated compound-specific proteins are involved in various functional categories, such as stress reactions, nucleotide, or amino acid metabolism and quorum sensing. Our work shows that antibiotics targeting the same enzyme do not necessarily elicit identical cellular responses. Moreover, we find that the response of E.Ā coli to LpxC inhibition is distinct from the previously reported response in Pseudomonas aeruginosa.


Subject(s)
Amidohydrolases , Enzyme Inhibitors , Escherichia coli , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Escherichia coli/drug effects , Escherichia coli/enzymology , Lipopolysaccharides/biosynthesis , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Drug Resistance, Bacterial/drug effects , Cell Membrane/drug effects
4.
Antimicrob Agents Chemother ; 68(10): e0058724, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39240098

ABSTRACT

The burgeoning emergence of drug-resistant Helicobacter pylori strains poses a significant challenge to the clinical success of eradication therapies and is primarily attributed to mutations within drug-targeting genes that lead to antibiotic resistance. This study investigated the effect of high salt conditions on the occurrence of drug-resistance mutations in H. pylori. We found that high salt condition significantly amplifies the frequency of drug resistance mutations in H. pylori. This can be chiefly attributed to our discovery indicating that high salt concentration results in elevated reactive oxygen species (ROS) levels, initiating DNA damage within H. pylori. Mechanistically, high salt condition suppresses lipopolysaccharide (LPS) synthesis gene expression, inducing alterations in the LPS structure and escalating outer membrane permeability. This disruption of LPS synthesis attenuates the expression and activity of SodB, facilitates increased ROS levels, and consequently increases the drug resistance mutation frequency. Impairing LPS synthesis engenders a reduction in intracellular iron levels, leading to diminished holo-Fur activity and increased apo-Fur activity, which represses the expression of SodB directly. Our findings suggest a correlation between high salt intake and the emergence of drug resistance in the human pathogen H. pylori, implying that dietary choices affect the risk of emergence of antimicrobial resistance.IMPORTANCEDrug resistance mutations mainly contribute to the emergence of clinical antibiotic-resistant Helicobacter pylori, a bacterium linked to stomach ulcers and cancer. In this study, we explored how elevated salt conditions influence the emergence of drug resistance in H. pylori. We demonstrate that H. pylori exhibits an increased antibiotic resistance mutation frequency when exposed to a high salt environment. We observed an increase in reactive oxygen species (ROS) under high salt conditions, which can cause DNA damage and potentially lead to mutations. Moreover, our results showed that high salt condition alters the bacterium's lipopolysaccharide (LPS) synthesis, leading to a reduced expression of SodB in a Fur-dependent manner. This reduction, in turn, elevates ROS levels, culminating in a higher frequency of drug-resistance mutations. Our research underscores the critical need to consider environmental influences, such as diet and lifestyle, in managing bacterial infections and combating the growing challenge of antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Helicobacter pylori , Lipopolysaccharides , Mutation , Reactive Oxygen Species , Helicobacter pylori/drug effects , Helicobacter pylori/genetics , Lipopolysaccharides/biosynthesis , Reactive Oxygen Species/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Helicobacter Infections/microbiology , Helicobacter Infections/drug therapy , Humans , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
5.
BMC Microbiol ; 24(1): 279, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39061004

ABSTRACT

BACKGROUND: Klebsiella pneumoniae is a Gram-negative pathogen that has become a threat to public health worldwide due to the emergence of hypervirulent and multidrug-resistant strains. Cell-surface components, such as polysaccharide capsules, fimbriae, and lipopolysaccharides (LPS), are among the major virulence factors for K. pneumoniae. One of the genes involved in LPS biosynthesis is the uge gene, which encodes the uridine diphosphate galacturonate 4-epimerase enzyme. Although essential for the LPS formation in K. pneumoniae, little is known about the mechanisms that regulate the expression of uge. Ferric uptake regulator (Fur) is an iron-responsive transcription factor that modulates the expression of capsular and fimbrial genes, but its role in LPS expression has not yet been identified. This work aimed to investigate the role of the Fur regulator in the expression of the K. pneumoniae uge gene and to determine whether the production of LPS by K. pneumoniae is modulated by the iron levels available to the bacterium. RESULTS: Using bioinformatic analyses, a Fur-binding site was identified on the promoter region of the uge gene; this binding site was validated experimentally through Fur Titration Assay (FURTA) and DNA Electrophoretic Mobility Shift Assay (EMSA) techniques. RT-qPCR analyses were used to evaluate the expression of uge according to the iron levels available to the bacterium. The iron-rich condition led to a down-regulation of uge, while the iron-restricted condition resulted in up-regulation. In addition, LPS was extracted and quantified on K. pneumoniae cells subjected to iron-replete and iron-limited conditions. The iron-limited condition increased the amount of LPS produced by K. pneumoniae. Finally, the expression levels of uge and the amount of the LPS were evaluated on a K. pneumoniae strain mutant for the fur gene. Compared to the wild-type, the strain with the fur gene knocked out presented a lower LPS amount and an unchanged expression of uge, regardless of the iron levels. CONCLUSIONS: Here, we show that iron deprivation led the K. pneumoniae cells to produce higher amount of LPS and that the Fur regulator modulates the expression of uge, a gene essential for LPS biosynthesis. Thus, our results indicate that iron availability modulates the LPS biosynthesis in K. pneumoniae through a Fur-dependent mechanism.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Iron , Klebsiella pneumoniae , Lipopolysaccharides , Promoter Regions, Genetic , Repressor Proteins , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/drug effects , Lipopolysaccharides/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Iron/metabolism , Binding Sites , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism
6.
Annu Rev Microbiol ; 73: 1-15, 2019 09 08.
Article in English | MEDLINE | ID: mdl-31500534

ABSTRACT

Mary Osborn was a native Californian. She was an undergraduate at the University of California, Berkeley, where she worked in the laboratory of I.L. Chaikoff. She received her PhD at the University of Washington, where her work on the role of folic acid coenzymes in one-carbon metabolism revealed the mechanism of action of methotrexate. After postdoctoral training with Bernard Horecker in the Department of Microbiology at New York University (NYU), she embarked on her research career as a faculty member in the NYU Department of Microbiology and in the Department of Molecular Biology at Albert Einstein College of Medicine. In 1968 she moved as one of the founding faculty of the new medical school of the University of Connecticut, where she remained until her retirement in 2014. Her research was focused on the biosynthesis of the endotoxin lipopolysaccharide (LPS) of gram-negative bacteria and on the assembly of the bacterial cell envelope. She made seminal contributions in these areas. She was the recipient of numerous honors and served as president of several important scientific organizations. Later in her career she served as chair of the National Research Council Committee on Space Biology and Medicine, advisory to the National Aeronautics and Space Administration (NASA), which produced an influential report that plotted the path for NASA's space biology research program in the first decade of the twenty-first century. Dr. Osborn died on Jan. 17, 2019.


Subject(s)
Bacteriology/history , Gram-Negative Bacteria/metabolism , Lipopolysaccharides/biosynthesis , Bacteriology/trends , Gram-Negative Bacteria/genetics , History, 20th Century , History, 21st Century , United States
7.
PLoS Genet ; 17(12): e1009586, 2021 12.
Article in English | MEDLINE | ID: mdl-34941903

ABSTRACT

The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target.


Subject(s)
Cell Wall/genetics , Escherichia coli Proteins/genetics , Lipopolysaccharides/genetics , Oxidoreductases/genetics , Peptidoglycan/genetics , Cell Division/genetics , Cell Membrane/genetics , Cell Membrane/microbiology , Cell Wall/microbiology , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/genetics , Lipopolysaccharides/biosynthesis , Mutagenesis , Phospholipids/biosynthesis , Phospholipids/genetics
8.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273220

ABSTRACT

Outer membrane vesicles (OMVs) are nanostructures derived from the outer membrane of Gram-negative bacteria. We previously demonstrated that vaccination with endotoxin-free OMVs isolated from an Acinetobacter baumannii strain lacking lipooligosaccharide (LOS) biosynthesis, due to a mutation in lpxD, provides full protection in a murine sepsis model. The present study characterizes the protein content of highly-purified OMVs isolated from LOS-replete and LOS-deficient strains. Four purification methods were evaluated to obtain highly purified OMV preparations: ultracentrifugation, size exclusion chromatography (SEC), ultracentrifugation followed by SEC, and Optiprep™. OMVs from each method were characterized using nanoparticle tracking analysis and electron microscopy. OMVs from LOS-deficient and LOS-replete strains purified using the Optiprep™ method were subjected to LC-MS/MS analysis to determine protein content. Significant differences in protein composition between OMVs from LOS-deficient and LOS-replete strains were found. Computational analyses using Bepipred 3.0 and SEMA 2.0 indicated that the lack of LOS led to the overexpression of immunogenic proteins found in LOS-containing OMVs and the presence of immune-stimulating proteins absent in LOS-replete OMVs. These findings have important implications for developing OMV-based vaccines against A. baumannii, using both LOS-containing and LOS-free OMVs preparations.


Subject(s)
Acinetobacter baumannii , Bacterial Outer Membrane Proteins , Lipopolysaccharides , Acinetobacter baumannii/metabolism , Acinetobacter baumannii/genetics , Lipopolysaccharides/biosynthesis , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Acinetobacter Infections/microbiology , Animals , Mice , Tandem Mass Spectrometry , Bacterial Outer Membrane/metabolism
9.
Int J Mol Sci ; 25(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39273173

ABSTRACT

Escherichia coli O157:H7 (E. coli O157) is known for causing severe foodborne illnesses such as hemorrhagic colitis and hemolytic uremic syndrome. Although E. coli O157 is typically regarded as an extracellular pathogen and a weak biofilm producer, some E. coli O157 strains, including a clinical strain ATCC 43895, exhibit a notable ability to invade bovine crypt cells and other epithelial cells, as well as to form robust biofilm. This invasive strain persists in the bovine host significantly longer than non-invasive strains. Various surface-associated factors, including lipopolysaccharides (LPS), flagella, and other adhesins, likely contribute to this enhanced invasiveness and biofilm formation. In this study, we constructed a series of LPS-core deletion mutations (waaI, waaG, waaF, and waaC) in E. coli O157 ATCC 43895, resulting in stepwise truncations of the LPS. This approach enabled us to investigate the effects on the biosynthesis of key surface factors, such as flagella and curli, and the ability of this invasive strain to invade host cells. We confirmed the LPS structure and found that all LPS-core mutants failed to form biofilms, highlighting the crucial role of core oligosaccharides in biofilm formation. Additionally, the LPS inner-core mutants ΔwaaF and ΔwaaC lost the ability to produce flagella and curli. Furthermore, these inner-core mutants exhibited a dramatic reduction in adherence to and invasion of epithelial cells (MAC-T), showing an approximately 100-fold decrease in cell invasion compared with the outer-core mutants (waaI and waaG) and the wild type. These findings underscore the critical role of LPS-core truncation in impairing flagella and curli biosynthesis, thereby reducing the invasion capability of E. coli O157 ATCC 43895.


Subject(s)
Biofilms , Escherichia coli O157 , Flagella , Lipopolysaccharides , Flagella/metabolism , Flagella/genetics , Lipopolysaccharides/biosynthesis , Escherichia coli O157/genetics , Escherichia coli O157/metabolism , Escherichia coli O157/physiology , Biofilms/growth & development , Animals , Cattle , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Bacterial Adhesion , Epithelial Cells/microbiology , Epithelial Cells/metabolism
10.
Mol Microbiol ; 116(2): 589-605, 2021 08.
Article in English | MEDLINE | ID: mdl-33949015

ABSTRACT

Surface proteins of Staphylococcus aureus play vital roles in bacterial physiology and pathogenesis. Recent work suggests that surface proteins are spatially regulated by a YSIRK/GXXS signal peptide that promotes cross-wall targeting at the mid-cell, though the mechanisms remain unclear. We previously showed that protein A (SpA), a YSIRK/GXXS protein and key staphylococcal virulence factor, mis-localizes in a ltaS mutant deficient in lipoteichoic acid (LTA) production. Here, we identified that SpA contains another cross-wall targeting signal, the LysM domain, which, in addition to the YSIRK/GXXS signal peptide, significantly enhances SpA cross-wall targeting. We show that LTA synthesis, but not LtaS, is required for SpA septal anchoring and cross-wall deposition. Interestingly, LTA is predominantly found at the peripheral cell membrane and is diminished at the septum of dividing staphylococcal cells, suggesting a restriction mechanism for SpA septal localization. Finally, we show that D-alanylation of LTA abolishes SpA cross-wall deposition by disrupting SpA distribution in the peptidoglycan layer without altering SpA septal anchoring. Our study reveals that multiple factors contribute to the spatial regulation and cross-wall targeting of SpA via different mechanisms, which coordinately ensures efficient incorporation of surface proteins into the growing peptidoglycan during the cell cycle.


Subject(s)
Lipopolysaccharides/biosynthesis , Peptidoglycan/biosynthesis , Protein Sorting Signals/physiology , Staphylococcal Protein A/metabolism , Staphylococcus aureus/metabolism , Teichoic Acids/biosynthesis , Cell Cycle/physiology , Cell Membrane/metabolism , Cell Wall/metabolism , Membrane Proteins/metabolism , Protein Domains
11.
Biotechnol Appl Biochem ; 69(3): 1080-1093, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33928676

ABSTRACT

Many genes in the biosynthetic pathway of lipopolysaccharide in Cronobacter sakazakii have not been identified. In this study, we demonstrate that an operon containing four genes ESA_RS18945, ESA_RS18950, ESA_RS18955, and ESA_RS18960 is responsible for L-glycero-D-mannoheptose addition on the inner core of lipopolysaccharide in C. sakazakii. The proteins encoded by these four genes are homologous to E. coli WaaQ, WaaC, WaaF, and WaaD. Lipopolysaccharide from the deletion mutants of ESA_RS18945, ESA_RS18950, ESA_RS18955, and ESA_RS18960 (named as Ć¢Ā–Ā³RS18945, Ć¢Ā–Ā³RS18950, Ć¢Ā–Ā³RS18955 and Ć¢Ā–Ā³RS18960, respectively) were analyzed by SDS-PAGE. Ć¢Ā–Ā³RS18945 synthesized lipopolysaccharide with similar length to the wildtype BAA-894, whereas Ć¢Ā–Ā³RS18950, Ć¢Ā–Ā³RS18955, and Ć¢Ā–Ā³RS18960 synthesized much shorter lipopolysaccharide. This suggests that the enzyme encoded by ESA_RS18945 might function as E. coli WaaQ on the sidechain of lipopolysaccharide. When E. coli WaaC, WaaF, and WaaD were overexpressed in Ć¢Ā–Ā³RS18950, Ć¢Ā–Ā³RS18955, and Ć¢Ā–Ā³RS18960, respectively, the full length of lipopolysaccharide was recovered. Mass spectrometry analysis indicates that Ć¢Ā–Ā³RS18950 and Ć¢Ā–Ā³RS18960 only synthesized Kdo2 -lipid A, confirming that enzymes encoded by ESA_RS18950 and ESA_RS18960 have similar functions to E. coli WaaC and WaaD, respectively. Hep-Kdo2 -lipid A with a phosphoethanolamine was produced in Ć¢Ā–Ā³RS18955, suggesting that the enzyme encoded by ESA_RS18955 has similar function to E. coli WaaF.


Subject(s)
Cronobacter sakazakii , Lipopolysaccharides , Cronobacter sakazakii/genetics , Cronobacter sakazakii/metabolism , Escherichia coli/metabolism , Glycosyltransferases/metabolism , Lipid A/metabolism , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/genetics , Multigene Family/genetics
12.
Cell Mol Life Sci ; 78(1): 17-29, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32591860

ABSTRACT

The innate immune response constitutes the first line of defense against pathogens. It involves the recognition of pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), the production of inflammatory cytokines and the recruitment of immune cells to infection sites. Recently, ADP-heptose, a soluble intermediate of the lipopolysaccharide biosynthetic pathway in Gram-negative bacteria, has been identified by several research groups as a PAMP. Here, we recapitulate the evidence that led to this identification and discuss the controversy over the immunogenic properties of heptose 1,7-bisphosphate (HBP), another bacterial heptose previously defined as an activator of innate immunity. Then, we describe the mechanism of ADP-heptose sensing by alpha-protein kinase 1 (ALPK1) and its downstream signaling pathway that involves the proteins TIFA and TRAF6 and induces the activation of NF-κB and the secretion of inflammatory cytokines. Finally, we discuss possible delivery mechanisms of ADP-heptose in cells during infection, and propose new lines of thinking to further explore the roles of the ADP-heptose/ALPK1/TIFA axis in infections and its potential implication in the control of intestinal homeostasis.


Subject(s)
Heptoses/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Protein Kinases/metabolism , Cytokines/metabolism , Gram-Negative Bacteria/immunology , Gram-Negative Bacteria/metabolism , Humans , Immunity, Innate , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/chemistry , NF-kappa B/metabolism , Signal Transduction
13.
PLoS Genet ; 15(4): e1008114, 2019 04.
Article in English | MEDLINE | ID: mdl-30986243

ABSTRACT

Klebsiella pneumoniae has emerged as an important cause of two distinct public health threats: multi-drug resistant (MDR) healthcare-associated infections and drug susceptible community-acquired invasive infections. These pathotypes are generally associated with two distinct subsets of K. pneumoniae lineages or 'clones' that are distinguished by the presence of acquired resistance genes and several key virulence loci. Genomic evolutionary analyses of the most notorious MDR and invasive community-associated ('hypervirulent') clones indicate differences in terms of chromosomal recombination dynamics and capsule polysaccharide diversity, but it remains unclear if these differences represent generalised trends. Here we leverage a collection of >2200 K. pneumoniae genomes to identify 28 common clones (n ≥ 10 genomes each), and perform the first genomic evolutionary comparison. Eight MDR and 6 hypervirulent clones were identified on the basis of acquired resistance and virulence gene prevalence. Chromosomal recombination, surface polysaccharide locus diversity, pan-genome, plasmid and phage dynamics were characterised and compared. The data showed that MDR clones were highly diverse, with frequent chromosomal recombination generating extensive surface polysaccharide locus diversity. Additional pan-genome diversity was driven by frequent acquisition/loss of both plasmids and phage. In contrast, chromosomal recombination was rare in the hypervirulent clones, which also showed a significant reduction in pan-genome diversity, largely driven by a reduction in plasmid diversity. Hence the data indicate that hypervirulent clones may be subject to some sort of constraint for horizontal gene transfer that does not apply to the MDR clones. Our findings are relevant for understanding the risk of emergence of individual K. pneumoniae strains carrying both virulence and acquired resistance genes, which have been increasingly reported and cause highly virulent infections that are extremely difficult to treat. Specifically, our data indicate that MDR clones pose the greatest risk, because they are more likely to acquire virulence genes than hypervirulent clones are to acquire resistance genes.


Subject(s)
Drug Resistance, Bacterial/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Klebsiella pneumoniae/genetics , Virulence/genetics , Bacterial Capsules/genetics , Bacterial Capsules/metabolism , Bacteriophages/genetics , Cross Infection/drug therapy , Cross Infection/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genetic Variation , Genome, Bacterial , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/genetics , Models, Genetic , Plasmids/genetics
14.
Int J Mol Sci ; 23(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35055170

ABSTRACT

Tuberculosis (TB) infection, caused by the airborne pathogen Mycobacterium tuberculosis (M.tb), resulted in almost 1.4 million deaths in 2019, and the number of deaths is predicted to increase by 20% over the next 5 years due to the COVID-19 pandemic. Upon reaching the alveolar space, M.tb comes into close contact with the lung mucosa before and after its encounter with host alveolar compartment cells. Our previous studies show that homeostatic, innate soluble components of the alveolar lining fluid (ALF) can quickly alter the cell envelope surface of M.tb upon contact, defining subsequent M.tb-host cell interactions and infection outcomes in vitro and in vivo. We also demonstrated that ALF from 60+ year old elders (E-ALF) vs. healthy 18- to 45-year-old adults (A-ALF) is dysfunctional, with loss of homeostatic capacity and impaired innate soluble responses linked to high local oxidative stress. In this study, a targeted transcriptional assay shows that M.tb exposure to human ALF alters the expression of its cell envelope genes. Specifically, our results indicate that A-ALF-exposed M.tb upregulates cell envelope genes associated with lipid, carbohydrate, and amino acid metabolism, as well as genes associated with redox homeostasis and transcriptional regulators. Conversely, M.tb exposure to E-ALF shows a lesser transcriptional response, with most of the M.tb genes unchanged or downregulated. Overall, this study indicates that M.tb responds and adapts to the lung alveolar environment upon contact, and that the host ALF status, determined by factors such as age, might play an important role in determining infection outcome.


Subject(s)
Bacterial Capsules/genetics , Bacterial Capsules/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Adolescent , Adult , Age Factors , Aged , Bronchoalveolar Lavage Fluid , Cellular Structures , Female , Gene Expression Regulation, Bacterial , Humans , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/genetics , Male , Mannosides/biosynthesis , Mannosides/genetics , Mannosyltransferases/biosynthesis , Mannosyltransferases/genetics , Middle Aged , Young Adult
15.
J Bacteriol ; 203(10)2021 04 21.
Article in English | MEDLINE | ID: mdl-33685973

ABSTRACT

Porphyromonas gingivalis, a bacterial pathogen contributing to human periodontitis, exports and anchors cargo proteins to its surface, enabling the production of black pigmentation using a type IX secretion system (T9SS) and conjugation to anionic lipopolysaccharide (A-LPS). To determine whether T9SS components need to be assembled in situ for correct secretion and A-LPS modification of cargo proteins, combinations of nonpigmented mutants lacking A-LPS or a T9SS component were mixed to investigate in trans complementation. Reacquisition of pigmentation occurred only between an A-LPS mutant and a T9SS mutant, which coincided with A-LPS modification of cargo proteins detected by Western blotting and coimmunoprecipitation/quantitative mass spectrometry. Complementation also occurred using an A-LPS mutant mixed with outer membrane vesicles (OMVs) or purified A-LPS. Fluorescence experiments demonstrated that OMVs can fuse with and transfer lipid to P. gingivalis, leading to the conclusion that complementation of T9SS function occurred through A-LPS transfer between cells. None of the two-strain crosses involving only the five T9SS OM component mutants produced black pigmentation, implying that the OM proteins cannot be transferred in a manner that restores function and surface pigmentation, and hence, a more ordered temporal in situ assembly of T9SS components may be required. Our results show that LPS can be transferred between cells or between cells and OMVs to complement deficiencies in LPS biosynthesis and hemin-related pigmentation to reveal a potentially new mechanism by which the oral microbial community is modulated to produce clinical consequences in the human host.IMPORTANCEPorphyromonas gingivalis is a keystone pathogen contributing to periodontitis in humans, leading to tooth loss. The oral microbiota is essential in this pathogenic process and changes from predominantly Gram-positive (health) to predominantly Gram-negative (disease) species. P. gingivalis uses its type IX secretion system (T9SS) to secrete and conjugate virulence proteins to anionic lipopolysaccharide (A-LPS). This study investigated whether components of this secretion system could be complemented and found that it was possible for A-LPS biosynthetic mutants to be complemented in trans both by strains that had the A-LPS on the cell surface and by exogenous sources of A-LPS. This is the first known example of LPS exchange in a human bacterial pathogen which causes disease through complex microbiota-host interactions.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems/metabolism , Lipopolysaccharides/metabolism , Porphyromonas gingivalis/metabolism , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Secretion Systems/genetics , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/genetics , Mutation , Pigmentation/genetics , Porphyromonas gingivalis/genetics
16.
J Biol Chem ; 295(12): 4024-4034, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32047114

ABSTRACT

The cell envelope of Gram-positive bacteria generally comprises two types of polyanionic polymers linked to either peptidoglycan (wall teichoic acids; WTA) or to membrane glycolipids (lipoteichoic acids; LTA). In some bacteria, including Bacillus subtilis strain 168, both WTA and LTA are glycerolphosphate polymers yet are synthesized through different pathways and have distinct but incompletely understood morphogenetic functions during cell elongation and division. We show here that the exolytic sn-glycerol-3-phosphodiesterase GlpQ can discriminate between B. subtilis WTA and LTA. GlpQ completely degraded unsubstituted WTA, which lacks substituents at the glycerol residues, by sequentially removing glycerolphosphates from the free end of the polymer up to the peptidoglycan linker. In contrast, GlpQ could not degrade unsubstituted LTA unless it was partially precleaved, allowing access of GlpQ to the other end of the polymer, which, in the intact molecule, is protected by a connection to the lipid anchor. Differences in stereochemistry between WTA and LTA have been suggested previously on the basis of differences in their biosynthetic precursors and chemical degradation products. The differential cleavage of WTA and LTA by GlpQ reported here represents the first direct evidence that they are enantiomeric polymers: WTA is made of sn-glycerol-3-phosphate, and LTA is made of sn-glycerol-1-phosphate. Their distinct stereochemistries reflect the dissimilar physiological and immunogenic properties of WTA and LTA. It also enables differential degradation of the two polymers within the same envelope compartment in vivo, particularly under phosphate-limiting conditions, when B. subtilis specifically degrades WTA and replaces it with phosphate-free teichuronic acids.


Subject(s)
Bacterial Proteins/metabolism , Lipopolysaccharides/metabolism , Phosphoric Diester Hydrolases/metabolism , Teichoic Acids/metabolism , Bacillus subtilis/drug effects , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Cell Wall/metabolism , Glycerophosphates/chemistry , Glycerophosphates/metabolism , Glycosylation , Lipopolysaccharides/biosynthesis , Phosphoric Diester Hydrolases/genetics , Polymers/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Sodium Compounds/chemistry , Stereoisomerism , Substrate Specificity , Teichoic Acids/biosynthesis
17.
Infect Immun ; 89(2)2021 01 19.
Article in English | MEDLINE | ID: mdl-33139386

ABSTRACT

S-Ribosylhomocysteinase (LuxS) is required for the synthesis of the autoinducer-2 (AI-2) quorum-sensing signaling molecule in many Gram-negative bacteria. The bovine (and ovine) opportunistic pathogen Histophilus somni contains luxS and forms a biofilm containing an exopolysaccharide (EPS) in the matrix. Since biofilm formation is regulated by quorum sensing in many bacteria, the roles of luxS in H. somni virulence and biofilm formation were investigated. Although culture supernatants from H. somni were ineffective at inducing bioluminescence in the Vibrio harveyi reporter strain BB170, H. somniluxS complemented the biosynthesis of AI-2 in the luxS-deficient Escherichia coli strain DH5α. H. somni strain 2336 luxS was inactivated by transposon mutagenesis. RNA expression profiles revealed that many genes were significantly differentially expressed in the luxS mutant compared to that in the wild-type, whether the bacteria were grown planktonically or in a biofilm. Furthermore, the luxS mutant had a truncated and asialylated lipooligosaccharide (LOS) and was substantially more serum sensitive than the wild-type. Not surprisingly, the luxS mutant was attenuated in a mouse model for H. somni virulence, and some of the altered phenotypes were partially restored after the mutation was complemented with a functional luxS However, no major differences were observed between the wild-type and the luxS mutant in regard to outer membrane protein profiles, biofilm formation, EPS production, or intracellular survival. These results indicate that luxS plays a role in H. somni virulence in the context of LOS biosynthesis but not biofilm formation or other phenotypic properties examined.


Subject(s)
Bacterial Proteins/immunology , Carbon-Sulfur Lyases/immunology , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/immunology , Pasteurellaceae Infections/immunology , Pasteurellaceae/genetics , Pasteurellaceae/immunology , Pasteurellaceae/pathogenicity , Virulence/immunology , Animals , Bacterial Proteins/genetics , Biofilms , Carbon-Sulfur Lyases/genetics , Cattle , Disease Models, Animal , Genetic Variation , Genotype , Humans , Mice , Pasteurellaceae Infections/genetics , Quorum Sensing/immunology , Sheep
18.
Microb Cell Fact ; 20(1): 227, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930257

ABSTRACT

BACKGROUND: The various advantages associated with the growth properties of Escherichia coli have justified their use in the production of genetically engineered vaccines. However, endotoxin contamination, plasmid vector instability, and the requirement for antibiotic supplementation are frequent bottlenecks in the successful production of recombinant proteins that are safe for industrial-scaled applications. To overcome these drawbacks, we focused on interrupting the expression of several key genes involved in the synthesis of lipopolysaccharide (LPS), an endotoxin frequently responsible for toxicity in recombinant proteins, to eliminate endotoxin contamination and produce better recombinant proteins with E. coli. RESULTS: Of 8 potential target genes associated with LPS synthesis, we successfully constructed 7 LPS biosynthesis-defective recombinant strains to reduce the production of LPS. The endotoxin residue in the protein products from these modified E. coli strains were about two orders of magnitude lower than that produced by the wild-type strain. Further, we found that 6 loci-lpxM, lpxP, lpxL, eptA, gutQ and kdsD-were suitable for chromosomal integrated expression of HPV L1 protein. We found that a single copy of the expression cassette conferred stable expression during long-term antibiotic-free cultivation as compared with the more variable protein production from plasmid-based expression. In large-scale fermentation, we found that recombinant strains bearing 3 to 5 copies of the expression cassette had 1.5- to 2-fold higher overall expression along with lower endotoxin levels as compared with the parental ER2566 strain. Finally, we engineered and constructed 9 recombinant E. coli strains for the later production of an HPV 9-valent capsid protein with desirable purity, VLP morphology, and antigenicity. CONCLUSIONS: Reengineering the LPS synthesis loci in the E. coli ER2566 strain through chromosomal integration of expression cassettes has potential uses for the production of a 9-valent HPV vaccine candidate, with markedly reduced residual endotoxin levels. Our results offer a new strategy for recombinant E. coli strain construction, engineering, and the development of suitable recombinant protein drugs.


Subject(s)
Biosynthetic Pathways/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genomics/methods , Lipopolysaccharides/analysis , Lipopolysaccharides/genetics , Papillomavirus Vaccines/genetics , Escherichia coli Proteins/genetics , Genetic Engineering/methods , Lipopolysaccharides/biosynthesis , Papillomavirus Vaccines/immunology , Plasmids , Recombinant Proteins/metabolism
19.
Proc Natl Acad Sci U S A ; 115(26): 6834-6839, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29735709

ABSTRACT

New drugs are needed to treat gram-negative bacterial infections. These bacteria are protected by an outer membrane which prevents many antibiotics from reaching their cellular targets. The outer leaflet of the outer membrane contains LPS, which is responsible for creating this permeability barrier. Interfering with LPS biogenesis affects bacterial viability. We developed a cell-based screen that identifies inhibitors of LPS biosynthesis and transport by exploiting the nonessentiality of this pathway in Acinetobacter We used this screen to find an inhibitor of MsbA, an ATP-dependent flippase that translocates LPS across the inner membrane. Treatment with the inhibitor caused mislocalization of LPS to the cell interior. The discovery of an MsbA inhibitor, which is universally conserved in all gram-negative bacteria, validates MsbA as an antibacterial target. Because our cell-based screen reports on the function of the entire LPS biogenesis pathway, it could be used to identify compounds that inhibit other targets in the pathway, which can provide insights into vulnerabilities of the gram-negative cell envelope.


Subject(s)
ATP-Binding Cassette Transporters/antagonists & inhibitors , Acinetobacter baumannii/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Lipopolysaccharides/biosynthesis , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lipopolysaccharides/genetics
20.
Foodborne Pathog Dis ; 18(8): 599-606, 2021 08.
Article in English | MEDLINE | ID: mdl-34403268

ABSTRACT

Salmonella is a global foodborne pathogen that causes human diseases ranging from mild gastroenteritis to severe systemic infections. Recently, antimicrobial blue light (aBL) showed effective bactericidal activity against a variety of bacteria (e.g., Salmonella) with varying efficiency. However, the antimicrobial mechanism of aBL has not been fully elucidated. Our previous report showed that the outer membrane (OM) is a key target of aBL. The major component of the OM, lipopolysaccharide (LPS), may play a role in aBL bactericidal effect. Therefore, the influence of LPS truncation on the sensitivity of Salmonella Typhimurium SL1344 to aBL was investigated for the first time. First, the rfaC gene in the SL1344 strain likely involved in linking lipid A to the core region of LPS was inactivated and the influence on LPS structure was verified in the mutant strain SL1344ΔrfaC. SL1344ΔrfaC showed a significant increase in sensitivity to aBL, and the bactericidal efficiency exceeded 8 log CFU at an aBL dose of 383 J/cm2, while that of its parental SL1344 strain approached 4 log CFU. To discover the possible mechanism of higher sensitivity, the permeability of OM was determined. Compared to SL1344, SL1344ΔrfaC showed 2.7-fold higher permeability of the OM at 20 J/cm2, this may explain the higher vulnerability of the OM to aBL. Furthermore, the fatty acid profile was analyzed to reveal the detailed changes in the OM and inner membrane of the mutant. Results showed that the membrane lipids of SL1344ΔrfaC were markedly different to SL1344, indicating that change in fatty acid profile might mediate the enhancement of OM permeability and the increased sensitivity to aBL in SL1344ΔrfaC. Hence, we concluded that disruption of rfaC in Salmonella Typhimurium led to the formation of truncated LPS and thus enhanced the permeability of the OM, which contributed to the increased sensitivity to aBL.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bacterial Outer Membrane Proteins/radiation effects , Phototherapy/methods , Salmonella typhimurium/genetics , Salmonella typhimurium/radiation effects , Bacterial Outer Membrane Proteins/metabolism , Cell Membrane Permeability/radiation effects , Humans , Lipopolysaccharides/biosynthesis , Microbial Viability , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL