Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.401
Filter
1.
Bioorg Chem ; 150: 107539, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38861912

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignant tumor that occurs in the liver, with a high degree of malignancy and relatively poor prognosis. Gypenoside L has inhibitory effects on liver cancer cells. However, its mechanism of action is still unclear. This study aims to investigate the inhibitory effects of gypenoside L on HCC in vitro and in vivo, and explore its potential mechanisms. The results showed that gypenoside L reduced the cholesterol and triglyceride content in HepG2 and Huh-7 cells, inhibited cell proliferation, invasion and metastasis, arrested cell cycle at G0/G1 phase, promoted cell apoptosis. Mechanistically, it targeted the transcription factor SREPB2 to inhibit the expression of HMGCS1 protein and inhibited the downstream proteins HMGCR and MVK, thereby regulating the mevalonate (MVA) pathway. Overexpression HMGCS1 led to significant alterations in the cholesterol metabolism pathway of HCC, which mediated HCC cell proliferation and conferred resistance to the therapeutic effect of gypenoside L. In vivo, gypenoside L effectively suppressed HCC growth in tumor-bearing mice by reducing cholesterol production, exhibiting favorable safety profiles and minimal toxic side effects. Gypenoside L modulated cholesterol homeostasis, enhanced expression of inflammatory factors by regulating MHC I pathway-related proteins to augment anticancer immune responses. Clinical samples from HCC patients also exhibited high expression levels of MVA pathway-related genes in tumor tissues. These findings highlight gypenoside L as a promising agent for targeting cholesterol metabolism in HCC while emphasizing the effectiveness of regulating the SREBP2-HMGCS1 axis as a therapeutic strategy.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Gynostemma , Liver Neoplasms , Sterol Regulatory Element Binding Protein 2 , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Gynostemma/chemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism , Sterol Regulatory Element Binding Protein 2/antagonists & inhibitors , Cell Proliferation/drug effects , Animals , Mice , Dose-Response Relationship, Drug , Molecular Structure , Drug Screening Assays, Antitumor , Apoptosis/drug effects , Structure-Activity Relationship , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Mice, Inbred BALB C , Mice, Nude , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Liver Neoplasms, Experimental/metabolism , Plant Extracts
2.
Toxicol Mech Methods ; 34(7): 750-760, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38577837

ABSTRACT

This study aimed to investigate the effects of Tarantula cubensis alcohol extract (TCAE, Theranekron) and Sorafenib (S) treatments on carcinogenesis, apoptosis and biochemical profile of rats with experimentally induced hepatocellular carcinoma (HCC). In the presented study, 58 male rats were divided into 7 groups; Negative Control (NC, n = 6), NC + TCAE (NCT, n = 6), NC + Sorafenib (NCS, n = 6), Positive Control (PC, n = 10), Positive Control + TCAE (PCT, n = 10), Positive Control + Sorafenib (PCS, n = 10), Positive Control + TCAE + Sorafenib (PCTS, n = 10). The active ingredients Diethylnitrosamine (DEN, 120 mg/kg, single dose) and Nitrosomorpholine (NMOR, 50 ppm, 21 weeks orally) were used to induce HCC in rats. At the end of the experiment, the animals were euthanized under appropriate conditions and samples were collected for biochemical and pathological investigations. In the PC group, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT) levels were higher (p < 0.001) and urea levels were lower (p < 0.001) compared to all other groups. Treatment groups reorganized the relevant markers (ALT, AST, GGT, and urea). A significant increase was detected in Caspase-10, Caspase-3 and Granzyme-B (GrzB) (p < 0.001) in blood and Caspase-10 and GrzB (p < 0.05) in liver tissue in PCT, PCS and PCTS groups compared to the PC group. Histopathological examination revealed that the PC group showed cancer morphology, and the treatment groups caused a decrease in tumor incidence and size. Our current findings suggest that the mechanism of action of TCAE in HCC is through the NKs/CTLs-GrzB-Casp10-Casp3 signaling pathway and can be used in combination with chemotherapy drugs for the development of future drug designs.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Diethylnitrosamine , Sorafenib , Animals , Sorafenib/pharmacology , Male , Apoptosis/drug effects , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Diethylnitrosamine/toxicity , Plant Extracts/pharmacology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/pathology , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms/chemically induced , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Rats , Liver/drug effects , Liver/pathology , Liver/metabolism , Antineoplastic Agents/pharmacology , Nitrosamines/toxicity
3.
Apoptosis ; 28(7-8): 1184-1197, 2023 08.
Article in English | MEDLINE | ID: mdl-37179285

ABSTRACT

This study was designed to assess the ameliorative effects of eugenol and to propose the possible mechanisms of action of eugenol in diethylnitrosamine (DENA)/acetylaminofluorene (AAF)-caused lung cancer in Wistar rats. To induce lung cancer, DENA at a dose of 150 mg/kg body weight (b.wt) for 2 weeks were intraperitoneally injected once each week and AAF was administered orally at a dose of 20 mg/kg b.wt. four times each week for the next 3 weeks. DENA/AAF-administered rats were orally supplemented with eugenol at a dose of 20 mg/kg b.wt administered once a day until 17 weeks starting from the 1st week of DENA administration. Lung histological lesions, including sheets of tumor cells, micropapillary adenocarcinoma, and apoptotic cells, resulting from the DENA/AAF dosage, were ameliorated by eugenol treatment. However, a significant drop in the levels of LPO in the lungs and a remarkable rise in GSH content and GPx and SOD activities were observed in DENA/AAF-administered rats treated with eugenol compared with those in DENA/AAF-administered controls. Moreover, in DENA/AAF-administered rats, eugenol supplementation significantly reduced TNF-α and IL-1ß levels and mRNA expression levels of NF-κB, NF-κB p65, and MCP-1 but significantly elevated the level of Nrf2. Furthermore, the DENA/AAF-administered rats treated with eugenol exhibited a significant downregulation of Bcl-2 expression levels in addition to a significant upregulation in P53 and Bax expression levels. Otherwise, the administration of DENA/AAF elevated the protein expression level of Ki-67, and this elevation was reversed by eugenol treatment. In conclusion, eugenol has effective antioxidant, anti-inflammatory, proapoptotic, and antiproliferative properties against lung cancer.


Subject(s)
Anticarcinogenic Agents , Liver Neoplasms, Experimental , Lung Neoplasms , Rats , Animals , Rats, Wistar , Anticarcinogenic Agents/pharmacology , Anticarcinogenic Agents/therapeutic use , 2-Acetylaminofluorene/adverse effects , 2-Acetylaminofluorene/metabolism , Diethylnitrosamine/toxicity , Diethylnitrosamine/metabolism , Eugenol/adverse effects , NF-kappa B/genetics , NF-kappa B/metabolism , Apoptosis , Lung Neoplasms/chemically induced , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Liver/pathology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology
4.
Am J Pathol ; 192(1): 87-103, 2022 01.
Article in English | MEDLINE | ID: mdl-34717896

ABSTRACT

Alcohol is a well-known risk factor for hepatocellular carcinoma. Autophagy plays a dual role in liver cancer, as it suppresses tumor initiation and promotes tumor progression. Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy, which is impaired in alcohol-related liver disease. However, the role of TFEB in alcohol-associated liver carcinogenesis is unknown. Liver-specific Tfeb knockout (KO) mice and their matched wild-type (WT) littermates were injected with the carcinogen diethylnitrosamine (DEN), followed by chronic ethanol feeding. The numbers of both total and larger tumors increased significantly in DEN-treated mice fed ethanol diet than in mice fed control diet. Although the number of tumors was not different between WT and L-Tfeb KO mice fed either control or ethanol diet, the number of larger tumors was less in L-Tfeb KO mice than in WT mice. No differences were observed in liver injury, steatosis, inflammation, ductular reaction, fibrosis, and tumor cell proliferation in DEN-treated mice fed ethanol. However, the levels of glypican 3, a marker of malignant hepatocellular carcinoma, markedly decreased in DEN-treated L-Tfeb KO mice fed ethanol in comparison to the WT mice. These findings indicate that chronic ethanol feeding promotes DEN-initiated liver tumor development, which is attenuated by genetic deletion of hepatic TFEB.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/deficiency , Carcinogenesis/metabolism , Carcinogenesis/pathology , Ethanol/adverse effects , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Alcohol Drinking/adverse effects , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Diet, Western , Diethylnitrosamine , Gene Deletion , Inflammation/pathology , Liver/pathology , Liver/ultrastructure , Liver Cirrhosis/complications , Liver Neoplasms/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Tumor Burden
5.
Hepatology ; 74(6): 3037-3055, 2021 12.
Article in English | MEDLINE | ID: mdl-34292642

ABSTRACT

BACKGROUND AND AIMS: Insulin receptor (IR) transduces cell surface signal through phosphoinositide 3-kinase (PI3K)-AKT pathways or translocates to the nucleus and binds to the promoters to regulate genes associated with insulin actions, including de novo lipogenesis (DNL). Chronic activation of IR signaling drives malignant transformation, but the underlying mechanisms remain poorly defined. Down-regulation of fructose-1,6-bisphosphate aldolase (ALDO) B in hepatocellular carcinoma (HCC) is correlated with poor prognosis. We aim to study whether and how ALDOB is involved in IR signaling in HCC. APPROACH AND RESULTS: Global or liver-specific ALDOB knockout (L-ALDOB-/- ) mice were used in N-diethylnitrosamine (DEN)-induced HCC models, whereas restoration of ALDOB expression was achieved in L-ALDOB-/- mice by adeno-associated virus (AAV). 13 C6 -glucose was employed in metabolic flux analysis to track the de novo fatty acid synthesis from glucose, and nontargeted lipidomics and targeted fatty acid analysis using mass spectrometry were performed. We found that ALDOB physically interacts with IR and attenuates IR signaling through down-regulating PI3K-AKT pathways and suppressing IR nuclear translocation. ALDOB depletion or disruption of IR/ALDOB interaction in ALDOB mutants promotes DNL and tumorigenesis, which is significantly attenuated with ALDOB restoration in L-ALDOB-/- mice. Notably, attenuated IR/ALDOB interaction in ALDOB-R46A mutant exhibits more significant tumorigenesis than releasing ALDOB/AKT interaction in ALDOB-R43A, whereas knockdown IR sufficiently diminishes tumor-promoting effects in both mutants. Furthermore, inhibiting phosphorylated AKT or fatty acid synthase significantly attenuates HCC in L-ALDOB-/- mice. Consistently, ALDOB down-regulation is correlated with up-regulation of IR signaling and DNL in human HCC tumor tissues. CONCLUSIONS: Our study reports a mechanism by which loss of ALDOB activates IR signaling primarily through releasing IR/ALDOB interaction to promote DNL and HCC, highlighting a potential therapeutic strategy in HCC.


Subject(s)
Carcinogenesis/genetics , Fructose-Bisphosphate Aldolase/metabolism , Lipogenesis/genetics , Liver Neoplasms, Experimental/genetics , Receptor, Insulin/metabolism , Animals , Carcinogenesis/chemically induced , Carcinogenesis/pathology , Cell Line, Tumor , Diethylnitrosamine/administration & dosage , Down-Regulation , Fatty Acids/biosynthesis , Fructose-Bisphosphate Aldolase/genetics , Gene Expression Regulation, Neoplastic , Lipidomics , Liver/metabolism , Liver/pathology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Male , Mice, Knockout , Phosphorylation
6.
Hepatology ; 74(3): 1578-1594, 2021 09.
Article in English | MEDLINE | ID: mdl-33817801

ABSTRACT

BACKGROUND AND AIMS: Studies of the identity and pathophysiology of fibrogenic HSCs have been hampered by a lack of genetic tools that permit specific and inducible fate-mapping of these cells in vivo. Here, by single-cell RNA sequencing of nonparenchymal cells from mouse liver, we identified transcription factor 21 (Tcf21) as a unique marker that restricted its expression to quiescent HSCs. APPROACH AND RESULTS: Tracing Tcf21+ cells by Tcf21-CreER (Cre-Estrogen Receptor fusion protein under the control of Tcf21 gene promoter) targeted ~10% of all HSCs, most of which were located at periportal and pericentral zones. These HSCs were quiescent under steady state but became activated on injuries, generating 62%-67% of all myofibroblasts in fibrotic livers and ~85% of all cancer-associated fibroblasts (CAFs) in liver tumors. Conditional deletion of Transforming Growth Factor Beta Receptor 2 (Tgfbr2) by Tcf21-CreER blocked HSC activation, compromised liver fibrosis, and inhibited liver tumor progression. CONCLUSIONS: In conclusion, Tcf21-CreER-targeted perivenous stellate cells are the main source of myofibroblasts and CAFs in chronically injured livers. TGF-ß signaling links HSC activation to liver fibrosis and tumorigenesis.


Subject(s)
Cancer-Associated Fibroblasts/cytology , Hepatic Stellate Cells/cytology , Liver Cirrhosis, Experimental/pathology , Liver Diseases/pathology , Liver Neoplasms, Experimental/pathology , Myofibroblasts/cytology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bile Ducts/surgery , Carbon Tetrachloride/toxicity , Cell Lineage , Cholestasis , Chronic Disease , Hepatic Stellate Cells/metabolism , Hepatic Veins/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis, Experimental/metabolism , Liver Diseases/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/metabolism , Mice , Myofibroblasts/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Sequence Analysis, RNA , Single-Cell Analysis
7.
Hepatology ; 74(3): 1445-1460, 2021 09.
Article in English | MEDLINE | ID: mdl-33768568

ABSTRACT

BACKGROUND AND AIMS: Earlier diagnosis and treatment of intrahepatic cholangiocarcinoma (iCCA) are necessary to improve therapy, yet limited information is available about initiation and evolution of iCCA precursor lesions. Therefore, there is a need to identify mechanisms driving formation of precancerous lesions and their progression toward invasive tumors using experimental models that faithfully recapitulate human tumorigenesis. APPROACH AND RESULTS: To this end, we generated a mouse model which combines cholangiocyte-specific expression of KrasG12D with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced inflammation to mimic iCCA development in patients with cholangitis. Histological and transcriptomic analyses of the mouse precursor lesions and iCCA were performed and compared with human analyses. The function of genes overexpressed during tumorigenesis was investigated in human cell lines. We found that mice expressing KrasG12D in cholangiocytes and fed a DDC diet developed cholangitis, ductular proliferations, intraductal papillary neoplasms of bile ducts (IPNBs), and, eventually, iCCAs. The histology of mouse and human IPNBs was similar, and mouse iCCAs displayed histological characteristics of human mucin-producing, large-duct-type iCCA. Signaling pathways activated in human iCCA were also activated in mice. The identification of transition zones between IPNB and iCCA on tissue sections, combined with RNA-sequencing analyses of the lesions supported that iCCAs derive from IPNBs. We further provide evidence that tensin-4 (TNS4), which is stimulated by KRASG12D and SRY-related HMG box transcription factor 17, promotes tumor progression. CONCLUSIONS: We developed a mouse model that faithfully recapitulates human iCCA tumorigenesis and identified a gene cascade which involves TNS4 and promotes tumor progression.


Subject(s)
Bile Duct Neoplasms/genetics , Carcinoma, Ductal/genetics , Cholangiocarcinoma/genetics , Disease Models, Animal , Liver Neoplasms, Experimental/genetics , Mice , Tensins/genetics , Animals , Bile Duct Neoplasms/chemically induced , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Carcinoma, Ductal/chemically induced , Carcinoma, Ductal/metabolism , Carcinoma, Ductal/pathology , Carcinoma, Papillary/chemically induced , Carcinoma, Papillary/genetics , Carcinoma, Papillary/metabolism , Carcinoma, Papillary/pathology , Cholangiocarcinoma/chemically induced , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Cholangitis/chemically induced , Cholangitis/complications , HMGB Proteins/genetics , HMGB Proteins/metabolism , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Pyridines/toxicity , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , Signal Transduction , Tensins/metabolism
8.
Bioorg Chem ; 119: 105509, 2022 02.
Article in English | MEDLINE | ID: mdl-34844768

ABSTRACT

Hepatocellular carcinoma (HCC), the most prevalent liver cancer, is considered one of the most lethal malignancies with a dismal outcome. There is an urgent need to find novel therapeutic approaches to treat HCC. At present, natural products have served as a valuable source for drug discovery. Here, we obtained five known biflavones from the root of Stellera chamaejasme and evaluated their activities against HCC Hep3B cells in vitro. Chamaejasmenin E (CE) exhibited the strongest inhibitory effect among these biflavones. Furthermore, we found that CE could suppress the cell proliferation and colony formation, as well as the migration ability of HCC cells, but there was no significant toxicity on normal liver cells. Additionally, CE induced mitochondrial dysfunction and oxidative stress, eventually leading to cellular apoptosis. Mechanistically, the potential target of CE was predicted by database screening, showing that the compound might exert an inhibitory effect by targeting at c-Met. Next, this result was confirmed by molecular docking, cellular thermal shift assay (CETSA), as well as RT-PCR and Western blot analysis. Meanwhile, CE also reduced the downstream proteins of c-Met in HCC cells. In concordance with above results, CE is efficacious and non-toxic in tumor xenograft model. Taken together, our findings revealed an underlying tumor-suppressive mechanism of CE, which provided a foundation for identifying the target of biflavones.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Biflavonoids/pharmacology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Plant Extracts/pharmacology , Protein Kinase Inhibitors/pharmacology , Thymelaeaceae/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/isolation & purification , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Structure-Activity Relationship
9.
Arch Toxicol ; 96(6): 1829-1843, 2022 06.
Article in English | MEDLINE | ID: mdl-35267068

ABSTRACT

Farnesoid X receptor (FXR) plays an indispensable role in liver homeostasis and has been a promising drug target for hepatic diseases. However, the concerns of undesired biological actions limit the clinical applications of FXR agonists. To reveal the intrinsic mechanism of FXR agonist-induce hepatotoxicity, two typical FXR agonists with different structures (obeticholic acid (OCA) and Px-102) were investigated in the present study. By detecting MMP, ROS, and ATP and analyzing the fate of cells, we found that both OCA and Px-102 reduced the mitochondrial function of hepatocytes and promoted cell apoptosis. Gene ablation or inhibition of FXR or SHP ameliorated the cytotoxicities of OCA and Px-102, which indicated the adverse actions of FXR/SHP activation including down-regulation of phosphorylation of PI3K/AKT and functional hepatic genes. The dose-related injurious effects of OCA (10 mg/kg and 30 mg/kg) and Px-102 (5 mg/kg and 15 mg/kg) on the liver were confirmed on a high-fat diet mouse model. The decrease of hepatocyte-specific genes and augmenter of liver regeneration in the liver caused by OCA or Px-102 suggested an imbalance of liver regeneration and a disruption of hepatic functions. Exploration of intestinally biased FXR agonists or combination of FXR agonist with apoptosis inhibitor may be more beneficial strategies for liver diseases.


Subject(s)
Chenodeoxycholic Acid/analogs & derivatives , Liver Neoplasms, Experimental , Oxazoles , Receptors, Cytoplasmic and Nuclear , Animals , Apoptosis/drug effects , Chenodeoxycholic Acid/pharmacology , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Mice , Oxazoles/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction/drug effects
10.
Nucleic Acids Res ; 48(8): 4463-4479, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32083667

ABSTRACT

Endonuclease V (EndoV) is a conserved inosine-specific ribonuclease with unknown biological function. Here, we present the first mouse model lacking EndoV, which is viable without visible abnormalities. We show that endogenous murine EndoV cleaves inosine-containing RNA in vitro, nevertheless a series of experiments fails to link an in vivo function to processing of such transcripts. As inosine levels and adenosine-to-inosine editing often are dysregulated in hepatocellular carcinoma (HCC), we chemically induced HCC in mice. All mice developed liver cancer, however, EndoV-/- tumors were significantly fewer and smaller than wild type tumors. Opposed to human HCC, adenosine deaminase mRNA expression and site-specific editing were unaltered in our model. Loss of EndoV did not affect editing levels in liver tumors, however mRNA expression of a selection of cancer related genes were reduced. Inosines are also found in certain tRNAs and tRNAs are cleaved during stress to produce signaling entities. tRNA fragmentation was dysregulated in EndoV-/- livers and apparently, inosine-independent. We speculate that the inosine-ribonuclease activity of EndoV is disabled in vivo, but RNA binding allowed to promote stabilization of transcripts or recruitment of proteins to fine-tune gene expression. The EndoV-/- tumor suppressive phenotype calls for related studies in human HCC.


Subject(s)
Deoxyribonuclease (Pyrimidine Dimer)/genetics , Liver Neoplasms, Experimental/genetics , Adenosine/metabolism , Animals , Antineoplastic Agents/pharmacology , Carcinogenesis , Cell Line , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Gene Expression , Humans , Inosine/metabolism , Liver/metabolism , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Mice, Knockout , RNA Editing , RNA, Transfer/metabolism , Sequence Analysis, RNA , Sorafenib/pharmacology
11.
Molecules ; 27(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35011496

ABSTRACT

Fibroblast activation protein (FAP) is expressed in the microenvironment of most human epithelial tumors. 68Ga-labeled FAP inhibitors based on the cyanopyrrolidine structure (FAPI) are currently used for the detection of the tumor microenvironment by PET imaging. This research aimed to design, synthesize and preclinically evaluate a new FAP inhibitor radiopharmaceutical based on the 99mTc-((R)-1-((6-hydrazinylnicotinoyl)-D-alanyl) pyrrolidin-2-yl) boronic acid (99mTc-iFAP) structure for SPECT imaging. Molecular docking for affinity calculations was performed using the AutoDock software. The chemical synthesis was based on a series of coupling reactions of 6-hidrazinylnicotinic acid (HYNIC) and D-alanine to a boronic acid derivative. The iFAP was prepared as a lyophilized formulation based on EDDA/SnCl2 for labeling with 99mTc. The radiochemical purity (R.P.) was verified via ITLC-SG and reversed-phase radio-HPLC. The stability in human serum was evaluated by size-exclusion HPLC. In vitro cell uptake was assessed using N30 stromal endometrial cells (FAP positive) and human fibroblasts (FAP negative). Biodistribution and tumor uptake were determined in Hep-G2 tumor-bearing nude mice, from which images were acquired using a micro-SPECT/CT. The iFAP ligand (Ki = 0.536 nm, AutoDock affinity), characterized by UV-Vis, FT-IR, 1H-NMR and UPLC-mass spectroscopies, was synthesized with a chemical purity of 92%. The 99mTc-iFAP was obtained with a R.P. >98%. In vitro and in vivo studies indicated high radiotracer stability in human serum (>95% at 24 h), specific recognition for FAP, high tumor uptake (7.05 ± 1.13% ID/g at 30 min) and fast kidney elimination. The results found in this research justify additional dosimetric and clinical studies to establish the sensitivity and specificity of the 99mTc-iFAP.


Subject(s)
Endopeptidases/metabolism , Liver Neoplasms, Experimental , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Organotechnetium Compounds , Radiopharmaceuticals , Single Photon Emission Computed Tomography Computed Tomography , Technetium , Animals , Hep G2 Cells , Humans , Liver Neoplasms, Experimental/diagnostic imaging , Liver Neoplasms, Experimental/metabolism , Male , Mice , Mice, Inbred BALB C , Organotechnetium Compounds/chemistry , Organotechnetium Compounds/pharmacokinetics , Organotechnetium Compounds/pharmacology , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/pharmacology , Technetium/chemistry , Technetium/pharmacokinetics , Technetium/pharmacology
12.
J Am Chem Soc ; 143(28): 10709-10717, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34161724

ABSTRACT

Intracellular polymerization is an emerging technique that can potentially modulate cell behavior, but remains challenging because of the complexity of the cellular environment. Herein, taking advantage of the chemical properties of organotellurides and the intracellular redox environment, we develop a novel oxidative polymerization reaction that can be conducted in cells without external stimuli. We demonstrate that this polymerization reaction is triggered by the intracellular reactive oxygen species (ROS), thus selectively proceeding in cancer cells and inducing apoptosis via a unique self-amplification mechanism. The polymerization products are shown to disrupt intracellular antioxidant systems through interacting with selenoproteins, leading to greater oxidative stress that would further the oxidative polymerization and eventually activate ROS-related apoptosis pathways. The selective anticancer efficacy and biosafety of our strategy are proven both in vitro and in vivo. Ultimately, this study enables a new possibility for chemists to manipulate cellular proliferation and apoptosis through artificial chemical reactions.


Subject(s)
Antineoplastic Agents/therapeutic use , Antioxidants/metabolism , Liver Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antioxidants/chemistry , Cell Line , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Oxidation-Reduction , Particle Size , Polymerization
13.
Int J Cancer ; 148(11): 2815-2824, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33368276

ABSTRACT

The canonical Wnt signaling pathway is activated in numerous contexts, including normal and cancerous tissues. Here, we describe a synthetic cell-based therapeutic strategy that inhibits aberrant Wnt activity in specific focuses without interfering with the normal tissues in vivo. As a proof of principle, we generated a triple transgenic zebrafish liver cancer model that conditionally expressed human MET and induced ectopic Wnt signaling in hepatocytes. Then, we generated a customized synthetic Notch receptor (synNotch) cascade to express Wnt inhibitor DKK1 in Jurkat T cells and human peripheral blood mononuclear cells (PBMCs) after recognizing MET as antigen. After that, the synNotch PBMCs were sorted and microinjected into different tissues of the zebrafish model. In MET-expressing cancerous liver tissues, the injected cells expressed DKK1 and inhibited the local proliferation and Wnt activity; while in the yolk sac without MET, the injected cells remained inactive. Overall, our studies revealed the use of synthetic cells with antigen receptors to improve the spatiotemporal accuracy of anti-Wnt therapy, and proposed that the genetically humanized zebrafish model may serve as a small-scale and highly optically accessible platform for the functional evaluation of human synthetic cells.


Subject(s)
DNA-Binding Proteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Leukocytes, Mononuclear/transplantation , Liver Neoplasms, Experimental/therapy , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-myc/genetics , Synthetic Biology/methods , Zebrafish Proteins/genetics , Animals , Animals, Genetically Modified , Cell Proliferation , Cells, Cultured , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Jurkat Cells , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Mice , Mutation , Proof of Concept Study , Proto-Oncogene Proteins c-met/metabolism , Wnt Signaling Pathway , Xenograft Model Antitumor Assays , Zebrafish
14.
Biochem Biophys Res Commun ; 573: 1-8, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34375763

ABSTRACT

Hepatocellular carcinoma (HCC) is the major cause of liver cancer-associated morality. Metformin, used for treating type 2 diabetes, has antitumor activity and reduces the risk of some diabetes-related tumors, such as liver and breast cancer. However, the mechanisms underlying metformin's effects in HCC remain unclear. To identify genes associated with metformin treatment in HCC, we conducted transcriptomic and proteomic analyses in HCC cells treated with or without metformin. We identified 41 differentially expressed genes upon metformin treatment. Among them, Ataxin 7 Like 3B (ATXN7L3B), which is a negative regulator of the Spt-Ada-Gcn5 acetyltransferase (SAGA) deubiquitinase (DUB) module and has relatively unknown functions in cancer, attracted our attention. We observed that metformin reduced ATXN7L3B level in HCC cells. ATXN7L3B expression was significantly negatively correlated with survival in liver cancer patients. We also demonstrated that ATXN7L3B promoted HCC stemness. Metformin treatment decreased ATXN7L3B-induced tumor-initiating ability in a HCC mouse model, implying that metformin may inhibit cancer stemness by downregulating ATXN7L3B. Our study supports the antitumor activity of metformin and its potential as an anticancer drug for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Transcription Factors/metabolism , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cells, Cultured , Down-Regulation/drug effects , Female , Humans , Hypoglycemic Agents/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Metformin/pharmacology , Mice , Mice, Inbred BALB C , Mice, Nude , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics
15.
Am J Pathol ; 190(2): 469-483, 2020 02.
Article in English | MEDLINE | ID: mdl-31783009

ABSTRACT

Liver cancer is the third leading cause of cancer-related death worldwide. Herein, we show that miR-149* serves as a novel tumor suppressor for liver tumorigenesis. Mice with genetic deletion of miR-149* (miR-149*-/- mice), which caused loss of both miR-149 and miR-149*, were considerably more susceptible to acute liver injury and hepatic carcinogenesis induced by diethylnitrosamine than wild-type mice, accompanied by increased compensatory proliferation and up-regulated gene expression of certain inflammatory cytokines. miR-149* mimics dramatically impaired liver cancer cell proliferation and migration in vitro and blocked liver cancer progression in a xenograft model. Furthermore, miR-149* strongly suppressed NF-κB signaling and repressed tumor necrosis factor receptor type 1-associated death domain protein expression in the NF-κB signaling pathway. These results reveal that miR-149*, as a novel liver tumor suppressor, may serve as a potential therapeutic target for liver cancer treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms, Experimental/pathology , MicroRNAs/physiology , NF-kappa B/metabolism , TNF Receptor-Associated Death Domain Protein/metabolism , Alkylating Agents/toxicity , Animals , Biomarkers, Tumor/genetics , Cell Movement , Cell Proliferation , Diethylnitrosamine/toxicity , Lipopolysaccharides/toxicity , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , NF-kappa B/genetics , TNF Receptor-Associated Death Domain Protein/genetics , Tumor Cells, Cultured
16.
Mol Cell Biochem ; 476(2): 1195-1209, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33216253

ABSTRACT

Hepatocellular carcinoma (HCC) has been classified as one of the most common forms of liver cancer occurring worldwide, and risk factors include hepatitis B & C virus, alcoholism, and dietary carcinogens like aflatoxin B1 (AFB1), which is produced by fungus Aspergillus flavus and Aspergillus parasiticus. Metabolism of AFB1 resulted into the formation of AFB1-exo-8, 9-epoxide which is largely responsible for HCC development. So far conventional cytotoxic chemotherapy has not provided much benefit in HCC, necessitating the need for newer treatment modalities. Recent reports suggest that phosphodiesterase-5 inhibitors (PDE5i) may have anticancer activity, but till date, the anticancer property of PDE5i (tadalafil & sildenafil) has not been evaluated in HCC. The present study was aimed to define the anticancer property of tadalafil and sildenafil against AFB1-induced HCC rats. Rats were randomly divided into five groups with five rats in each group. Except normal control group, rats of all other groups were fed with 5% alcohol via drinking water for 3 weeks. After 3 weeks, two successive dose of AFB1 (1 mg/kg bw, ip) was administered on subsequent days followed by the administration of PDE5i (tadalafil & sildenafil, 10 mg/kg bw) along with drinking water after 6 weeks of treatment with AFB1 for 2 weeks. An in-depth investigation into its mechanistic aspect revealed that development of HCC induced by aflatoxin B1, decreased the mRNA expression and activity of antioxidant enzyme SOD, GPx, catalase, GR and GST, and GSH content with a concomitant increase in the level of lipid peroxidation. Post-treatment with PDE5 inhibitor (tadalafil & sildenafil) restored the above parameters towards normal, and this result was more effective in case of sildenafil. Thus, results from the above studies suggest that PDE5 inhibitors may act as anticancer agents by preventing the development and progression of HCC by modulating the key parameters of antioxidant pathway.


Subject(s)
Aflatoxin B1/toxicity , Antioxidants/metabolism , Carcinoma, Hepatocellular/prevention & control , Liver Neoplasms, Experimental/prevention & control , Sildenafil Citrate/pharmacology , Tadalafil/pharmacology , Vasodilator Agents/pharmacology , Animals , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Lipid Peroxidation/drug effects , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Male , Phosphodiesterase 5 Inhibitors/pharmacology , Poisons/toxicity , Rats
17.
J Pathol ; 250(2): 217-230, 2020 02.
Article in English | MEDLINE | ID: mdl-31650548

ABSTRACT

Aberrant expression of forkhead box C1 (FOXC1) promotes tumor metastasis in multiple human malignant tumors. However, the upstream modulating mode and downstream molecular mechanism of FOXC1 in metastasis of colorectal cancer (CRC) remain unclear. Herein we describe a systematic analysis of FOXC1 expression and prognosis in CRC performed on our clinical data and public databases, which indicated that FOXC1 upregulation in CRC samples was significantly associated with poor prognosis. FOXC1 knockdown inhibited migration and invasion, whereas FOXC1 overexpression caused the opposite phenotype in vitro and in vivo. Furthermore, MMP10, SOX4 and SOX13 were verified as the target genes of FOXC1 for promoting CRC metastasis. MMP10 was demonstrated as the direct target and mediator of FOXC1. Interestingly, Ser241 and Ser272 of FOXC1 were identified as the key sites to interact with p38 and phosphorylation, which were critically required for maintaining the stability of FOXC1 protein. Moreover, FOXC1 was dephosphorylated by protein phosphatase 2A and phosphorylated by p38, which maintained FOXC1 protein stability through inhibiting ubiquitination. Expression of p38 was correlated with FOXC1 and MMP10 expression, indirectly indicating that FOXC1 was regulated by p38 MAPK. Therefore, FOXC1 is strongly suggested as a pro-metastatic gene in CRC by transcriptionally activating MMP10, SOX4 and SOX13; p38 interacts with and phosphorylates the Ser241 and ser272 sites of FOXC1 to maintain its stability by inhibiting ubiquitination and degradation. In conclusion, the protein stability of FOXC1 mediated by p38 contributes to the metastatic effect in CRC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Colorectal Neoplasms/metabolism , Forkhead Transcription Factors/biosynthesis , p38 Mitogen-Activated Protein Kinases/physiology , Animals , Autoantigens/metabolism , Cell Movement , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA, Neoplasm/genetics , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/secondary , Matrix Metalloproteinase 10/metabolism , Mice, Nude , Neoplasm Invasiveness , Phosphorylation , Prognosis , SOXC Transcription Factors/metabolism , SOXD Transcription Factors/metabolism , Up-Regulation
18.
Bioorg Med Chem ; 50: 116466, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34700239

ABSTRACT

Based on the higher mitochondrial membrane potential (Δψm) of tumor cells than normal cells, a mitochondria-targeting strategy using delocalized lipophilic cations as carriers is a promising way to improve the antitumor effect of small molecules and to reduce toxicity. Triptolide (TP) has a strong antitumor effect but is limited in the clinic due to high systemic toxicity. Mitochondria-targeted TP derivatives were designed and synthesized using triphenylphosphine cations as carriers. The optimal derivative not only maintained the antitumor activity of TP but also showed a tumor cell selectivity trend. Moreover, the optimal derivative increased the release of lactate dehydrogenase and the production of ROS, decreased Δψm, and arrested HepG2 cells in G0/G1 phase. In a zebrafish HepG2 xenograft tumor model, the inhibitory effect of the optimal derivative was comparable to that of TP, while it had no obvious toxic effect on multiple indicators in zebrafish at the test concentrations. This work provided some evidence to support the mitochondria-targeting strategy.


Subject(s)
Antineoplastic Agents/pharmacology , Diterpenes/pharmacology , Mitochondria/drug effects , Organophosphorus Compounds/pharmacology , Phenanthrenes/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Diterpenes/chemical synthesis , Diterpenes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Epoxy Compounds/chemical synthesis , Epoxy Compounds/chemistry , Epoxy Compounds/pharmacology , Humans , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Membrane Potential, Mitochondrial/drug effects , Molecular Structure , Organophosphorus Compounds/chemistry , Phenanthrenes/chemical synthesis , Phenanthrenes/chemistry , Structure-Activity Relationship , Zebrafish/embryology
19.
J Biochem Mol Toxicol ; 35(1): e22625, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32894639

ABSTRACT

Hepatocellular carcinoma (HCC) is the fifth most commonly diagnosed cancer worldwide and is associated with poor prognosis. The current study aimed to assess the therapeutic efficacy of resveratrol when administered alone and in combination with nicotinamide against alcohol-aflatoxin B1-induced HCC. Results reveal that during the development and progression of cancer, there was a decline in the level of antioxidant enzymes catalase, glutathione peroxidase, glutathione reductase (GR), antioxidant glutathione, and glutathione S-transferase, which is an enzyme of detoxification pathways. Treatment of resveratrol restored the level of catalase and glutathione peroxidase toward normal in alcohol-aflatoxin B1-induced HCC; however, nicotinamide worked in concert with resveratrol only in upregulating the activity of glutathione reductase, glutathione level, and glutathione S-transferase. SIRT1 agonist resveratrol was observed to modulate the activity of antioxidant enzymes by negatively regulating the expression of nuclear factor-κB (NF-κB) in alcohol-aflatoxin B1-induced HCC, thereby suggesting a cross-talk between antioxidant enzymes SIRT1 and NF-κB during the development and progression of HCC and its therapeutics by resveratrol and nicotinamide.


Subject(s)
Aflatoxin B1/toxicity , Antioxidants/metabolism , Carcinoma, Hepatocellular/metabolism , Ethanol/toxicity , Liver Neoplasms, Experimental/metabolism , NF-kappa B/genetics , Neoplasm Proteins/metabolism , Niacinamide/pharmacology , Resveratrol/pharmacology , Sirtuin 1/metabolism , Animals , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/pathology , Male , Rats
20.
Bioorg Chem ; 113: 104995, 2021 08.
Article in English | MEDLINE | ID: mdl-34034133

ABSTRACT

A series of novel 3-(1-benzotriazole)-nor-ß-lapachones 5a-5l were synthesized as the NQO1-targeted anticancer agents. Most of these compounds displayed good antiproliferative activity against the breast cancer MCF-7, lung cancer A549 and hepatocellular carcinoma HepG2 cells in agreements with their NQO1 activity. Among them, compound 5k was identified as a favorable NQO1 substrate. It could activate the ROS production in a NQO1-dependent manner, arrest tumor cell cycle at G0/G1 phase, promote tumor cell apoptosis, and decrease the mitochondrial membrane potential. In HepG2 xenograft models, 5k significantly suppressed the tumor growth with no influences on animal body weights. Therefore, 5k could be a good lead for further anticancer drug developments.


Subject(s)
Antineoplastic Agents/pharmacology , Benzofurans/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , NAD(P)H Dehydrogenase (Quinone)/antagonists & inhibitors , Naphthoquinones/pharmacology , Triazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzofurans/chemical synthesis , Benzofurans/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Mice , Mice, Nude , Models, Molecular , Molecular Structure , NAD(P)H Dehydrogenase (Quinone)/metabolism , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL