Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 981
Filter
1.
Nat Immunol ; 22(7): 809-819, 2021 07.
Article in English | MEDLINE | ID: mdl-34140679

ABSTRACT

CD8+ T cells are critical mediators of cytotoxic effector function in infection, cancer and autoimmunity. In cancer and chronic viral infection, CD8+ T cells undergo a progressive loss of cytokine production and cytotoxicity, a state termed T cell exhaustion. In autoimmunity, autoreactive CD8+ T cells retain the capacity to effectively mediate the destruction of host tissues. Although the clinical outcome differs in each context, CD8+ T cells are chronically exposed to antigen in all three. These chronically stimulated CD8+ T cells share some common phenotypic features, as well as transcriptional and epigenetic programming, across disease contexts. A better understanding of these CD8+ T cell states may reveal novel strategies to augment clearance of chronic viral infection and cancer and to mitigate self-reactivity leading to tissue damage in autoimmunity.


Subject(s)
Autoimmune Diseases/immunology , Autoimmunity , CD8-Positive T-Lymphocytes/immunology , Communicable Diseases/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/immunology , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Chronic Disease , Communicable Diseases/genetics , Communicable Diseases/metabolism , Cytokines/immunology , Cytokines/metabolism , Epigenesis, Genetic , Humans , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Phenotype , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction
2.
Nat Immunol ; 22(4): 460-470, 2021 04.
Article in English | MEDLINE | ID: mdl-33767425

ABSTRACT

Targeting the p53-MDM2 pathway to reactivate tumor p53 is a chemotherapeutic approach. However, the involvement of this pathway in CD8+ T cell-mediated antitumor immunity is unknown. Here, we report that mice with MDM2 deficiency in T cells exhibit accelerated tumor progression and a decrease in tumor-infiltrating CD8+ T cell survival and function. Mechanistically, MDM2 competes with c-Cbl for STAT5 binding, reduces c-Cbl-mediated STAT5 degradation and enhances STAT5 stability in tumor-infiltrating CD8+ T cells. Targeting the p53-MDM2 interaction with a pharmacological agent, APG-115, augmented MDM2 in T cells, thereby stabilizing STAT5, boosting T cell immunity and synergizing with cancer immunotherapy. Unexpectedly, these effects of APG-115 were dependent on p53 and MDM2 in T cells. Clinically, MDM2 abundance correlated with T cell function and interferon-ƎĀ³ signature in patients with cancer. Thus, the p53-MDM2 pathway controls T cell immunity, and targeting this pathway may treat patients with cancer regardless of tumor p53 status.


Subject(s)
CD8-Positive T-Lymphocytes/enzymology , Lymphocytes, Tumor-Infiltrating/enzymology , Neoplasms/enzymology , Proto-Oncogene Proteins c-mdm2/metabolism , STAT5 Transcription Factor/metabolism , Animals , Antineoplastic Agents/pharmacology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/transplantation , Cell Line, Tumor , Combined Modality Therapy , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Immunotherapy, Adoptive , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/transplantation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Protein Stability , Proteolysis , Proto-Oncogene Proteins c-mdm2/genetics , STAT5 Transcription Factor/genetics , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
3.
Nat Immunol ; 22(3): 358-369, 2021 03.
Article in English | MEDLINE | ID: mdl-33432230

ABSTRACT

CD8+ T cell exhaustion dampens antitumor immunity. Although several transcription factors have been identified that regulate T cell exhaustion, the molecular mechanisms by which CD8+ T cells are triggered to enter an exhausted state remain unclear. Here, we show that interleukin-2 (IL-2) acts as an environmental cue to induce CD8+ T cell exhaustion within tumor microenvironments. We find that a continuously high level of IL-2 leads to the persistent activation of STAT5 in CD8+ T cells, which in turn induces strong expression of tryptophan hydroxylase 1, thus catalyzing the conversion to tryptophan to 5-hydroxytryptophan (5-HTP). 5-HTP subsequently activates AhR nuclear translocation, causing a coordinated upregulation of inhibitory receptors and downregulation of cytokine and effector-molecule production, thereby rendering T cells dysfunctional in the tumor microenvironment. This molecular pathway is not only present in mouse tumor models but is also observed in people with cancer, identifying IL-2 as a novel inducer of T cell exhaustion.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/drug effects , Interleukin-2/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Neoplasms/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Tumor Microenvironment , 5-Hydroxytryptophan/metabolism , Animals , Antibodies, Neutralizing/pharmacology , Antineoplastic Agents/pharmacology , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Gene Expression Regulation, Neoplastic , HCT116 Cells , HEK293 Cells , Humans , Interleukin-2/antagonists & inhibitors , Interleukin-2/genetics , Jurkat Cells , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , MCF-7 Cells , Melanoma, Experimental/drug therapy , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , NIH 3T3 Cells , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Receptors, Aryl Hydrocarbon/deficiency , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction , Tryptophan Hydroxylase/metabolism , Xenograft Model Antitumor Assays
4.
Nat Immunol ; 20(3): 326-336, 2019 03.
Article in English | MEDLINE | ID: mdl-30778252

ABSTRACT

T cell dysfunction is a hallmark of many cancers, but the basis for T cell dysfunction and the mechanisms by which antibody blockade of the inhibitory receptor PD-1 (anti-PD-1) reinvigorates T cells are not fully understood. Here we show that such therapy acts on a specific subpopulation of exhausted CD8+ tumor-infiltrating lymphocytes (TILs). Dysfunctional CD8+ TILs possess canonical epigenetic and transcriptional features of exhaustion that mirror those seen in chronic viral infection. Exhausted CD8+ TILs include a subpopulation of 'progenitor exhausted' cells that retain polyfunctionality, persist long term and differentiate into 'terminally exhausted' TILs. Consequently, progenitor exhausted CD8+ TILs are better able to control tumor growth than are terminally exhausted T cells. Progenitor exhausted TILs can respond to anti-PD-1 therapy, but terminally exhausted TILs cannot. Patients with melanoma who have a higher percentage of progenitor exhausted cells experience a longer duration of response to checkpoint-blockade therapy. Thus, approaches to expand the population of progenitor exhausted CD8+ T cells might be an important component of improving the response to checkpoint blockade.


Subject(s)
Antibodies, Blocking/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Melanoma, Experimental/prevention & control , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antibodies, Blocking/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cell Line, Tumor , Female , Humans , Lymphocyte Subsets/drug effects , Lymphocyte Subsets/immunology , Lymphocyte Subsets/virology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/virology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/prevention & control , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/drug effects , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/physiology , Melanoma, Experimental/immunology , Melanoma, Experimental/virology , Mice, Congenic , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism
5.
Nature ; 625(7993): 166-174, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057662

ABSTRACT

Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.


Subject(s)
Bone Marrow , Carcinogenesis , Interleukin-4 , Myelopoiesis , Signal Transduction , Animals , Humans , Mice , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Bone Marrow/drug effects , Bone Marrow/metabolism , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interleukin-4/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Monocytes/drug effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Recurrence , Signal Transduction/drug effects
6.
Immunity ; 50(1): 195-211.e10, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30635237

ABSTRACT

Checkpoint blockade mediates a proliferative response of tumor-infiltrating CD8+ T lymphocytes (TILs). The origin of this response has remained elusive because chronic activation promotes terminal differentiation or exhaustion of tumor-specific TĀ cells. Here we identified a subset of tumor-reactive TILs bearing hallmarks of exhausted cells and central memory cells, including expression of the checkpoint protein PD-1 and the transcription factor Tcf1. Tcf1+PD-1+ TILs mediated the proliferative response to immunotherapy, generating both Tcf1+PD-1+ and differentiated Tcf1-PD-1+ cells. Ablation of Tcf1+PD-1+ TILs restricted responses to immunotherapy. Tcf1 was not required for the generation of Tcf1+PD-1+ TILs but was essential for the stem-like functions of these cells. Human TCF1+PD-1+Ā cells were detected among tumor-reactive CD8+ TĀ cells in the blood of melanoma patients and among TILs of primary melanomas. Thus, immune checkpoint blockade relies not on reversal of TĀ cell exhaustion programs, but on the proliferation of a stem-like TIL subset.


Subject(s)
Antibodies, Monoclonal/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Stem Cells/immunology , T-Lymphocyte Subsets/immunology , Animals , CD8-Positive T-Lymphocytes/drug effects , Cell Differentiation , Cell Proliferation , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating/drug effects , Melanoma/immunology , Melanoma, Experimental , Mice , Mice, Inbred C57BL
7.
Immunity ; 50(1): 181-194.e6, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30635236

ABSTRACT

An improved understanding of the anti-tumor CD8+ TĀ cell response after checkpoint blockade would enable more informed and effective therapeutic strategies. Here we examined the dynamics of the effector response of CD8+ tumor-infiltrating lymphocytes (TILs) after checkpoint blockade therapy. Bulk and single-cell RNA profiles of CD8+ TILs after combined Tim-3+PD-1 blockade in preclinical models revealed significant changes in the transcriptional profile of PD-1- TILs. These cells could be divided into subsets bearing characterstics of naive-, effector-, and memory-precursor-like cells. Effector- and memory-precursor-like TILs contained tumor-antigen-specific cells, exhibited proliferative and effector capacity, and expanded in response to different checkpoint blockade therapies across different tumor models. The memory-precursor-like subset shared features with CD8+ TĀ cells associated with response to checkpoint blockade in patients and was compromised in the absence of Tcf7. Expression of Tcf7/Tcf1 was requisite for the efficacyĀ of diverse immunotherapies, highlighting the importance of this transcriptional regulator in the development of effective CD8+ TĀ cell responses upon immunotherapy.


Subject(s)
Antibodies, Monoclonal/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms, Experimental/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocyte Subsets/immunology , Animals , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/drug effects , Cell Proliferation , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Humans , Immunologic Memory/genetics , Immunotherapy , Lymphocytes, Tumor-Infiltrating/drug effects , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/immunology , Transcriptome
8.
Proc Natl Acad Sci U S A ; 121(30): e2404778121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39018197

ABSTRACT

Tumor blood vessels are highly leaky in structure and have poor blood perfusion, which hampers infiltration and function of CD8T cells within tumor. Normalizing tumor vessels is thus thought to be important in promoting the flux of immune T cells and enhancing ant-tumor immunity. However, how tumor vasculature is normalized is poorly understood. Metformin (Met) combined with ant-PD-1 therapy is known to stimulate proliferation of and to produce large amounts of IFNƎĀ³ from tumor-infiltrating CD8T lymphocytes (CD8TILs). We found that the combination therapy promotes the pericyte coverage of tumor vascular endothelial cells (ECs) to improve blood perfusion and that it suppresses the hyperpermeability through the increase of VE-cadherin. Peripheral node addressin(PNAd) and vascular cell adhesion molecule (VCAM)-1, both implicated to promote tumor infiltration of CD8T cells, were also increased. Importantly, tumor vessel normalization, characterized as the reduced 70-kDa dextran leakage and the enhancement of VE-cadherin and VCAM-1, were canceled by anti-CD8 Ab or anti-IFNƎĀ³ Ab injection to mice. The increased CD8TILs were also abrogated by anti-IFNƎĀ³ Ab injection. In vascular ECs, flow cytometry analysis revealed that pSTAT1 expression was found to be associated with VE-cadherin expression. Moreover, in vitro treatment with Met and IFNƎĀ³ enhanced VE-cadherin and VCAM-1 on human umbilical vein endothelial cells (HUVECs). The Kaplan-Meier method revealed a correlation of VE-cadherin or VCAM-1 levels with overall survival in patients treated with immune checkpoint inhibitors. These data indicate that IFNƎĀ³-mediated cross talk of CD8TILs with tumor vessels is important for creating a better tumor microenvironment and maintaining sustained antitumor immunity.


Subject(s)
CD8-Positive T-Lymphocytes , Interferon-gamma , Metformin , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Animals , Interferon-gamma/metabolism , Mice , Metformin/pharmacology , Metformin/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Vascular Cell Adhesion Molecule-1/metabolism , Mice, Inbred C57BL , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Cadherins/metabolism , Antigens, CD/metabolism , Drug Synergism
9.
Nature ; 583(7817): 609-614, 2020 07.
Article in English | MEDLINE | ID: mdl-32581358

ABSTRACT

Cytokines were the first modern immunotherapies to produce durable responses in patients with advanced cancer, but they have only modest efficacy and limited tolerability1,2. In an effort to identify alternative cytokine pathways for immunotherapy, we found that components of the interleukin-18 (IL-18) pathway are upregulated on tumour-infiltrating lymphocytes, suggesting that IL-18 therapy could enhance anti-tumour immunity. However, recombinant IL-18 previously did not demonstrate efficacy in clinical trials3. Here we show that IL-18BP, a high-affinity IL-18 decoy receptor, is frequently upregulated in diverse human and mouse tumours and limits the anti-tumour activity of IL-18 in mice. Using directed evolution, we engineered a 'decoy-resistant' IL-18 (DR-18) that maintains signalling potential but is impervious to inhibition by IL-18BP. Unlike wild-type IL-18, DR-18 exerted potent anti-tumour effects in mouse tumour models by promoting the development of poly-functional effector CD8+ T cells, decreasing the prevalence of exhausted CD8+ T cells that express the transcriptional regulator of exhaustion TOX, and expanding the pool of stem-like TCF1+ precursor CD8+ T cells. DR-18 also enhanced the activity and maturation of natural killer cells to effectively treat anti-PD-1 resistant tumours that have lost surface expression of major histocompatibility complex class I molecules. These results highlight the potential of the IL-18 pathway for immunotherapeutic intervention and implicate IL-18BP as a major therapeutic barrier.


Subject(s)
Immunotherapy , Intercellular Signaling Peptides and Proteins/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Interleukin-18/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Female , Hepatocyte Nuclear Factor 1-alpha/metabolism , Histocompatibility Antigens Class I/immunology , Humans , Kaplan-Meier Estimate , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Receptors, Interleukin-18/metabolism , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
10.
Gastroenterology ; 166(6): 1069-1084, 2024 06.
Article in English | MEDLINE | ID: mdl-38445519

ABSTRACT

BACKGROUND & AIMS: Although the presence of tertiary lymphoid structures (TLS) correlates with positive responses to immunotherapy in many solid malignancies, the mechanism by which TLS enhances antitumor immunity is not well understood. The present study aimed to investigate the underlying cross talk circuits between B cells and tissue-resident memory T (Trm) cells within the TLS and to understand their role in the context of immunotherapy. METHODS: Immunostaining and H&E staining of TLS and chemokine (C-X-C motif) ligand 13 (CXCL13)+ cluster of differentiation (CD)103+CD8+ Trm cells were performed on tumor sections from patients with gastric cancer (GC). The mechanism of communication between B cells and CXCL13+CD103+CD8+ Trm cells was determined inĀ vitro and inĀ vivo. The effect of CXCL13+CD103+CD8+ Trm cells in suppressing tumor growth was evaluated through anti-programmed cell death protein (PD)-1 therapy. RESULTS: The presence of TLS and CXCL13+CD103+CD8+ Trm cells in tumor tissues favored a superior response to anti-PD-1 therapy in patients with GC. Additionally, our research identified that activated B cells enhanced CXCL13 and granzyme B secretion by CD103+CD8+ Trm cells. Mechanistically, B cells facilitated the glycolysis of CD103+CD8+ Trm cells through the lymphotoxin-α/tumor necrosis factor receptor 2 (TNFR2) axis, and the mechanistic target of rapamycin signaling pathway played a critical role in CD103+CD8+ Trm cells glycolysis during thisĀ process. Moreover, the presence of TLS and CXCL13+CD103+CD8+ Trm cells correlated with potent responsiveness to anti-PD-1 therapy in a TNFR2-dependent manner. CONCLUSIONS: This study further reveals a crucial role for cellular communication between TLS-associated B cell and CXCL13+CD103+CD8+ Trm cells in antitumor immunity, providing valuable insights into the potential use of the lymphotoxin-α/TNFR2 axis within CXCL13+CD103+CD8+ Trm cells for advancing immunotherapy strategies in GC.


Subject(s)
Antigens, CD , B-Lymphocytes , CD8-Positive T-Lymphocytes , Chemokine CXCL13 , Immune Checkpoint Inhibitors , Integrin alpha Chains , Memory T Cells , Programmed Cell Death 1 Receptor , Stomach Neoplasms , Tertiary Lymphoid Structures , Chemokine CXCL13/metabolism , Humans , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/drug effects , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Stomach Neoplasms/therapy , Stomach Neoplasms/drug therapy , Antigens, CD/metabolism , Integrin alpha Chains/metabolism , Integrin alpha Chains/immunology , Memory T Cells/immunology , Memory T Cells/metabolism , Animals , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Granzymes/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Immunologic Memory , Signal Transduction/immunology , Tumor Microenvironment/immunology , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Mice , Immunotherapy/methods , Cell Line, Tumor
11.
Immunity ; 44(2): 343-54, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26872698

ABSTRACT

Checkpoint blockade immunotherapies can be extraordinarily effective, but might benefit only the minority of patients whose tumors are pre-infiltrated by TĀ cells. Here, using lung adenocarcinoma mouse models, including genetic models, we show that autochthonous tumors that lacked TĀ cell infiltration and resisted current treatment options could be successfully sensitized to host antitumor TĀ cell immunity when appropriately selected immunogenic drugs (e.g., oxaliplatin combined with cyclophosphamide for treatment against tumors expressing oncogenic Kras and lacking Trp53) were used. The antitumor response was triggered by direct drug actions on tumor cells, relied on innate immune sensing through toll-like receptor 4 signaling, and ultimately depended on CD8(+) TĀ cell antitumor immunity. Furthermore, instigating tumor infiltration by TĀ cells sensitized tumors to checkpoint inhibition and controlled cancer durably. These findings indicate that the proportion of cancers responding to checkpoint therapy can be feasibly and substantially expanded by combining checkpoint blockade with immunogenic drugs.


Subject(s)
Adenocarcinoma/therapy , CD8-Positive T-Lymphocytes/drug effects , Immunotherapy/methods , Lung Neoplasms/therapy , Lymphocytes, Tumor-Infiltrating/drug effects , Adenocarcinoma/immunology , Animals , Cell Line, Tumor , Central Nervous System Sensitization/drug effects , Cyclophosphamide/administration & dosage , Disease Models, Animal , Drug Therapy/methods , Genes, cdc/drug effects , Humans , Immunity, Innate , Lung Neoplasms/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Organoplatinum Compounds/administration & dosage , Oxaliplatin , Toll-Like Receptor 4/metabolism
12.
J Cell Mol Med ; 28(17): e18535, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39267250

ABSTRACT

Luteolin, a commonly used traditional Chinese medicine, has been utilized for several decades in the treatment of hepatocellular carcinoma (HCC). Previous research has demonstrated its anti-tumour efficacy, but its underlying mechanism remains unclear. This study aimed to assess the therapeutic effects of luteolin in H22 tumour-bearing mice. luteolin effectively inhibited the growth of solid tumours in a well-established mouse model of HCC. High-throughput sequencing revealed that luteolin treatment could enhance T-cell activation, cell chemotaxis and cytokine production. In addition, luteolin helped sustain a high ratio of CD8+ T lymphocytes in the spleen, peripheral blood and tumour tissues. The effects of luteolin on the phenotypic and functional changes in tumour-infiltrating CD8+ T lymphocytes were also investigated. Luteolin restored the cytotoxicity of tumour-infiltrating CD8+ T lymphocytes in H22 tumour-bearing mice. The CD8+ T lymphocytes exhibited intensified phenotype activation and increased production of granzyme B, IFN-ƎĀ³ and TNF-α in serum. The combined administration of luteolin and the PD-1 inhibitor enhanced the anti-tumour effects in H22 tumour-bearing mice. Luteolin could exert an anti-tumour immune response by inducing CD8+ T lymphocyte infiltration and enhance the anti-tumour effects of the PD-1 inhibitor on H22 tumour-bearing mice.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Luteolin , Lymphocytes, Tumor-Infiltrating , Luteolin/pharmacology , Luteolin/therapeutic use , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Mice , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Cell Line, Tumor , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Cytokines/metabolism , Male , Granzymes/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Mice, Inbred C57BL
13.
Immunology ; 173(3): 536-551, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39078223

ABSTRACT

Despite breakthroughs of immunotherapy synergistically combined with blockade of vascular endothelial growth factor receptor, several patients with advanced non-small cell lung cancer (NSCLC) experience non-response or followed relapse. Organized lymphoid aggregates, termed tertiary lymphoid structures (TLSs), are found to be associated with improved response to immunotherapy. Here, we explore the landscapes of TLSs in tumour tissues from a real-world retrospective study. Our investigation showed that with a median follow-up of 11.2 months, the ORR was 28.6% (18/63, 95% CI 17.9-41.3) and the median PFS was 6.1 (95% CI 5.5-6.6) months in NSCLC patients treated with PD-1 blockade combined with anlotinib. By multiplex immunofluorescence (mIF) analysis, spatially, more TLSs and high CD20+ B-cell ratio in TLSs were associated with higher ORR. High density of intratumoral CD8+ T cells showed better ORR and PFS. The numbers of CD8+ T cells with a distance within 20 Āµm and 20-50 Āµm between tumour cells were higher in responders than non-responders. But responders had significantly higher TLSs within 20 Āµm rather than within 20-50 Āµm of tumour cells than non-responders. The inflamed immunophenotyping occupied higher proportions in responders and was associated with better PFS. Besides, tumour cells in non-responders were found more temporal cell-in-cell structures than responders, which could protect inner cells from T-cell attacks. Taken together, landscape of TLSs and proximity architecture may imply superior responses to PD-1 blockade combined with anlotinib for patients with advanced non-small cell lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Indoles , Lung Neoplasms , Programmed Cell Death 1 Receptor , Quinolines , Tertiary Lymphoid Structures , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Male , Female , Indoles/therapeutic use , Quinolines/therapeutic use , Quinolines/administration & dosage , Middle Aged , Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Tertiary Lymphoid Structures/immunology , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Treatment Outcome , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Adult , Aged, 80 and over
14.
Cancer ; 130(13): 2272-2286, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38644692

ABSTRACT

BACKGROUND: Long-term daily use of aspirin reduces incidence and mortality due to colorectal cancer (CRC). This study aimed to analyze the effect of aspirin on the tumor microenvironment, systemic immunity, and on the healthy mucosa surrounding cancer. METHODS: Patients with a diagnosis of CRC operated on from 2015 to 2019 were retrospectively analyzed (METACCRE cohort). Expression of mRNA of immune surveillance-related genes (PD-L1, CD80, CD86, HLA I, and HLA II) in CRC primary cells treated with aspirin were extracted from Gene Expression Omnibus-deposited public database (GSE76583). The experiment was replicated in cell lines. The mucosal immune microenvironment of a subgroup of patients participating in the IMMUNOREACT1 (ClinicalTrials.gov NCT04915326) project was analyzed with immunohistochemistry and flow cytometry. RESULTS: In the METACCRE Cohort, 12% of 238 patients analyzed were aspirin users. Nodal metastasis was significantly less frequent (pĀ =Ā .008) and tumor-infiltrating lymphocyte infiltration was higher (pĀ =Ā .02) among aspirin users. In the CRC primary cells and selected cell lines, CD80 mRNA expression was increased following aspirin treatment (pĀ =Ā .001). In the healthy mucosa surrounding rectal cancer, the ratio of CD8/CD3 and epithelial cells expressing CD80 was higher in aspirin users (pĀ =Ā .027 and pĀ =Ā .034, respectively). CONCLUSIONS: These data suggested that regular aspirin use may have an active role in enhancing immunosurveillance against CRC.


Subject(s)
Aspirin , Colorectal Neoplasms , Immunologic Surveillance , Lymphocytes, Tumor-Infiltrating , Tumor Microenvironment , Humans , Aspirin/therapeutic use , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Female , Male , Tumor Microenvironment/immunology , Aged , Middle Aged , Immunologic Surveillance/drug effects , Retrospective Studies , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , B7-1 Antigen/metabolism , B7-1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell Line, Tumor
15.
Cancer Immunol Immunother ; 73(8): 137, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833034

ABSTRACT

Tumor-infiltrating lymphocyte (TIL) deficiency is the most conspicuous obstacle to limit the cancer immunotherapy. Immune checkpoint inhibitors (ICIs), such as anti-PD-1 antibody, have achieved great success in clinical practice. However, due to the limitation of response rates of ICIs, some patients fail to benefit from monotherapy. Thus, novel combination therapy that could improve the response rates emerges as new strategies for cancer treatment. Here, we reported that the natural product rocaglamide (RocA) increased tumor-infiltrating T cells and promoted Th17 differentiation of CD4+ TILs. Despite RocA monotherapy upregulated PD-1 expression of TILs, which was considered as the consequence of T cell activation, combining RocA with anti-PD-1 antibody significantly downregulated the expression of PD-1 and promoted proliferation of TILs. Taken together, these findings demonstrated that RocA could fuel the T cell anti-tumor immunity and revealed the remarkable potential of RocA as a therapeutic candidate when combining with the ICIs.


Subject(s)
Benzofurans , Cell Differentiation , Immune Checkpoint Inhibitors , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Animals , Benzofurans/pharmacology , Benzofurans/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Humans , Cell Differentiation/drug effects , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Mice, Inbred C57BL , Female , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Cell Line, Tumor
16.
BMC Med ; 22(1): 207, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769543

ABSTRACT

BACKGROUND: Tumor-infiltrating lymphocyte (TIL) therapy has been restricted by intensive lymphodepletion and high-dose intravenous interleukin-2 (IL-2) administration. To address these limitations, we conducted preclinical and clinical studies to evaluate the safety, antitumor activity, and pharmacokinetics of an innovative modified regimen in patients with advanced gynecologic cancer. METHODS: Patient-derived xenografts (PDX) were established from a local recurrent cervical cancer patient. TILs were expanded ex vivo from minced tumors without feeder cells in the modified TIL therapy regimen. Patients underwent low-dose cyclophosphamide lymphodepletion followed by TIL infusion without intravenous IL-2. The primary endpoint was safety; the secondary endpoints included objective response rate, duration of response, and T cell persistence. RESULTS: In matched patient-derived xenografts (PDX) models, homologous TILs efficiently reduced tumor size (p < 0.0001) and underwent IL-2 absence in vivo. In the clinical section, all enrolled patients received TIL infusion using a modified TIL therapy regimen successfully with a manageable safety profile. Five (36%, 95% CI 16.3-61.2) out of 14 evaluable patients experienced objective responses, and three complete responses were ongoing at 19.5, 15.4, and 5.2Ā months, respectively. Responders had longer overall survival (OS) than non-responders (p = 0.036). Infused TILs showed continuous proliferation and long-term persistence in all patients and showed greater proliferation in responders which was indicated by the Morisita overlap index (MOI) of TCR clonotypes between infused TILs and peripheral T cells on day 14 (p = 0.004) and day 30 (p = 0.004). Higher alteration of the CD8+/CD4+ ratio on day 14 indicated a longer OS (p = 0.010). CONCLUSIONS: Our modified TIL therapy regimen demonstrated manageable safety, and TILs could survive and proliferate without IL-2 intravenous administration, showing potent efficacy in patients with advanced gynecologic cancer. TRIAL REGISTRATION: NCT04766320, Jan 04, 2021.


Subject(s)
Interleukin-2 , Lymphocytes, Tumor-Infiltrating , Humans , Female , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Middle Aged , Interleukin-2/administration & dosage , Interleukin-2/therapeutic use , Animals , Aged , Adult , Mice , Genital Neoplasms, Female/therapy , Genital Neoplasms, Female/drug therapy , Treatment Outcome , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use
17.
Toxicol Appl Pharmacol ; 491: 117069, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142358

ABSTRACT

Ganoderic acid T (GAT), a triterpenoid molecule of Ganoderma lucidum, exhibits anti-cancer activity; however, the underlying mechanisms remain unclear. Therefore, in this study, we aimed to investigate the anti-cancer molecular mechanisms of GAT and explore its therapeutic applications for cancer treatment. GAT exhibited potent anti-cancer activity in an ES-2 orthotopic ovarian cancer model in a humanized mouse model, leading to significant alterations in the tumor microenvironment (TME). Specifically, GAT reduced the proportion of α-SMA+ cells and enhanced the infiltration of tumor-infiltrating lymphocytes (TILs) in tumor tissues. After conducting proteomic analysis, it was revealed that GAT downregulates galectin-1 (Gal-1), a key molecule in the TME. This downregulation has been confirmed in multiple cancer cell lines and xenograft tumors. Molecular docking suggested a theoretical direct interaction between GAT and Gal-1. Further research revealed that GAT induces ubiquitination of Gal-1. Moreover, GAT significantly augmented the anti-cancer effects of paclitaxel, thereby increasing intratumoral drug concentrations and reducing tumor size. Combined with immunotherapy, GAT enhanced the tumor-suppressive effects of the anti-programmed death-ligand 1 antibody and increased the proportion of CD8+ cells in the EMT6 syngeneic mammary cancer model. In conclusion, GAT inhibited tumor growth, downregulated Gal-1, modulated the TME, and promoted chemotherapy and immunotherapy efficacy. Our findings highlight the potential of GAT as an effective therapeutic agent for cancer.


Subject(s)
Down-Regulation , Galectin 1 , Ovarian Neoplasms , Tumor Microenvironment , Tumor Microenvironment/drug effects , Animals , Galectin 1/metabolism , Humans , Female , Down-Regulation/drug effects , Cell Line, Tumor , Mice , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , Paclitaxel/pharmacology , Triterpenes/pharmacology , Xenograft Model Antitumor Assays , Reishi/chemistry , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Immunotherapy/methods , Antineoplastic Agents/pharmacology , Mice, Nude , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Inbred BALB C , Drug Synergism
18.
J Nanobiotechnology ; 22(1): 206, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658950

ABSTRACT

The insufficient abundance and weak activity of tumour-infiltrating lymphocytes (TILs) are two important reasons for the poor efficacy of PD-1 inhibitors in hepatocellular carcinoma (HCC) treatment. The combined administration of tanshinone IIA (TSA) and astragaloside IV (As) can up-regulate the abundance and activity of TILs by normalising tumour blood vessels and reducing the levels of immunosuppressive factors respectively. For enhancing the efficacy of PD-1 antibody, a magnetic metal-organic framework (MOF) with a homologous tumour cell membrane (Hm) coating (Hm@TSA/As-MOF) is established to co-deliver TSA&As into the HCC microenvironment. Hm@TSA/As-MOF is a spherical nanoparticle and has a high total drug-loading capacity of 16.13 wt%. The Hm coating and magnetic responsiveness of Hm@TSA/As-MOF provide a homologous-magnetic dual-targeting, which enable Hm@TSA/As-MOF to counteract the interference posed by ascites tumour cells and enhance the precision of targeting solid tumours. Hm coating also enable Hm@TSA/As-MOF to evade immune clearance by macrophages. The release of TSA&As from Hm@TSA/As-MOF can be accelerated by HCC microenvironment, thereby up-regulating the abundance and activity of TILs to synergistic PD-1 antibody against HCC. This study presents a nanoplatform to improve the efficacy of PD-1 inhibitors in HCC, providing a novel approach for anti-tumour immunotherapy in clinical practice.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Metal-Organic Frameworks , Programmed Cell Death 1 Receptor , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/drug therapy , Animals , Mice , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Cell Line, Tumor , Immune Checkpoint Inhibitors/pharmacology , Tumor Microenvironment/drug effects , Mice, Inbred BALB C , Saponins/pharmacology , Saponins/chemistry , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology
19.
Semin Immunol ; 49: 101436, 2020 06.
Article in English | MEDLINE | ID: mdl-33288379

ABSTRACT

T cells play a critical role in promoting tumor regression in both experimental models and humans. Yet, T cells that are chronically exposed to tumor antigen during cancer progression can become dysfunctional/exhausted and fail to induce tumor destruction. Such tumor-induced T cell dysfunction may occur via multiple mechanisms. In particular, immune checkpoint inhibitory receptors that are upregulated by tumor-infiltrating lymphocytes in many cancers limit T cell survival and function. Overcoming this inhibitory receptor-mediated T cell dysfunction has been a central focus of recent developments in cancer immunotherapy. Immunotherapies targeting inhibitory receptor pathways such as programmed cell death 1 (PD-1)/programmed death ligand 1 and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), alone or in combination, confer significant clinical benefits in multiple tumor types. However, many patients with cancer do not respond to immune checkpoint blockade, and dual PD-1/CTLA-4 blockade may cause serious adverse events, which limits its indications. Targeting novel non-redundant inhibitory receptor pathways contributing to tumor-induced T cell dysfunction in the tumor microenvironment may prove efficacious and non-toxic. This review presents preclinical and clinical findings supporting the roles of two key pathways-T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) and T cell immunoreceptor with Ig and ITIM domain (TIGIT)/CD226/CD96/CD112R-in cancer immunotherapy.


Subject(s)
Costimulatory and Inhibitory T-Cell Receptors/metabolism , Neoplasms/immunology , Neoplasms/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Biomarkers, Tumor , Humans , Immune Checkpoint Proteins/metabolism , Immunotherapy , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Molecular Targeted Therapy , Neoplasms/pathology , Neoplasms/therapy , Signal Transduction , T-Lymphocyte Subsets/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
20.
J Oncol Pharm Pract ; 30(5): 930-936, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38592456

ABSTRACT

OBJECTIVE: To determine the survival benefit and immunomodulatory effects of cimetidine pre-, peri- or post-operatively in patients with colorectal cancer (CRC). METHODS: A systematic review was conducted using PubMed and Cochrane Library to retrieve randomized control trials (RCTs) that investigated the effects of cimetidine on survival and immunomodulation via improvement in tumor infiltrating lymphocytes (TILs) and peripheral blood lymphocytes. The review was carried out in accordance with the extended Preferred Reporting Items for Systematic Reviews and Meta-analyses. RESULTS: Four studies with the total of 267 patients were included in this systematic review. Treatment duration varied from 5 days to 1 year. Two studies reported a significant TIL response in the resected specimens after administering cimetidine, while one RCT showed an escalation of CD3, CD4 and CD57 lymphocytes in peripheral blood compared to the baseline following cimetidine treatment (p < 0.01). Of the three trials that examined the effects of cimetidine on survival, only two studies revealed significant survival benefit while the remaining study only showed a trend towards survival benefit. CONCLUSION: Repurposing of existing drugs like cimetidine has a potential to offer a survival benefit by acting as an immunomodulatory agent in patients undergoing curative resection for CRC. However, the heterogeneity seen in current studies and the evolvement of adjunctive therapies for CRC warrant large-scale, well-designed prospective RCTs to establish the efficacy of cimetidine in CRC.


Subject(s)
Cimetidine , Colorectal Neoplasms , Randomized Controlled Trials as Topic , Humans , Cimetidine/therapeutic use , Cimetidine/pharmacology , Colorectal Neoplasms/drug therapy , Drug Repositioning , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology
SELECTION OF CITATIONS
SEARCH DETAIL