Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.082
Filter
1.
Mol Psychiatry ; 29(3): 653-659, 2024 03.
Article in English | MEDLINE | ID: mdl-38135754

ABSTRACT

Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder in children. It is currently diagnosed by behaviour-based assessments made by observation and interview. In 2018 we reported a discovery study of a blood biomarker diagnostic test for ASD based on a combination of four plasma protein glycation and oxidation adducts. The test had 88% accuracy in children 5-12 years old. Herein, we present an international multicenter clinical validation study (N = 478) with application of similar biomarkers to a wider age range of 1.5-12 years old children. Three hundred and eleven children with ASD (247 male, 64 female; age 5.2 ± 3.0 years) and 167 children with typical development (94 male, 73 female; 4.9 ± 2.4 years) were recruited for this study at Sidra Medicine and Hamad Medical Corporation hospitals, Qatar, and Hospital Regional Universitario de Málaga, Spain. For subjects 5-12 years old, the diagnostic algorithm with features, advanced glycation endproducts (AGEs)-Nε-carboxymethyl-lysine (CML), Nω-carboxymethylarginine (CMA) and 3-deoxyglucosone-derived hydroimidazolone (3DG-H), and oxidative damage marker, o,o'-dityrosine (DT), age and gender had accuracy 83% (CI 79 - 89%), sensitivity 94% (CI 90-98%), specificity 67% (CI 57-76%) and area-under-the-curve of receiver operating characteristic plot (AUROC) 0.87 (CI 0.84-0.90). Inclusion of additional plasma protein glycation and oxidation adducts increased the specificity to 74%. An algorithm with 12 plasma protein glycation and oxidation adduct features was optimum for children of 1.5-12 years old: accuracy 74% (CI 70-79%), sensitivity 75% (CI 63-87%), specificity 74% (CI 58-90%) and AUROC 0.79 (CI 0.74-0.84). We conclude that ASD diagnosis may be supported using an algorithm with features of plasma protein CML, CMA, 3DG-H and DT in 5-12 years-old children, and an algorithm with additional features applicable for ASD screening in younger children. ASD severity, as assessed by ADOS-2 score, correlated positively with plasma protein glycation adducts derived from methylglyoxal, hydroimidazolone MG-H1 and Nε(1-carboxyethyl)lysine (CEL). The successful validation herein may indicate that the algorithm modifiable features are mechanistic risk markers linking ASD to increased lipid peroxidation, neuronal plasticity and proteotoxic stress.


Subject(s)
Autism Spectrum Disorder , Biomarkers , Glycation End Products, Advanced , Oxidation-Reduction , Humans , Male , Female , Biomarkers/blood , Child , Child, Preschool , Glycation End Products, Advanced/blood , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/blood , Glycosylation , Lysine/analogs & derivatives , Lysine/blood , Autistic Disorder/blood , Autistic Disorder/diagnosis , Blood Proteins/metabolism , Blood Proteins/analysis , Infant , Sensitivity and Specificity
2.
Int J Cancer ; 155(11): 1982-1995, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39057841

ABSTRACT

Advanced glycation end-products (AGEs), formed endogenously or obtained exogenously from diet, may contribute to chronic inflammation, intracellular signaling alterations, and pathogenesis of several chronic diseases including colorectal cancer (CRC). However, the role of AGEs in CRC survival is less known. The associations of pre-diagnostic circulating AGEs and their soluble receptor (sRAGE) with CRC-specific and overall mortality were estimated using multivariable-adjusted Cox proportional hazards regression among 1369 CRC cases in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Concentrations of major plasma AGEs, Nε-[carboxy-methyl]lysine (CML), Nε-[carboxy-ethyl]lysine (CEL) and Nδ-[5-hydro-5-methyl-4-imidazolon-2-yl]-ornithine (MG-H1), were measured using ultra-performance liquid chromatography mass-spectrometry. sRAGE was assessed by enzyme-linked immunosorbent assay. Over a mean follow-up period of 96 months, 693 deaths occurred of which 541 were due to CRC. Individual and combined AGEs were not statistically significantly associated with CRC-specific or overall mortality. However, there was a possible interaction by sex for CEL (Pinteraction = .05). Participants with higher sRAGE had a higher risk of dying from CRC (HRQ5vs.Q1 = 1.67, 95% CI: 1.21-2.30, Ptrend = .02) or any cause (HRQ5vs.Q1 = 1.38, 95% CI: 1.05-1.83, Ptrend = .09). These associations tended to be stronger among cases with diabetes (Pinteraction = .03) and pre-diabetes (Pinteraction <.01) before CRC diagnosis. Pre-diagnostic AGEs were not associated with CRC-specific and overall mortality in individuals with CRC. However, a positive association was observed for sRAGE. Our findings may stimulate further research on the role of AGEs and sRAGE in survival among cancer patients with special emphasis on potential effect modifications by sex and diabetes.


Subject(s)
Colorectal Neoplasms , Glycation End Products, Advanced , Receptor for Advanced Glycation End Products , Humans , Colorectal Neoplasms/blood , Colorectal Neoplasms/mortality , Colorectal Neoplasms/diagnosis , Male , Female , Glycation End Products, Advanced/blood , Middle Aged , Receptor for Advanced Glycation End Products/blood , Aged , Prospective Studies , Lysine/blood , Lysine/analogs & derivatives , Ornithine/blood , Ornithine/analogs & derivatives , Proportional Hazards Models , Biomarkers, Tumor/blood , Imidazoles
3.
Nutr Metab Cardiovasc Dis ; 34(7): 1712-1720, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38658223

ABSTRACT

BACKGROUND AND AIMS: The cardiometabolic disease-associated metabolite, alpha-aminoadipic acid (2-AAA) is formed from the breakdown of the essential dietary amino acid lysine. However, it was not known whether elevated plasma levels of 2-AAA are related to dietary nutrient intake. We aimed to determine whether diet is a determinant of circulating 2-AAA in healthy individuals, and whether 2-AAA is altered in response to dietary modification. METHODS AND RESULTS: We investigated the association between 2-AAA and dietary nutrient intake in a cross-sectional study of healthy individuals (N = 254). We then performed a randomized cross-over dietary intervention trial to investigate the effect of lysine supplementation (1 week) on 2-AAA in healthy individuals (N = 40). We further assessed the effect of a vegetarian diet on 2-AAA in a short-term (4-day) dietary intervention trial in healthy omnivorous women (N = 35). We found that self-reported dietary intake of animal products, including meat, poultry, and seafood, was associated with higher plasma 2-AAA cross-sectionally (P < 0.0001). Supplementary dietary lysine (5g/day) caused no significant increase in plasma 2-AAA; however, plasma 2-AAA was altered by general dietary modification. Further, plasma 2-AAA was significantly reduced by a short-term vegetarian diet (P = 0.003). CONCLUSION: We identified associations between plasma 2-AAA and consumption of animal products, which were validated in a vegetarian dietary intervention trial, but not in a trial designed to specifically increase the 2-AAA amino acid precursor lysine. Further studies are warranted to investigate whether implementation of a vegetarian diet improves cardiometabolic risk in individuals with elevated 2-AAA.


Subject(s)
2-Aminoadipic Acid , Biomarkers , Cross-Over Studies , Diet, Vegetarian , Dietary Supplements , Lysine , Meat , Humans , Female , Male , Cross-Sectional Studies , Adult , 2-Aminoadipic Acid/blood , Lysine/blood , Lysine/administration & dosage , Middle Aged , Biomarkers/blood , Seafood , Young Adult , Nutritive Value , Time Factors , Poultry
4.
Carcinogenesis ; 42(5): 705-713, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33780524

ABSTRACT

Advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed by the non-enzymatic reaction between amino acids and reducing sugars, or dicarbonyls as intermediate compounds. Experimental studies suggest that AGEs may promote colorectal cancer, but prospective epidemiologic studies are inconclusive. We conducted a case-control study nested within a large European cohort. Plasma concentrations of three protein-bound AGEs-Nε-(carboxy-methyl)lysine (CML), Nε-(carboxy-ethyl)lysine (CEL) and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1)-were measured by ultra-performance liquid chromatography-tandem mass spectrometry in baseline samples collected from 1378 incident primary colorectal cancer cases and 1378 matched controls. Multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were computed using conditional logistic regression for colorectal cancer risk associated with CML, CEL, MG-H1, total AGEs, and [CEL+MG-H1: CML] and [CEL:MG-H1] ratios. Inverse colorectal cancer risk associations were observed for CML (OR comparing highest to lowest quintile, ORQ5 versus Q1 = 0.40, 95% CI: 0.27-0.59), MG-H1 (ORQ5 versus Q1 = 0.73, 95% CI: 0.53-1.00) and total AGEs (OR Q5 versus Q1 = 0.52, 95% CI: 0.37-0.73), whereas no association was observed for CEL. A higher [CEL+MG-H1: CML] ratio was associated with colorectal cancer risk (ORQ5 versus Q1 = 1.91, 95% CI: 1.31-2.79). The associations observed did not differ by sex, or by tumour anatomical sub-site. Although individual AGEs concentrations appear to be inversely associated with colorectal cancer risk, a higher ratio of methylglyoxal-derived AGEs versus those derived from glyoxal (calculated by [CEL+MG-H1: CML] ratio) showed a strong positive risk association. Further insight on the metabolism of AGEs and their dicarbonyls precursors, and their roles in colorectal cancer development is needed.


Subject(s)
Colorectal Neoplasms/genetics , Glycation End Products, Advanced/genetics , Lysine/analogs & derivatives , Ornithine/analogs & derivatives , Adult , Aged , Chromatography, Liquid , Cohort Studies , Colorectal Neoplasms/blood , Colorectal Neoplasms/pathology , Female , Genetic Association Studies , Genetic Predisposition to Disease , Glycation End Products, Advanced/blood , Humans , Imidazoles/blood , Lysine/blood , Lysine/genetics , Male , Middle Aged , Odds Ratio , Ornithine/blood , Ornithine/genetics , Tandem Mass Spectrometry
5.
Chem Res Toxicol ; 34(12): 2549-2557, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34788011

ABSTRACT

We previously developed an adductomics pipeline that employed nanoflow liquid chromatography and high-resolution tandem mass spectrometry (nLC-HR-MS/MS) plus informatics to perform an untargeted detection of modifications to Cys34 in the tryptic T3 peptide of human serum albumin (HSA) (21ALVLIAFAQYLQQC34PFEDHVK41). In order to detect these peptide modifications without targeting specific masses, the pipeline interrogates MS2 ions that are signatures of the T3 peptide. The pipeline had been pilot-tested with archived plasma from healthy human subjects, and several of the 43 Cys34 adducts were highly associated with the smoking status. In the current investigation, we adapted the pipeline to include modifications to the ε-amino group of Lys525─a major glycation site in HSA─and thereby extend the coverage to products of Schiff bases that cannot be produced at Cys34. Because trypsin is generally unable to digest proteins at modified lysines, our pipeline detects miscleaved tryptic peptides with the sequence 525KQTALVELVK534. Adducts of both Lys525 and Cys34 are measured in a single nLC-HR-MS/MS run by increasing the mass range of precursor ions in MS1 scans and including both triply and doubly charged precursor ions for collision-induced dissociation fragmentation. For proof of principle, we applied the Cys34/Lys525 pipeline to archived plasma specimens from a subset of the same volunteer subjects used in the original investigation. Twelve modified Lys525 peptides were detected, including products of glycation (fructosyl-lysine plus advanced-glycated-end products), acetylation, and elimination of ammonia and water. Surprisingly, the carbamylated and glycated adducts were present at significantly lower levels in smoking subjects. By including a larger class of in vivo nucleophilic substitution reactions, the Cys34/Lys525 adductomics pipeline expands exposomic investigations of unknown human exposure to reactive electrophiles derived from both exogenous and endogenous sources.


Subject(s)
Cysteine/chemistry , Lysine/chemistry , Serum Albumin, Human/chemistry , Cysteine/blood , Healthy Volunteers , Humans , Lysine/blood , Male , Models, Molecular , Peptides/blood , Peptides/chemistry
6.
Amino Acids ; 53(1): 111-118, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33398529

ABSTRACT

L-lysine α-oxidase (LO) is an L-amino acid oxidase with antitumor, antimicrobial and antiviral properties. Pharmacokinetic (PK) studies were carried out by measuring LO concentration in plasma and tissue samples by enzyme immunoassay. L-lysine concentration in samples was measured spectrophotometrically using LO. After single i.v. injection of 1.0, 1.5, 3.0 mg/kg the circulating T1/2 of enzyme in mice varied from 51 to 74 min and the AUC0-inf values were 6.54 ± 0.46, 8.66 ± 0.59, 9.47 ± 1.45 µg/ml × h, respectively. LO was distributed in tissues and determined within 48 h after administration with maximal accumulation in liver and heart tissues. Mean time to reach the maximum concentration was highest for the liver-9 h, kidney-1 h and 15 min for the tissues of heart, spleen and brain. T1/2 of LO in tissues ranged from 7.75 ± 0.73 to 26.10 ± 2.60 h. In mice, plasma L-lysine decreased by 79% 15 min after LO administration in dose 1.6 mg/kg. The serum L-lysine levels remained very low from 1 to 9 h (< 25 µM, 17%), indicating an acute lack of L-lysine in animals for at least 9 h. Concentration of L-lysine in serum restored only 24 h after LO administration. The results of LO PK study show that it might be considered as a promising enzyme for further investigation as a potential anticancer agent.


Subject(s)
Amino Acid Oxidoreductases/pharmacokinetics , Trichoderma/enzymology , Amino Acid Oxidoreductases/administration & dosage , Animals , Fungal Proteins/administration & dosage , Fungal Proteins/pharmacokinetics , Lysine/blood , Male , Mice , Mice, Inbred BALB C , Tissue Distribution
7.
Amino Acids ; 53(4): 555-561, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33788002

ABSTRACT

Trimethyllysine (TML) is involved in the generation of the pro-atherogenic metabolite trimethylamine-N-oxide (TMAO) by gut microbiota. In clinical studies, elevated TML levels predicted major adverse cardiovascular events (MACE) in patients with acute or stable coronary artery disease (CAD). In contrast to cardiovascular patients, the role of TML in patients with acute cerebral ischemia is unknown. Here, we evaluated circulating TML levels in 374 stroke patients from the prospective biomarkers in stroke (MARK-STROKE) study. Compared with 167 matched healthy controls, acute ischemic stroke patients had lower median TML plasma concentrations, i.e. 0.71 vs. 0.47 µmol/L (p < 0.001) and this difference persisted after adjusting for age and sex. TML plasma concentrations were associated with age, serum creatinine, glucose, cholesterol and lysine. Patients with prevalent arterial hypertension, atrial fibrillation or a history of myocardial infarction had increased TML levels, but this observation was not independent of age, sex and GFR. In 274 patients, follow-up data were available. During a median follow-up of 284 [25th-75th percentile: 198, 431] days, TML was not associated with incident MACE (stroke, myocardial infarction, death). In summary, our data suggests a different role of TML in acute ischemic stroke compared with CAD patients.


Subject(s)
Ischemic Stroke/blood , Lysine/analogs & derivatives , Aged , Aged, 80 and over , Biomarkers/blood , Coronary Artery Disease/blood , Coronary Artery Disease/diagnosis , Female , Humans , Ischemic Stroke/diagnosis , Lysine/blood , Male , Middle Aged , Prospective Studies , Risk Factors
8.
Amino Acids ; 53(11): 1679-1693, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34693489

ABSTRACT

Arginine (Arg) and lysine (Lys) moieties of proteins undergo various post-translational modifications (PTM) including enzymatic NG- and Nε-methylation and non-enzymatic NG- and Nε-glycation. In a large cohort of stable kidney transplant recipients (KTR, n = 686), high plasma and low urinary concentrations of asymmetric dimethylarginine (ADMA), an abundant PTM metabolite of Arg, were associated with cardiovascular and all-cause mortality. Thus, the prediction of the same biomarker regarding mortality may depend on the biological sample. In another large cohort of stable KTR (n = 555), higher plasma concentrations of Nε-carboxymethyl-lysine (CML) and Nε-carboxyethyl-lysine (CEL), two advanced glycation end-products (AGEs) of Lys, were associated with higher cardiovascular mortality. Yet, the associations of urinary AGEs with mortality are unknown. In the present study, we measured 24 h urinary excretion of Lys, CML, and furosine in 630 KTR and 41 healthy kidney donors before and after donation. Our result indicate that lower urinary CML and lower furosine excretion rates are associated with higher mortality in KTR, thus resembling the associations of ADMA. Lower furosine excretion rates were also associated with higher cardiovascular mortality. The 24 h urinary excretion rate of amino acids and their metabolites decreased post-donation (varying as little as - 24% for CEL, and as much as - 62% for ADMA). For most amino acids, the excretion rate was lower in KTR than in donors pre-donation [except for S-(1-carboxyethyl)-L-cysteine (CEC) and NG-carboxyethylarginine (CEA)]. Simultaneous GC-MS measurement of free amino acids, their PTM metabolites and AGEs in urine is a non-invasive approach in kidney transplantation.


Subject(s)
Biomarkers/urine , Cardiovascular Diseases/mortality , Glycation End Products, Advanced/urine , Kidney Transplantation/adverse effects , Lysine/analogs & derivatives , Lysine/urine , Adult , Aged , Cardiovascular Diseases/etiology , Cardiovascular Diseases/urine , Female , Glycation End Products, Advanced/blood , Humans , Lysine/blood , Male , Middle Aged , Prospective Studies , Tissue Donors/statistics & numerical data , Transplant Recipients/statistics & numerical data , Young Adult
9.
Int J Mol Sci ; 22(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34638563

ABSTRACT

BACKGROUND: Linoleic acid (LA) is an essential polyunsaturated fatty acid (PUFA) that is required for foetal growth and development. Excess intake of LA can be detrimental for metabolic health due to its pro-inflammatory properties; however, the effect of a diet high in LA on offspring metabolites is unknown. In this study, we aimed to determine the role of maternal or postnatal high linoleic acid (HLA) diet on plasma metabolites in adult offspring. METHODS: Female Wistar Kyoto (WKY) rats were fed with either low LA (LLA) or HLA diet for 10 weeks prior to conception and during gestation/lactation. Offspring were weaned at postnatal day 25 (PN25), treated with either LLA or HLA diets and sacrificed at PN180. Metabolite analysis was performed in plasma samples using Nuclear Magnetic Resonance. RESULTS: Maternal and postnatal HLA diet did not alter plasma metabolites in male and female adult offspring. There was no specific clustering among different treatment groups as demonstrated by principal component analysis. Interestingly, there was clustering among male and female offspring independent of maternal and postnatal dietary intervention. Lysine was higher in female offspring, while 3-hydroxybutyric acid and acetic acid were significantly higher in male offspring. CONCLUSION: In summary, maternal or postnatal HLA diet did not alter the plasma metabolites in the adult rat offspring; however, differences in metabolites between male and female offspring occurred independently of dietary intervention.


Subject(s)
3-Hydroxybutyric Acid/blood , Acetic Acid/blood , Linoleic Acid/administration & dosage , Lysine/blood , Adult Children , Animals , Animals, Newborn , Diet , Diet, High-Fat , Female , Lactation , Male , Maternal Nutritional Physiological Phenomena , Plasma/chemistry , Plasma/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/blood , Principal Component Analysis , ROC Curve , Rats, Inbred WKY , Sex Characteristics
10.
J Intern Med ; 288(4): 446-456, 2020 10.
Article in English | MEDLINE | ID: mdl-32270523

ABSTRACT

BACKGROUND: The carnitine precursor trimethyllysine (TML) is associated with progression of atherosclerosis, possibly through a relationship with trimethylamine-N-oxide (TMAO). Riboflavin is a cofactor in TMAO synthesis. We examined prospective relationships of circulating TML and TMAO with acute myocardial infarction (AMI) and potential effect modifications by riboflavin status. METHODS: By Cox modelling, risk associations were examined amongst 4098 patients (71.8% men) with suspected stable angina pectoris. Subgroup analyses were performed according to median plasma riboflavin. RESULTS: During a median follow-up of 4.9 years, 336 (8.2%) patients experienced an AMI. The age- and sex-adjusted hazard ratio (HR) (95% CI) comparing the 4th vs. 1st TML quartile was 2.19 (1.56-3.09). Multivariable adjustment for traditional cardiovascular risk factors and indices of renal function only slightly attenuated the risk estimates [HR (95% CI) 1.79 (1.23-2.59)], which were particularly strong amongst patients with riboflavin levels above the median (Pint  = 0.035). Plasma TML and TMAO were strongly correlated (rs  = 0.41; P < 0.001); however, plasma TMAO was not associated with AMI risk in adjusted analyses [HR (95% CI) 0.81 (0.58-1.14)]. No interaction between TML and TMAO was observed. CONCLUSION: Amongst patients with suspected stable angina pectoris, plasma TML, but not TMAO, independently predicted risk of AMI. Our results motivate further research on metabolic processes determining TML levels and their potential associations with cardiovascular disease. We did not adjust for multiple comparisons, and the subgroup analyses should be interpreted with caution.


Subject(s)
Coronary Disease/blood , Coronary Disease/complications , Heart Disease Risk Factors , Lysine/analogs & derivatives , Methylamines/blood , Myocardial Infarction/etiology , Aged , Biomarkers/blood , Female , Humans , Lysine/blood , Male , Middle Aged , Prospective Studies , Riboflavin/blood
11.
FASEB J ; 33(12): 14410-14422, 2019 12.
Article in English | MEDLINE | ID: mdl-31665609

ABSTRACT

Nε-(carboxymethyl) lysine (CML), the major member of advanced glycation end products, was widely studied in diabetic complications and aging-associated diseases. However, the impact of CML on myocardial ischemia/reperfusion injury (MI/RI) was rarely reported. In the present study, CML was increased in both patients with acute myocardial infarction (53.4 ± 7.8 vs. 28.1 ± 4.4 ng; P = 0.017), and mice underwent MI/RI (16.4 ± 1.4 vs. 10.8 ± 0.9 ng; P = 0.006). Depletion of neutrophils reduced CML (17.8 ± 1.0 vs. 9.9 ± 0.3 ng; P < 0.001), indicating neutrophils were the major cells contributing to CML formation during MI/RI. CML treatment exacerbated MI/RI by elevating myocardial injury marker (274.3 ± 18.0 vs. 477.2 ± 34.3 pg; P < 0.001), enlarging myocardial infarct size (32.9 ± 3.6 vs. 45.2 ± 3.8%; P = 0.03), increasing myocardial fibrosis (17.5 ± 1.6 vs. 29.7 ± 2.2%; P < 0.001) and impairing cardiac function (59.4 ± 2.4% vs. 46.0 ± 1.3%; P = 0.001). Further study revealed that CML increased the phosphorylation of receptor interacting protein (RIP) 3, an important initiator of necroptosis, and its downstream proteins. Receptor for advanced glycation end product (RAGE) deficiency effectively blocked RIP3 phosphorylation induced by CML and rescued CML-mediated MI/RI, indicating CML promoted RIP3-mediated necroptosis through RAGE. In addition, glyoxalase-1 overexpression could effectively attenuate MI/RI by reducing CML formation, providing a potential therapeutic target for MI/RI.-Yang, J., Zhang, F., Shi, H., Gao, Y., Dong, Z., Ma, L., Sun, X., Li, X., Chang, S., Wang, Z., Qu, Y., Li, H., Hu, K., Sun, A., Ge, J. Neutrophil-derived advanced glycation end products-Nε-(carboxymethyl) lysine promotes RIP3-mediated myocardial necroptosis via RAGE and exacerbates myocardial ischemia/reperfusion injury.


Subject(s)
Lysine/analogs & derivatives , Myocardial Ischemia/metabolism , Neutrophils/metabolism , Receptor for Advanced Glycation End Products/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Reperfusion Injury/metabolism , Animals , Animals, Newborn , Gene Expression Regulation/physiology , Glycation End Products, Advanced , Humans , Lysine/blood , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/blood , Myocardial Infarction/metabolism , Phagocytes , Receptor for Advanced Glycation End Products/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
12.
Bioorg Med Chem ; 28(24): 115831, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33199202

ABSTRACT

Acrolein, a highly reactive α,ß-unsaturated aldehyde, is a compound to which humans are exposed in many different situations and often causes various human diseases. This paper summarizes the reports over the past twenty-five years regarding disease-associated acrolein detected in clinical patients and the role acrolein plays in various diseases. In several diseases, it was found that the increased acrolein acts as a pathogenetic factor. Thus, we propose the utility of over-produced acrolein as a substrate for a promising therapeutic or diagnostic method applicable to a wide range of diseases based on an in vivo synthetic chemistry strategy.


Subject(s)
Acrolein/chemistry , Alzheimer Disease/diagnosis , Autoimmune Diseases/diagnosis , Brain Diseases/diagnosis , Acrolein/analysis , Acrolein/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Autoimmune Diseases/therapy , Brain Diseases/therapy , Humans , Lysine/analogs & derivatives , Lysine/blood , Lysine/cerebrospinal fluid , Lysine/chemistry , Lysine/urine , Polyamines/chemistry , Proteins/chemistry
13.
Lipids Health Dis ; 19(1): 205, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32921312

ABSTRACT

BACKGROUND AND AIMS: Diabetic kidney disease (DKD) is associated with lipid derangements that worsen kidney function and enhance cardiovascular (CVD) risk. The management of dyslipidemia, hypertension and other traditional risk factors does not completely prevent CVD complications, bringing up the participation of nontraditional risk factors such as advanced glycation end products (AGEs), carbamoylation and changes in the HDL proteome and functionality. The HDL composition, proteome, chemical modification and functionality were analyzed in nondialysis subjects with DKD categorized according to the estimated glomerular filtration rate (eGFR) and urinary albumin excretion rate (AER). METHODS: Individuals with DKD were divided into eGFR> 60 mL/min/1.73 m2 plus AER stages A1 and A2 (n = 10) and eGFR< 60 plus A3 (n = 25) and matched by age with control subjects (eGFR> 60; n = 8). RESULTS: Targeted proteomic analyses quantified 28 proteins associated with HDL in all groups, although only 2 were more highly expressed in the eGFR< 60 + A3 group than in the controls: apolipoprotein D (apoD) and apoA-IV. HDL from the eGFR< 60 + A3 group presented higher levels of total AGEs (20%), pentosidine (6.3%) and carbamoylation (4.2 x) and a reduced ability to remove 14C-cholesterol from macrophages (33%) in comparison to HDL from controls. The antioxidant role of HDL (lag time for LDL oxidation) was similar among groups, but HDL from the eGFR< 60 + A3 group presented a greater ability to inhibit the secretion of IL-6 and TNF-alpha (95%) in LPS-elicited macrophages in comparison to the control group. CONCLUSION: The increase in apoD and apoA-IV could contribute to counteracting the HDL chemical modification by AGEs and carbamoylation, which contributes to HDL loss of function in well-established DKD.


Subject(s)
Apolipoproteins A/blood , Apolipoproteins D/blood , Diabetic Nephropathies/blood , Lipoproteins, HDL/blood , Proteome/metabolism , Aged , Aged, 80 and over , Albuminuria/blood , Albuminuria/genetics , Albuminuria/pathology , Apolipoproteins A/genetics , Apolipoproteins D/genetics , Arginine/analogs & derivatives , Arginine/blood , Arginine/genetics , Case-Control Studies , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Female , Gene Expression , Glomerular Filtration Rate , Glycation End Products, Advanced/blood , Glycation End Products, Advanced/genetics , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Kidney/metabolism , Kidney/pathology , Lipopolysaccharides/pharmacology , Lipoproteins, HDL/genetics , Lysine/analogs & derivatives , Lysine/blood , Lysine/genetics , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Male , Middle Aged , Primary Cell Culture , Protein Carbamylation , Proteome/classification , Proteome/genetics , Renal Dialysis , Risk Factors , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
14.
J Dairy Sci ; 103(12): 11386-11400, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33041036

ABSTRACT

Feeding rumen-protected Lys (RPL) may be used to increase lactation performance in dairy cows; however, the effect of feeding RPL during the prepartum period and subsequent effect on postpartum performance is not well explored. Therefore, this experiment was conducted to determine the effects of feeding RPL (AjiPro-L Generation 3, Ajinomoto Heartland Inc., Chicago, IL) prepartum, postpartum, or both on performance, health, and blood metabolites. Seventy-five multiparous Holstein cows, blocked by parity, previous 305-d mature-equivalent milk production, expected calving date, and body condition score during the far-off dry period were assigned to 1 of 2 dietary treatments: total mixed ration with or without RPL in a randomized, complete block design. A 2 × 2 factorial arrangement of treatments was used. Prepartum (-28 d to calving), animals were fed a diet (forage, 68% of dietary DM) with RPL [PRE-L; 0.54% RPL of dietary dry matter intake (DMI)] or without RPL (control; PRE-C). After calving, half of the cows from each prepartum treatment group were assigned to a diet (forage, 55.5% of dietary DM) with RPL (PRE-L POST-L; PRE-C POST-L; 0.40% RPL of dietary DMI) or without RPL (PRE-C POST-C; PRE-L POST-C) until d 28 postpartum. Cows were milked twice a day and milk samples were taken on 7 ± 1.3, 14 ± 1.4, and 28 ± 1.1 d relative to calving (DRC). Milk yield and DMI were recorded daily. Blood samples were taken for plasma AA analysis on -7 ± 0.5, 0 ± 0.5, 7 ± 0.9, and 14 ± 0.9 DRC. Cows in PRE-L had greater body weight at -2 and -1 wk before calving compared with those in PRE-C, though body weight change from wk -4 to -1 was not different. Body weight (717 ± 6 kg) was greater and DMI (18.1 ± 0.7 kg) tended to be greater for cows in PRE-L POST-L and PRE-L POST-C compared with those that were in PRE-C POST-L and PRE-C POST-C (707 ± 6 and 16.8 ± 0.7 kg, respectively). Energy-corrected milk (48.8 ± 1.9 kg/d), milk fat (1.9 ± 0.1 kg/d), milk true protein (1.4 ± 0.1 kg/d), milk casein (0.6 ± 0.04 kg/d), and milk lactose yields (2.1 ± 0.1 kg/d) were greater for cows in PRE-L POST-L and PRE-L POST-C compared with those that were in PRE-C POST-L and PRE-C POST-C (44.2 ± 1.9, 1.7 ± 0.1, 1.3 ± 0.1, 0.5 ± 0.04, 1.9 ± 0.1 kg/d, respectively). Plasma concentrations of Lys prepartum (69.8 ± 1.8 µM) increased for cows in PRE-L compared with those in PRE-C (62.5 ± 1.3 µM). In conclusion, RPL consumed prepartum tended to increase postpartum DMI and increased energy-corrected milk and milk component yields. This indicates that prepartum supply of intestinally available Lys is pertinent to postpartum performance. However, postpartum supply of intestinally available Lys had no effect on cows' performance.


Subject(s)
Cattle/physiology , Lactation/drug effects , Lysine/administration & dosage , Milk/metabolism , Rumen/metabolism , Animals , Body Weight , Diet/veterinary , Female , Lysine/blood , Milk/chemistry , Parity , Postpartum Period/metabolism , Pregnancy , Prenatal Care
15.
J Dairy Sci ; 103(8): 7110-7123, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32505393

ABSTRACT

Hydrolyzed feather meal (HFM) is high in crude protein, most of which bypasses rumen degradation when fed to lactating dairy cows, allowing direct supply of AA to the small intestine. Compared with other feeds that are high in bypass protein, such as blood meal or heat-treated soybean meal, HFM is low in His and Lys. The objectives of this study were to determine the effects of supplementing rumen-protected (RP) Lys and His individually or in combination in a diet containing 5% HFM on milk production and composition as well as energy and N partitioning. Twelve multiparous Jersey cows (mean ± SD: 91 ± 18 d in milk) were used in a triplicated 4 × 4 Latin square with 4 periods of 28 d (24-d adaptation and 4-d collection). Throughout the experiment, all cows were fed the same TMR, with HFM included at 5% of diet DM. Cows were grouped by dry matter intake and milk yield, and cows within a group were randomly assigned to 1 of 4 treatments: no RP Lys or RP His; RP Lys only [70 g/d of Ajipro-L (24 g/d of digestible Lys), Ajinomoto Co. Inc., Tokyo, Japan]; RP His only [32 g/d of experimental product (7 g/d of digestible His), Balchem Corp., New Hampton, NY]; or both RP Lys and His. Plasma Lys concentration increased when RP Lys was supplemented without RP His (77.7 vs. 66.0 ± 4.69 µM) but decreased when RP Lys was supplemented with RP His (71.4 vs. 75.0 ± 4.69 µM). Plasma concentration of 3-methylhistidine decreased with RP Lys (3.19 vs. 3.40 ± 0.31 µM). With RP His, plasma concentration of His increased (21.8 vs. 18.7 ± 2.95 µM). For milk production and milk composition, no effects of Lys were observed. Supplementing RP His increased milk yield (22.5 vs. 21.6 ± 2.04 kg/d) and tended to increase milk protein yield (0.801 vs. 0.772 ± 0.051 kg/d). Across treatments, dry matter intake (18.5 ± 0.83 kg/d) and energy supply (32.2 ± 2.24 Mcal of net energy for lactation) were not different. Supplementing RP His did not affect N utilization; however, supplementing RP Lys increased N balance (25 vs. 16 ± 9 g/d). The lack of production responses to RP Lys suggests that Lys was not limiting or that the increase in Lys supply was not large enough to cause an increase in milk protein yield. However, increased N balance and decreased 3-methylhistidine with RP Lys suggest that increased Lys supply increased protein accretion and decreased protein mobilization. Furthermore, His may be a limiting AA in diets containing HFM.


Subject(s)
Cattle/psychology , Dietary Supplements/analysis , Histidine/administration & dosage , Lysine/administration & dosage , Milk/metabolism , Nitrogen/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Eating , Feathers , Female , Histidine/blood , Lactation/drug effects , Lysine/blood , Methylhistidines/blood , Milk Proteins/metabolism , Random Allocation , Rumen/metabolism , Glycine max
16.
Eur Heart J ; 40(32): 2700-2709, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31049589

ABSTRACT

AIMS: Trimethyllysine (TML) serves as a nutrient precursor of the gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) and is associated with incident cardiovascular (CV) events in stable subjects. We examined the relationship between plasma TML levels and incident CV events in patients presenting with acute coronary syndromes (ACS). METHODS AND RESULTS: Plasma levels of TML were quantified in two independent cohorts using mass spectrometry, and its relationship with CV events was investigated. In a Cleveland Cohort (N = 530), comprised of patients presenting to the emergency department with chest pain and suspected ACS, TML was associated with major adverse cardiac events (MACE, myocardial infarction, stroke, need for revascularization, or all-cause mortality) over both 30 days [3rd tertile (T3), adjusted odds ratio (OR) 1.77, 95% confidence interval (CI) 1.04-3.01; P < 0.05] and 6 months (T3, adjusted OR 1.95, 95% CI 1.15-3.32; P < 0.05) of follow-up independent of traditional CV risk factors and indices of renal function. Elevated TML levels were also associated with incident long-term (7-year) all-cause mortality [T3, adjusted hazard ratio (HR) 2.52, 95% CI 1.50-4.24; P < 0.001], and MACE even amongst patients persistently negative for cardiac Troponin T at presentation (e.g. 30-day MACE, T3, adjusted OR 4.49, 95% CI 2.06-9.79; P < 0.001). Trimethyllysine in combination with TMAO showed additive significance for near- and long-term CV events, including patients with 'negative' high-sensitivity Troponin T levels. In a multicentre Swiss Cohort (N = 1683) comprised of ACS patients, similar associations between TML and incident 1-year adverse cardiac risks were observed (e.g. mortality, adjusted T3 HR 2.74, 95% CI 1.28-5.85; P < 0.05; and MACE, adjusted T3 HR 1.55, 95% CI 1.04-2.31; P < 0.05). CONCLUSION: Plasma TML levels, alone and together with TMAO, are associated with both near- and long-term CV events in patients with chest pain and ACS.


Subject(s)
Acute Coronary Syndrome , Lysine/analogs & derivatives , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/epidemiology , Acute Coronary Syndrome/mortality , Aged , Female , Humans , Lysine/blood , Male , Methylamines/blood , Middle Aged , Prognosis , Prospective Studies
17.
Drug Chem Toxicol ; 43(6): 623-629, 2020 Nov.
Article in English | MEDLINE | ID: mdl-30810388

ABSTRACT

In the present trial, the levels of serum aflatoxin B1 (AFB1)-lysine and their relationship with biochemical parameters in broiler chicks fed an AFB1-contaminated diet were determined. The experimental design was completely randomized with two treatments (control and 222.17 µg/kg AFB1) and 20 bird per treatment. Feeds were offered to broiler chicks for 14 days, from 28 to 42 days of age. Animals were vaccinated against Newcastle's and Marek's diseases on the 14th day of life, and were killed at 42 days of age. Broilers receiving AFB1 did not demonstrate any sign of toxicity. Compared with controls, aspartate aminotransferase and globulin levels were not affected in the AFB1-treated group. However, higher levels of gamma-glutamyl transferase and lower concentrations of total protein and albumin were observed in the group receiving AFB1 on days 35 and 42. AFB1-lysine were detected in the serum of all broilers fed the AFB1-contaminated diet, at mean levels of 56.52-77.83 ng/mg albumin on days 35 and 42 of age, respectively. These values indicated the internal dose of AFB1 in birds, which negatively correlated with total protein, albumin, and globulin levels. Data indicated that AFB1-lysine shows the potential to be a sensitive and specific biomarker for the evaluation of broiler exposure to dietary aflatoxin, as well as for diagnostic purposes. Further studies are necessary to determine physiologically-based toxicokinetics of serum AFB1-lysine in broilers.


Subject(s)
Aflatoxin B1/blood , Animal Feed/microbiology , Chickens/blood , Food Microbiology , Lysine/blood , Aflatoxin B1/toxicity , Age Factors , Animal Husbandry , Animals , Biomarkers/blood , Lysine/toxicity , Male , Time Factors
18.
Cardiovasc Diabetol ; 18(1): 151, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31722714

ABSTRACT

BACKGROUND: The pandemic of cardiovascular disease (CVD) and type 2 diabetes (T2D) requires the identification of new predictor biomarkers. Biomarkers potentially modifiable with lifestyle changes deserve a special interest. Our aims were to analyze: (a) The associations of lysine, 2-aminoadipic acid (2-AAA) or pipecolic acid with the risk of T2D or CVD in the PREDIMED trial; (b) the effect of the dietary intervention on 1-year changes in these metabolites, and (c) whether the Mediterranean diet (MedDiet) interventions can modify the effects of these metabolites on CVD or T2D risk. METHODS: Two unstratified case-cohort studies nested within the PREDIMED trial were used. For CVD analyses, we selected 696 non-cases and 221 incident CVD cases; for T2D, we included 610 non-cases and 243 type 2 diabetes incident cases. Metabolites were quantified using liquid chromatography-tandem mass spectrometry, at baseline and after 1-year of intervention. RESULTS: In weighted Cox regression models, we found that baseline lysine (HR+1 SD increase = 1.26; 95% CI 1.06-1.51) and 2-AAA (HR+1 SD increase = 1.28; 95% CI 1.05-1.55) were both associated with a higher risk of T2D, but not with CVD. A significant interaction (p = 0.032) between baseline lysine and T2D on the risk of CVD was observed: subjects with prevalent T2D and high levels of lysine exhibited the highest risk of CVD. The intervention with MedDiet did not have a significant effect on 1-year changes of the metabolites. CONCLUSIONS: Our results provide an independent prospective replication of the association of 2-AAA with future risk of T2D. We show an association of lysine with subsequent CVD risk, which is apparently diabetes-dependent. No evidence of effects of MedDiet intervention on lysine, 2-AAA or pipecolic acid changes was found. Trial registration ISRCTN35739639; registration date: 05/10/2005; recruitment start date 01/10/2003.


Subject(s)
2-Aminoadipic Acid/blood , Cardiovascular Diseases/blood , Diabetes Mellitus, Type 2/blood , Lysine/blood , Pipecolic Acids/blood , Aged , Aged, 80 and over , Biomarkers/blood , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/prevention & control , Diet, Mediterranean , Female , Humans , Incidence , Male , Middle Aged , Primary Prevention , Prospective Studies , Randomized Controlled Trials as Topic , Risk Assessment , Risk Factors , Risk Reduction Behavior , Time Factors , Treatment Outcome
19.
Anal Biochem ; 577: 59-66, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31028716

ABSTRACT

l-Homoarginine (hArg) is biosynthesized from l-arginine (Arg) and l-lysine (Lys) by arginine:glycine amidinotransferase (AGAT). AGAT also catalyzes the formation of guanidinoacetate (GAA) from Arg and glycine (Gly). GAA is converted to creatine (N-methyl guanidinoacetate) by guanidinoacetate N-methyl-transferase (GAMT). Low circulating and excretory concentrations of hArg are associated with worse cardiovascular outcome and mortality. hArg is a poor substrate of nitric oxide synthase (NOS) and a weak inhibitor of arginase. The metabolism of hArg in humans is little investigated. Previously, we found that orally administered hArg (125 mg/day) increased the plasma concentration of hArg, but not of Arg, the substrate of NOS, in healthy subjects. We newly analyzed the plasma samples collected in that study for Lys and other amino acids. Repeated measures ANOVA revealed statistically significant differences between the groups (P = 0.008) with respect to plasma Lys concentration which increased by about 8% after a 4-week hArg supplementation. In vitro, recombinant human arginase and bovine liver arginase I were demonstrated by a specific and sensitive stable-isotope GC-MS assay to hydrolyze hArg to Lys. Our results suggest that Lys is a metabolite of hArg produced by the hydrolytic activity of arginase. Arginase may play a key role in hArg homeostasis in humans.


Subject(s)
Arginase/metabolism , Arginine , Homoarginine , Lysine , Adult , Arginine/blood , Arginine/metabolism , Female , Homoarginine/blood , Homoarginine/metabolism , Humans , Lysine/blood , Lysine/metabolism , Male , Nitric Oxide/metabolism , Young Adult
20.
Amino Acids ; 51(6): 961-971, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31028565

ABSTRACT

The importance of L-arginine (Arg) and relatives, including L-homoarginine (hArg) and asymmetric dimethylarginine (ADMA), in humans infected with Helicobacter pylori (Hp) is little understood. ADMA is produced by asymmetric dimethylation of the guanidine group of Arg residues in certain proteins and is released by proteolysis. High concentrations of circulating free ADMA are considered a risk factor for morbidity and mortality in adults. This risk is considered to arise from the inhibition of the synthesis of nitric oxide (NO), which is a potent vasodilator and inhibitor of platelet aggregation. In the present study, we quantified by stable isotope dilution gas chromatography-mass spectrometry (GC-MS) the concentration of free (f) and total (t) ADMA, Arg, hArg, lysine (Lys) and the sum of citrulline (Cit) and ornithine (Orn) (6 M HCl, 20 h, 110 °C) in serum samples of apparently healthy elderly subjects (n = 27; age, 31-105 years) who were tested for Hp infection. Nine subjects (5 males, 4 females) were found to be Hp seropositive (Hp+) and 18 subjects (8 males, 9 females) were found to be Hp seronegative (Hp‒). Proteinic (p) concentrations were determined by difference. fADMA (0.493 ± 0.068 vs 0.466 ± 0.081 µM, P = 0.382), pADMA (113 ± 73 vs 76 ± 59 nM, P = 0.169) and tADMA (0.606 ± 0.126 vs 0.543 ± 0.121 µM, P = 0.280) serum concentrations were found not to differ between the Hp+ and Hp- subjects. Serum concentrations of fArg (162 ± 30 vs 177 ± 36 µM, P = 0.471), fhArg (1.600 ± 0.638 vs 1.831 ± 0.742 µM, P = 0.554), and fLys (388 ± 170 vs 395 ± 149 µM, P = 0.700) also did not differ statistically between Hp+ and Hp- subjects. tArg (12.4 ± 1.49 vs 13.0 ± 1.33 mM, P = 0.190), tLys (23.0 ± 2.65 vs. 23.9 ± 2.66 mM, P = 0.456) and tCit + Orn (2.53 ± 0.76 vs 2.63 ± 0.85 mM, P = 0.817) did not differ between Hp+and Hp‒ subjects as well. phArg concentration was close to the limit of quantitation of the method (Hp+: 30 ± 210 nM; Hp-: 42 ± 205 nM), suggesting that hArg is virtually absent in serum proteins of the investigated subjects. pCit + Orn did not differ between infected and non-infected subjects. Our study suggests that Hp infection is not associated with elevated asymmetric dimethylation and citrullination of Arg proteins present in the serum or with the hArg synthesis from free Arg in elderly subjects. However, asymmetric Arg dimethylation was found to correlate inversely with Arg citrullination in Hp- (r2 = 0.408, P = 0.004) but not in Hp+ (r2 = 0.065, P = 0.506), with Arg citrullination decreasing and Arg asymmetric dimethylation increasing with subjects' age.


Subject(s)
Arginine/analogs & derivatives , Citrullination , Citrulline/blood , Helicobacter Infections/blood , Homoarginine/blood , Methylation , Adult , Aged , Aged, 80 and over , Arginine/blood , Arginine/metabolism , Female , Gas Chromatography-Mass Spectrometry , Helicobacter Infections/pathology , Helicobacter pylori/metabolism , Humans , Lysine/blood , Male , Middle Aged , Nitric Oxide/biosynthesis , Ornithine/blood
SELECTION OF CITATIONS
SEARCH DETAIL