Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.211
Filter
1.
PLoS Biol ; 22(6): e3002694, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900845

ABSTRACT

Fungi and bacteria coexist in many polymicrobial communities, yet the molecular basis of their interactions remains poorly understood. Here, we show that the fungus Candida albicans sequesters essential magnesium ions from the bacterium Pseudomonas aeruginosa. To counteract fungal Mg2+ sequestration, P. aeruginosa expresses the Mg2+ transporter MgtA when Mg2+ levels are low. Thus, loss of MgtA specifically impairs P. aeruginosa in co-culture with C. albicans, but fitness can be restored by supplementing Mg2+. Using a panel of fungi and bacteria, we show that Mg2+ sequestration is a general mechanism of fungal antagonism against gram-negative bacteria. Mg2+ limitation enhances bacterial resistance to polymyxin antibiotics like colistin, which target gram-negative bacterial membranes. Indeed, experimental evolution reveals that P. aeruginosa evolves C. albicans-dependent colistin resistance via non-canonical means; antifungal treatment renders resistant bacteria colistin-sensitive. Our work suggests that fungal-bacterial competition could profoundly impact polymicrobial infection treatment with antibiotics of last resort.


Subject(s)
Anti-Bacterial Agents , Candida albicans , Colistin , Magnesium , Pseudomonas aeruginosa , Magnesium/pharmacology , Magnesium/metabolism , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Candida albicans/drug effects , Candida albicans/metabolism , Colistin/pharmacology , Microbial Sensitivity Tests , Polymyxins/pharmacology , Drug Resistance, Bacterial/drug effects , Microbial Interactions/drug effects
2.
PLoS Biol ; 19(4): e3001231, 2021 04.
Article in English | MEDLINE | ID: mdl-33905418

ABSTRACT

MgtE is a Mg2+ channel conserved in organisms ranging from prokaryotes to eukaryotes, including humans, and plays an important role in Mg2+ homeostasis. The previously determined MgtE structures in the Mg2+-bound, closed-state, and structure-based functional analyses of MgtE revealed that the binding of Mg2+ ions to the MgtE cytoplasmic domain induces channel inactivation to maintain Mg2+ homeostasis. There are no structures of the transmembrane (TM) domain for MgtE in Mg2+-free conditions, and the pore-opening mechanism has thus remained unclear. Here, we determined the cryo-electron microscopy (cryo-EM) structure of the MgtE-Fab complex in the absence of Mg2+ ions. The Mg2+-free MgtE TM domain structure and its comparison with the Mg2+-bound, closed-state structure, together with functional analyses, showed the Mg2+-dependent pore opening of MgtE on the cytoplasmic side and revealed the kink motions of the TM2 and TM5 helices at the glycine residues, which are important for channel activity. Overall, our work provides structure-based mechanistic insights into the channel gating of MgtE.


Subject(s)
Antiporters/chemistry , Bacterial Proteins/chemistry , Ion Channel Gating/physiology , Antiporters/metabolism , Bacterial Proteins/metabolism , Binding Sites/drug effects , Biological Transport , Cryoelectron Microscopy , Crystallography, X-Ray , Cytoplasm/metabolism , Ion Channel Gating/drug effects , Kinetics , Magnesium/metabolism , Magnesium/pharmacology , Models, Molecular , Protein Domains/drug effects , Protein Domains/physiology , Protein Structure, Quaternary , Protein Structure, Secondary , Thermus thermophilus/metabolism
3.
Mol Cell ; 64(3): 480-492, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27746019

ABSTRACT

The synthesis of ribosomes is regulated by both amino acid abundance and the availability of ATP, which regenerates guanosine triphosphate (GTP), powers ribosomes, and promotes transcription of rRNA genes. We now report that bacteria supersede both of these controls when experiencing low cytosolic magnesium (Mg2+), a divalent cation essential for ribosome stabilization and for neutralization of ATP's negative charge. We uncover a regulatory circuit that responds to low cytosolic Mg2+ by promoting expression of proteins that import Mg2+ and lower ATP amounts. This response reduces the levels of ATP and ribosomes, making Mg2+ ions available for translation. Mutants defective in Mg2+ uptake and unable to reduce ATP levels accumulate non-functional ribosomal components and undergo translational arrest. Our findings establish a paradigm whereby cells reduce the amounts of translating ribosomes to carry out protein synthesis.


Subject(s)
Gene Expression Regulation, Bacterial , Magnesium/pharmacology , Protein Biosynthesis/drug effects , Ribosomal Proteins/biosynthesis , Ribosomes/drug effects , Salmonella typhimurium/drug effects , Adenosine Triphosphate/metabolism , Cations, Divalent , Culture Media/chemistry , Culture Media/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Guanosine Triphosphate/biosynthesis , Magnesium/metabolism , Organelle Biogenesis , Ribosomal Proteins/genetics , Ribosomes/genetics , Ribosomes/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Static Electricity , Stress, Physiological/genetics
4.
J Nanobiotechnology ; 22(1): 368, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918787

ABSTRACT

Active artificial bone substitutes are crucial in bone repair and reconstruction. Calcium phosphate bone cement (CPC) is known for its biocompatibility, degradability, and ability to fill various shaped bone defects. However, its low osteoinductive capacity limits bone regeneration applications. Effectively integrating osteoinductive magnesium ions with CPC remains a challenge. Herein, we developed magnesium malate-modified CPC (MCPC). Incorporating 5% magnesium malate significantly enhances the compressive strength of CPC to (6.18 ± 0.49) MPa, reduces setting time and improves disintegration resistance. In vitro, MCPC steadily releases magnesium ions, promoting the proliferation of MC3T3-E1 cells without causing significant apoptosis, proving its biocompatibility. Molecularly, magnesium malate prompts macrophages to release prostaglandin E2 (PGE2) and synergistically stimulates dorsal root ganglion (DRG) neurons to synthesize and release calcitonin gene-related peptide (CGRP). The CGRP released by DRG neurons enhances the expression of the key osteogenic transcription factor Runt-related transcription factor-2 (RUNX2) in MC3T3-E1 cells, promoting osteogenesis. In vivo experiments using minipig vertebral bone defect model showed MCPC significantly increases the bone volume fraction, bone density, new bone formation, and proportion of mature bone in the defect area compared to CPC. Additionally, MCPC group exhibited significantly higher levels of osteogenesis and angiogenesis markers compared to CPC group, with no inflammation or necrosis observed in the hearts, livers, or kidneys, indicating its good biocompatibility. In conclusion, MCPC participates in the repair of bone defects in the complex post-fracture microenvironment through interactions among macrophages, DRG neurons, and osteoblasts. This demonstrates its significant potential for clinical application in bone defect repair.


Subject(s)
Bone Cements , Calcitonin Gene-Related Peptide , Calcium Phosphates , Osteogenesis , Swine, Miniature , Animals , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Bone Cements/pharmacology , Bone Cements/chemistry , Mice , Swine , Calcitonin Gene-Related Peptide/metabolism , Osteogenesis/drug effects , Bone Regeneration/drug effects , Spine/surgery , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Cell Line , Magnesium/pharmacology , Magnesium/chemistry
5.
J Nanobiotechnology ; 22(1): 314, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840113

ABSTRACT

Osteoporosis is the most common bone metabolic disease that affects the health of middle-aged and elderly people, which is hallmarked by imbalanced bone remodeling and a deteriorating immune microenvironment. Magnesium and calcium are pivotal matrix components that participate in the bone formation process, especially in the immune microenvironment regulation and bone remodeling stages. Nevertheless, how to potently deliver magnesium and calcium to bone tissue remains a challenge. Here, we have constructed a multifunctional nanoplatform composed of calcium-based upconversion nanoparticles and magnesium organic frameworks (CM-NH2-PAA-Ald, denoted as CMPA), which features bone-targeting and pH-responsive properties, effectively regulating the inflammatory microenvironment and promoting the coordination of osteogenic functions for treating osteoporosis. The nanoplatform can efficaciously target bone tissue and gradually degrade in response to the acidic microenvironment of osteoporosis to release magnesium and calcium ions. This study validates that CMPA possessing favorable biocompatibility can suppress inflammation and facilitate osteogenesis to treat osteoporosis. Importantly, high-throughput sequencing results demonstrate that the nanoplatform exerts a good inflammatory regulation effect through inhibition of the nuclear factor kappa-B signaling pathway, thereby normalizing the osteoporotic microenvironment. This collaborative therapeutic strategy that focuses on improving bone microenvironment and promoting osteogenesis provides new insight for the treatment of metabolic diseases such as osteoporosis.


Subject(s)
Calcium , Magnesium , Nanoparticles , Osteogenesis , Osteoporosis , Osteogenesis/drug effects , Osteoporosis/drug therapy , Magnesium/pharmacology , Magnesium/chemistry , Calcium/metabolism , Animals , Nanoparticles/chemistry , Mice , Inflammation/drug therapy , Bone and Bones/drug effects , Bone and Bones/metabolism , Humans , Cellular Microenvironment/drug effects , Female , NF-kappa B/metabolism
6.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732212

ABSTRACT

The skin wound healing process consists of hemostatic, inflammatory, proliferative, and maturation phases, with a complex cellular response by multiple cell types in the epidermis, dermis, and immune system. Magnesium is a mineral essential for life, and although magnesium treatment promotes cutaneous wound healing, the molecular mechanism and timing of action of the healing process are unknown. This study, using human epidermal-derived HaCaT cells and human normal epidermal keratinocyte cells, was performed to investigate the mechanism involved in the effect of magnesium on wound healing. The expression levels of epidermal differentiation-promoting factors were reduced by MgCl2, suggesting an inhibitory effect on epidermal differentiation in the remodeling stage of the late wound healing process. On the other hand, MgCl2 treatment increased the expression of matrix metalloproteinase-7 (MMP7), a cell migration-promoting factor, and enhanced cell migration via the MEK/ERK pathway activation. The enhancement of cell migration by MgCl2 was inhibited by MMP7 knockdown, suggesting that MgCl2 enhances cell migration which is mediated by increased MMP7 expression. Our results revealed that MgCl2 inhibits epidermal differentiation but promotes cell migration, suggesting that applying magnesium to the early wound healing process could be beneficial.


Subject(s)
Cell Differentiation , Cell Movement , Keratinocytes , Magnesium , Matrix Metalloproteinase 7 , Wound Healing , Wound Healing/drug effects , Humans , Cell Movement/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Cell Differentiation/drug effects , Magnesium/pharmacology , Magnesium/metabolism , Matrix Metalloproteinase 7/metabolism , Matrix Metalloproteinase 7/genetics , Skin/metabolism , Skin/drug effects , Skin/injuries , MAP Kinase Signaling System/drug effects , Cell Line , Epidermis/drug effects , Epidermis/metabolism , Magnesium Chloride/pharmacology
7.
Medicina (Kaunas) ; 60(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38674257

ABSTRACT

Background and Objectives: The purpose of this study was to investigate the influence induced by magnesium chloride (MgCl2) and zinc gluconate (ZnG) supplementation on liver and kidney injuries experimentally induced with acetaminophen (AAPh) and potentiated by a ciprofloxacin addition in rats. Material and Methods: The experiment was performed on five animal groups: group 1-control, treated for 6 weeks with normal saline, 1 mL/kg; group 2-AAPh, treated for 6 weeks with AAPh, 100 mg/kg/day; group 3-AAPh + C, treated for 6 weeks with AAPh 100 mg/kg/day and ciprofloxacin 50 mg/kg/day, only in the last 14 days of the experiment; group 4-AAPh + C + Mg, with the same treatment as group 3, but in the last 14 days, MgCl2 10 mg/ kg/day was added; and group 5-AAPh + C + Zn, with the same treatment as group 3, but in the last 14 days, zinc gluconate (ZnG), 10 mg/kg/day was added. All administrations were performed by oral gavage. At the end of the experiment, the animals were sacrificed and blood samples were collected for biochemistry examinations. Results: Treatment with AAPh for 6 weeks determined an alteration of the liver function (increases in alanine aminotransferase, aspartate aminotransferase, lactic dehydrogenase, and gamma-glutamyl transferase) and of renal function (increases in serum urea and creatinine) (p < 0.001 group 2 vs. group 1 for all mentioned parameters). Furthermore, the antioxidant defense capacity was impaired in group 2 vs. group 1 (superoxide dismutase and glutathione peroxidase activity decreased in group 2 vs. group 1, at 0.001 < p < 0.01 and 0.01 < p < 0.05, respectively). The addition of ciprofloxacin, 50 mg/kg/day during the last 14 days, resulted in further increases in alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine (0.01 < p < 0.05, group 3 vs. group 2). MgCl2 provided a slight protection against the increase in liver enzymes, and a more pronounced protection against the increase in serum urea and creatinine (0.001 < p < 0.01 group 4 vs. group 3). MgCl2 provided a slight protection against the decrease in superoxide dismutase (0.01 < p < 0.05 group 4 vs. group 3), but not against decrease of glutathione peroxidase. The improvement of mentioned parameters could also be seen in the case of ZnG, to a higher extent, especially in the case of alanine aminotransferase and lactic dehydrogenase (0.01 < p < 0.05 group 5 vs. group 4). Conclusions: This study presents further proof for the beneficial effect of magnesium and zinc salts against toxicity induced by different agents, including antibacterials added to the analgesic and antipyretic acetaminophen; the protection is proven on the liver and kidney's function, and the antioxidant profile improvement has a key role, especially in the case of zinc gluconate.


Subject(s)
Acetaminophen , Ciprofloxacin , Gluconates , Rats, Wistar , Animals , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Rats , Gluconates/pharmacology , Gluconates/therapeutic use , Male , Zinc/pharmacology , Zinc/therapeutic use , Kidney/drug effects , Magnesium/therapeutic use , Magnesium/pharmacology , Liver/drug effects , Liver/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Magnesium Chloride/pharmacology , Magnesium Chloride/therapeutic use , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Drug Synergism
8.
Biochem Biophys Res Commun ; 668: 35-41, 2023 08 06.
Article in English | MEDLINE | ID: mdl-37235917

ABSTRACT

The recent outbreak of COVID-19 has created a serious health crisis with fatFal infectious viral diseases, such as Severe Acute Respiratory Syndrome (SARS). The nsp13, a helicase of coronaviruses is an essential element for viral replication that unwinds secondary structures of DNA and RNA, and is thus considered a major therapeutic target for treatment. The replication of coronaviruses and other retroviruses occurs in the cytoplasm of infected cells, in association with viral replication organelles, called virus-induced cytosolic double-membrane vesicles (DMVs). In addition, an increase in cytosolic Ca2+ concentration accelerates viral replication. However, the molecular mechanism of nsp13 in the presence of Ca2+ is not well understood. In this study, we applied biochemical methods and single-molecule techniques to demonstrate how nsp13 achieves its unwinding activity while performing ATP hydrolysis in the presence of Ca2+. Our study found that nsp13 could efficiently unwind double stranded (ds) DNA under physiological concentration of Ca2+ of cytosolic DMVs. These findings provide new insights into the properties of nsp13 in the range of calcium in cytosolic DMVs.


Subject(s)
Calcium , DNA , Nucleic Acid Conformation , RNA Helicases , Single Molecule Imaging , Viral Nonstructural Proteins , Calcium/metabolism , Calcium/pharmacology , DNA/chemistry , DNA/drug effects , DNA/metabolism , Magnesium/metabolism , Magnesium/pharmacology , Nucleic Acid Conformation/drug effects , Adenosine Triphosphate/metabolism , Virus Replication , Cytosol/metabolism , Hydrolysis/drug effects , RNA Helicases/drug effects , RNA Helicases/metabolism , Viral Nonstructural Proteins/drug effects , Viral Nonstructural Proteins/metabolism , Fluorescence Resonance Energy Transfer , Electrophoresis, Polyacrylamide Gel , Dose-Response Relationship, Drug , Transcription, Genetic
9.
Small ; 19(40): e2301426, 2023 10.
Article in English | MEDLINE | ID: mdl-37271895

ABSTRACT

In the system of magnesium-loaded scaffolds, the effect of magnesium ions (Mg2+ ) on the osteogenesis induction is restricted due to the low transmembrane transport efficiency of Mg2+ into the cell, which limits the application for bone defect repair. Inspired by the fact that magnetic field can regulate ion channel proteins on the cell membrane, magnetite nanoparticle is introduced into the poly (l-lactic acid) /magnesium oxide composite in this study, and a magnetic magnesium-loaded bone scaffold is prepared via selective laser sintering . Notably, the activities of the Mg2+ channel protein (MAGT1) on the membrane of bone marrow mesenchymal stem cells (rBMSCs) are enhanced via magnetic torque effect (via integrin αV ß3/actin), under the action of static magnetic field (SMF), which promoted rBMSCs to capture Mg2+ in the microenvironment and induced osteogenesis. In vitro experiments showed that the magnetic magnesium-loaded scaffold, under the action of SMF, can accelerate the inflow of Mg2+ from surrounding microenvironment, which improved cellular activities, osteogenesis-related gene expression (ALP, Runx2, OCN, and OPN), and mineralization. Besides, in vivo skull defect repair experiments showed that the scaffolds possessed good ability to promote bone differentiation and new bone regeneration.


Subject(s)
Magnesium , Tissue Scaffolds , Magnesium/pharmacology , Osteogenesis , Bone Regeneration , Skull , Cell Differentiation , Ions , Magnetic Fields , Tissue Engineering
10.
Biomacromolecules ; 24(7): 3171-3183, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37326596

ABSTRACT

To achieve osteogenesis, angiogenesis, and neurogenesis for repairing bone defects, we constructed an anisotropic microspheres-cryogel composite loaded with magnesium l-threonate (MgT). These composites were prepared by the photo-click reaction of norbornene-modified gelatin (GB) in the presence of MgT-loaded microspheres through the bidirectional freezing method. The composites possessed an anisotropic macroporous (around 100 µm) structure and sustained release of bioactive Mg2+, which facilitate vascular ingrowth. These composites could significantly promote osteogenic differentiation of bone marrow mesenchymal stem cells, tubular formation of human umbilical vein vessel endothelial cells, and neuronal differentiation in vitro. Additionally, these composites significantly promoted early vascularization and neurogenesis as well as bone regeneration in the rat femoral condyle defects. In conclusion, owing to the anisotropic macroporous microstructure and bioactive MgT, these composites could simultaneously promote bone, blood vessel, and nerve regeneration, showing great potential for bone tissue engineering.


Subject(s)
Cryogels , Osteogenesis , Rats , Humans , Animals , Cryogels/chemistry , Magnesium/pharmacology , Microspheres , Bone Regeneration , Cell Differentiation , Neurogenesis , Human Umbilical Vein Endothelial Cells , Tissue Scaffolds/chemistry
11.
PLoS Comput Biol ; 18(9): e1010482, 2022 09.
Article in English | MEDLINE | ID: mdl-36108031

ABSTRACT

Magnesium (Mg2+) ions are frequently reported to regulate osteogenic activities of mesenchymal stem cells (MSCs). In this study, we propose a numerical model to study the regulatory importance of Mg2+ ions on MSCs osteoblastic differentiation in the presence of an inflammatory response. A fuzzy logic controller was formulated to receive the concentrations of Mg2+ ions and the inflammatory cytokines of TNF-α, IL-10, IL-1ß, and IL-8 as cellular inputs and predict the cells' early and late differentiation rates. Five sets of empirical data obtained from published cell culture experiments were used to calibrate the model. The model successfully reproduced the empirical data regarding the concentration- and phase-dependent effect of Mg2+ ions on the differentiation process. In agreement with the experiments, the model showed the stimulatory role of Mg2+ ions on the early differentiation phase, once administered at low concentration, and their inhibitory role on the late differentiation phase. The numerical approach used in this study suggested 6-8 mM as the most effective concentration of Mg2+ ions in promoting the early differentiation process. Also, the proposed model sheds light on the fundamental differences in the behavioral properties of cells cultured in different experiments, e.g. differentiation rate and the sensitivity of the cultured cells to stimulatory signals such as Mg2+ ions. Thus, it can be used to interpret and compare different empirical findings. Moreover, the model successfully reproduced the nonlinearities in the concentration-dependent role of the inflammatory cytokines in early and late differentiation rates. Overall, the proposed model can be employed in studying the osteogenic properties of Mg-based implants in the presence of an inflammatory response.


Subject(s)
Magnesium , Mesenchymal Stem Cells , Cell Differentiation/physiology , Cells, Cultured , Cytokines/pharmacology , Fuzzy Logic , Interleukin-10/pharmacology , Interleukin-8 , Ions , Magnesium/pharmacology , Osteogenesis/physiology , Tumor Necrosis Factor-alpha
12.
Biomarkers ; 28(6): 538-543, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37548484

ABSTRACT

INTRODUCTION: Oxidative stress has been implicated in the pathogenesis of diverse disease states. The present study was designed to examine the effects of magnesium sulphate (MgSO4) against hydrogen peroxide (H2O2) induced behaviour impairment and oxidative damage in rats. MATERIAL AND METHODS: Eighteen rats were equally divided into three groups. The first group was kept as a control. In the second group, H2O2 was given in drinking water at 3% during 5 days. In the third group, rats were subjected to daily administration of H2O2 and MgSO4 (100 mg/kg; b.w) for 5 days. Animals were subjected to behavioural tests (elevated plus maze and open field). At the end of experiment, brains were extracted for oxidative stress biomarkers assessment including levels of malondialdéhyde and hydrogen peroxide and activities of superoxide dismutase and catalase. RESULTS: Our findings showed that H2O2 treated rat exhibited anxiogenic behaviour and the genesis of free radicals in the brain. Magnesium showed amelioration against oxidative stress and significant decrease in anxiety levels. DISCUSSION AND CONCLUSION: Stress is a powerful process that disrupts brain homeostasis by inducing oxidative stress and its appear that magnesium may have potential therapeutic benefits by reducing oxidative stress and inducing anxiolytic effect.


Subject(s)
Hydrogen Peroxide , Neuroprotective Agents , Rats , Animals , Rats, Wistar , Antioxidants/pharmacology , Antioxidants/metabolism , Magnesium/pharmacology , Neuroprotective Agents/pharmacology , Oxidative Stress , Superoxide Dismutase/metabolism
13.
Environ Sci Technol ; 57(40): 14871-14880, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37756220

ABSTRACT

Opportunistic pathogens (OPs) are of concern in drinking water distribution systems because they persist despite disinfectant residuals. While many OPs garner protection from disinfectants via a biofilm lifestyle, Legionella pneumophila (Lp) also gains disinfection resistance by being harbored within free-living amoebae (FLA). It has been long established, but poorly understood, that Lp grown within FLA show increased infectivity toward subsequent FLA or human cells (i.e., macrophage), via a process we previously coined "protozoan-priming". The objectives of this study are (i) to identify in Lp a key genetic determinant of how protozoan-priming increases its infectivity, (ii) to determine the chemical stimulus within FLA to which Lp responds during protozoan-priming, and (iii) to determine if more infectious forms of Lp also exhibit enhanced disinfectant resistance. Using Acanthamoeba castellanii as a FLA host, the priming effect was isolated to Lp's sidGV locus, which is activated upon sensing elevated magnesium concentrations. Supplementing growth medium with 8 mM magnesium is sufficient to produce Lp grown in vitro with an infectivity equivalent to that of Lp grown via the protozoan-primed route. Both Lp forms with increased infectivity (FLA-grown and Mg2+-supplemented) exhibit greater monochloramine resistance than Lp grown in standard media, indicating that passage through FLA not only increases Lp's infectivity but also enhances its monochloramine resistance. Therefore, laboratory-based testing of disinfection strategies should employ conditions that simulate or replicate intracellular growth to accurately assess disinfectant resistance.


Subject(s)
Amoeba , Disinfectants , Legionella pneumophila , Humans , Legionella pneumophila/genetics , Magnesium/pharmacology , Water Microbiology , Disinfectants/pharmacology
14.
Nature ; 541(7635): 46-51, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27974795

ABSTRACT

The Ca2+-activated K+ channel, Slo1, has an unusually large conductance and contains a voltage sensor and multiple chemical sensors. Dual activation by membrane voltage and Ca2+ renders Slo1 central to processes that couple electrical signalling to Ca2+-mediated events such as muscle contraction and neuronal excitability. Here we present the cryo-electron microscopy structure of a full-length Slo1 channel from Aplysia californica in the presence of Ca2+ and Mg2+ at a resolution of 3.5 Å. The channel adopts an open conformation. Its voltage-sensor domain adopts a non-domain-swapped attachment to the pore and contacts the cytoplasmic Ca2+-binding domain from a neighbouring subunit. Unique structural features of the Slo1 voltage sensor suggest that it undergoes different conformational changes than other known voltage sensors. The structure reveals the molecular details of three distinct divalent cation-binding sites identified through electrophysiological studies of mutant Slo1 channels.


Subject(s)
Aplysia/ultrastructure , Cryoelectron Microscopy , Large-Conductance Calcium-Activated Potassium Channels/ultrastructure , Allosteric Regulation/drug effects , Amino Acid Sequence , Animals , Aplysia/chemistry , Aplysia/genetics , Binding Sites/drug effects , Calcium/chemistry , Calcium/pharmacology , Cations, Divalent/metabolism , Cytoplasm/metabolism , Electrophysiological Phenomena , Large-Conductance Calcium-Activated Potassium Channels/chemistry , Large-Conductance Calcium-Activated Potassium Channels/genetics , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Magnesium/chemistry , Magnesium/pharmacology , Models, Molecular , Protein Domains/drug effects , Protein Subunits/chemistry , Protein Subunits/metabolism
15.
Nature ; 541(7635): 52-57, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27974801

ABSTRACT

The precise control of an ion channel gate by environmental stimuli is crucial for the fulfilment of its biological role. The gate in Slo1 K+ channels is regulated by two separate stimuli, intracellular Ca2+ concentration and membrane voltage. Slo1 is thus central to understanding the relationship between intracellular Ca2+ and membrane excitability. Here we present the Slo1 structure from Aplysia californica in the absence of Ca2+ and compare it with the Ca2+-bound channel. We show that Ca2+ binding at two unique binding sites per subunit stabilizes an expanded conformation of the Ca2+ sensor gating ring. These conformational changes are propagated from the gating ring to the pore through covalent linkers and through protein interfaces formed between the gating ring and the voltage sensors. The gating ring and the voltage sensors are directly connected through these interfaces, which allow membrane voltage to regulate gating of the pore by influencing the Ca2+ sensors.


Subject(s)
Aplysia/chemistry , Ion Channel Gating , Large-Conductance Calcium-Activated Potassium Channels/chemistry , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Animals , Binding Sites , Calcium/chemistry , Calcium/pharmacology , Cryoelectron Microscopy , Edetic Acid/chemistry , Edetic Acid/pharmacology , Ion Channel Gating/drug effects , Ion Transport/drug effects , Large-Conductance Calcium-Activated Potassium Channels/ultrastructure , Magnesium/pharmacology , Models, Molecular , Protein Binding , Protein Conformation/drug effects , Protein Subunits/chemistry , Protein Subunits/metabolism
16.
Curr Microbiol ; 80(11): 340, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712946

ABSTRACT

In this research work, we formulated and successfully assessed the antibacterial capability of zinc magnesium bimetal nanoparticles (ZnMgNPs) against Xanthomonas oryzae pv. oryzae (Xoo), the pathogenic microorganism responsible for causing the destructive leaf blight disease in rice. Successful preparation of ZnMgNPs were determined by UV-vis spectroscopy, EDX (Energy dispersive X-ray), FTIR (Fourier transform infrared) and SEM (Scanning Electron Microscopy). ZnMgNPs had antibacterial efficacy towards Xoo at MIC (minimum inhibitory concentration) 50 µg/ml. ZnMgNPs impeded the formation of biofilm of Xoo by drastically reducing the amount of EPS (extracellular polymeric substances) production and number of sessile cells. The ZnMgNPs also reduced several pathogenic traits of Xoo like motility, xanthomonadin and exoenzymes production. ZnMgNPs target cell membrane of Xoo and also induced oxidative damage as mechanisms of its antibacterial activity. As revealed by an ex-vivo study, ZnMgNPs diminished BLB (bacterial leaf blight) disease symptoms in rice leaves, ZnMgNPs had no effect on rice seed germination, and that following foliar application, the length and biomass of roots and shoots of rice seedling were unaffected, low cytotoxic to A549 cell line showing that ZnMgNPs are non-toxic. However, with ZnMgNPs treatment, the chlorophyll content index (CCI) increased significantly, indicating a good impact on rice physiology. All of these findings suggest that ZnMgNPs could be applied in agriculture to combat the Xoo-caused BLB disease.


Subject(s)
Oryza , Magnesium/pharmacology , Zinc/pharmacology , Anti-Bacterial Agents/pharmacology
17.
Nucleic Acids Res ; 49(1): 371-382, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33300043

ABSTRACT

Mammalian mitochondria have their own dedicated protein synthesis system, which produces 13 essential subunits of the oxidative phosphorylation complexes. We have reconstituted an in vitro translation system from mammalian mitochondria, utilizing purified recombinant mitochondrial translation factors, 55S ribosomes from pig liver mitochondria, and a tRNA mixture from either Escherichia coli or yeast. The system is capable of translating leaderless mRNAs encoding model proteins (DHFR and nanoLuciferase) or some mtDNA-encoded proteins. We show that a leaderless mRNA, encoding nanoLuciferase, is faithfully initiated without the need for any auxiliary factors other than IF-2mt and IF-3mt. We found that the ribosome-dependent GTPase activities of both the translocase EF-G1mt and the recycling factor EF-G2mt are insensitive to fusidic acid (FA), the translation inhibitor that targets bacterial EF-G homologs, and consequently the system is resistant to FA. Moreover, we demonstrate that a polyproline sequence in the protein causes 55S mitochondrial ribosome stalling, yielding ribosome nascent chain complexes. Analyses of the effects of the Mg concentration on the polyproline-mediated ribosome stalling suggested the unique regulation of peptide elongation by the mitoribosome. This system will be useful for analyzing the mechanism of translation initiation, and the interactions between the nascent peptide chain and the mitochondrial ribosome.


Subject(s)
Mitochondria/metabolism , Mitochondrial Proteins/biosynthesis , Mitochondrial Ribosomes/metabolism , Peptides/metabolism , Protein Biosynthesis , RNA, Messenger/genetics , 5' Untranslated Regions , Animals , Cell-Free System , DNA/chemical synthesis , Escherichia coli , Eukaryotic Initiation Factors/metabolism , Humans , Luciferases/biosynthesis , Luciferases/genetics , Magnesium/pharmacology , Mitochondrial Proteins/genetics , Mitochondrial Ribosomes/drug effects , Mitochondrial Ribosomes/ultrastructure , Oxidative Phosphorylation , Peptide Chain Initiation, Translational , Peptide Elongation Factors/physiology , Peptides/genetics , Protein Biosynthesis/drug effects , Recombinant Proteins/metabolism , Saccharomyces cerevisiae , Swine , Tetrahydrofolate Dehydrogenase/biosynthesis , Tetrahydrofolate Dehydrogenase/genetics
18.
PLoS Genet ; 16(10): e1009085, 2020 10.
Article in English | MEDLINE | ID: mdl-33125364

ABSTRACT

DNA supercoiling is essential for all living cells because it controls all processes involving DNA. In bacteria, global DNA supercoiling results from the opposing activities of topoisomerase I, which relaxes DNA, and DNA gyrase, which compacts DNA. These enzymes are widely conserved, sharing >91% amino acid identity between the closely related species Escherichia coli and Salmonella enterica serovar Typhimurium. Why, then, do E. coli and Salmonella exhibit different DNA supercoiling when experiencing the same conditions? We now report that this surprising difference reflects disparate activation of their DNA gyrases by the polyamine spermidine and its precursor putrescine. In vitro, Salmonella DNA gyrase activity was sensitive to changes in putrescine concentration within the physiological range, whereas activity of the E. coli enzyme was not. In vivo, putrescine activated the Salmonella DNA gyrase and spermidine the E. coli enzyme. High extracellular Mg2+ decreased DNA supercoiling exclusively in Salmonella by reducing the putrescine concentration. Our results establish the basis for the differences in global DNA supercoiling between E. coli and Salmonella, define a signal transduction pathway regulating DNA supercoiling, and identify potential targets for antibacterial agents.


Subject(s)
DNA Gyrase/genetics , DNA Topoisomerases, Type I/genetics , DNA, Superhelical/genetics , Escherichia coli/genetics , Salmonella typhimurium/genetics , DNA Gyrase/drug effects , DNA Topoisomerases, Type I/drug effects , DNA, Superhelical/drug effects , Escherichia coli/drug effects , Escherichia coli/enzymology , Magnesium/pharmacology , Putrescine/pharmacology , Salmonella typhimurium/drug effects , Salmonella typhimurium/enzymology , Spermidine/biosynthesis
19.
J Mater Sci Mater Med ; 34(1): 7, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36622473

ABSTRACT

Magnesium (Mg) and Selenium (Se) are essential elements for bone health and have been studied extensively for its powerful osteogenesis and promoting bone regeneration. The purpose was to observe whether Co-modified 3D-printed ß-tricalcium phosphate with Mg and Se could promote bone defect regeneration in an ovariectomized(OVX) rat model. The MC3T3-E1 cells were co-cultured with the leachate of ß-TCP, Mg-TCP, and Mg/Se-TCP and induced to osteogenesis, and the cell viability, ROS, and osteogenic activity were observed by Cell Count Kit-8(CCK-8), fluorescent probe 2', 7'-dichlorofluorescin diacetate, Alkaline phosphatase (ALP) staining, Alizarin Red(RES) staining, western blotting(WB), and immunofluorescence. Then the ß-TCP, Mg-TCP, and Mg/Se-TCP were implanted into the femoral epiphysis bone defect model of OVX rats for 12 weeks. Micro-CT and histology analysis were used to observe the therapeutic effect. In vitro results show that the cell mineralization and osteogenic activity of the Mg/Se-TCP group is significantly higher than the ß-TCP group and Mg-TCP group. Protein expressions such as FOxO1, SIRT1, SOD2, Runx-2, Cola1a, and OC of the Mg/Se-TCP group are significantly higher than the Con group and the ß-TCP group. The results of intracellular ROS and SIRT1 and SOD2 immunofluorescence showed that Mg/Se-TCP can restore the oxidative stress balance of osteoblasts. Micro-CT and histology analysis showed that treatment with Mg/Se-TCP showed the largest amount of bone tissue in the defect area (p < 0.05), and exhibited lower values of residual biological material (p < 0.05), compared to that of the ß-TCP group and Mg-TCP group. Our research results confirm that Mg/Se-TCP can improve the activity and function of osteoblasts and enhance bone regeneration mediated by reducing intracellular ROS in OVX rat models. The release of Mg and Se during the degradation of Mg/Se-TCP can improve the local bone repair ability. At the same time, it can also inhibit cell ROS, and ultimately greatly promote local bone repair.


Subject(s)
Selenium , Rats , Animals , Magnesium/pharmacology , Sirtuin 1 , Rats, Sprague-Dawley , Reactive Oxygen Species , Bone Regeneration , Calcium Phosphates/pharmacology , Osteogenesis , Printing, Three-Dimensional
20.
Neurocrit Care ; 38(2): 356-364, 2023 04.
Article in English | MEDLINE | ID: mdl-36471183

ABSTRACT

BACKGROUND: Blood pressure variability (BPV) has emerged as a significant factor associated with clinical outcomes after intracerebral hemorrhage (ICH). Although hematoma expansion (HE) is associated with clinical outcomes, the relationship between BPV that encompasses prehospital data and HE is unknown. We hypothesized that BPV was positively associated with HE. METHODS: We analyzed 268 patients with primary ICH enrolled in the National Institutes of Health-funded Field Administration of Stroke Therapy-Magnesium (FAST-MAG) study who received head computed tomography or magnetic resonance imaging on arrival to the emergency department (ED) and repeat imaging within 6-48 h. BPV was calculated by standard deviation (SD) and coefficient of variation (CV) from prehospital data as well as systolic blood pressure (SBP) measurements taken on ED arrival, 15 min post antihypertensive infusion start, 1 h post maintenance infusion start, and 4 h after ED arrival. HE was defined by hematoma volume expansion increase > 6 mL or by 33%. Univariate logistic regression was used for presence of HE in quintiles of SD and CV of SBP for demographics and clinical characteristics. RESULTS: Of the 268 patients analyzed from the FAST-MAG study, 116 (43%) had HE. Proportions of patients with HE were not statistically significant in the higher quintiles of the SD and CV of SBP for either the hyperacute or the acute period. Presence of HE was significantly more common in patients on anticoagulation. CONCLUSIONS: Higher BPV was not found to be associated with occurrence of HE in the hyperacute or the acute period of spontaneous ICH. Further study is needed to determine the relationship.


Subject(s)
Cerebral Hemorrhage , Magnesium , United States , Humans , Blood Pressure/physiology , Magnesium/pharmacology , Cerebral Hemorrhage/complications , Antihypertensive Agents , Hematoma/complications
SELECTION OF CITATIONS
SEARCH DETAIL