Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.561
Filter
Add more filters

Publication year range
1.
Cell ; 187(18): 4981-4995.e14, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39059381

ABSTRACT

Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is the most advanced blood-stage malaria vaccine candidate and is being evaluated for efficacy in endemic regions, emphasizing the need to study the underlying antibody response to RH5 during natural infection, which could augment or counteract responses to vaccination. Here, we found that RH5-reactive B cells were rare, and circulating immunoglobulin G (IgG) responses to RH5 were short-lived in malaria-exposed Malian individuals, despite repeated infections over multiple years. RH5-specific monoclonal antibodies isolated from eight malaria-exposed individuals mostly targeted non-neutralizing epitopes, in contrast to antibodies isolated from five RH5-vaccinated, malaria-naive UK individuals. However, MAD8-151 and MAD8-502, isolated from two malaria-exposed Malian individuals, were among the most potent neutralizers out of 186 antibodies from both cohorts and targeted the same epitopes as the most potent vaccine-induced antibodies. These results suggest that natural malaria infection may boost RH5-vaccine-induced responses and provide a clear strategy for the development of next-generation RH5 vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Humans , Antibodies, Neutralizing/immunology , Plasmodium falciparum/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Malaria Vaccines/immunology , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Protozoan Proteins/immunology , Antibodies, Monoclonal/immunology , Adult , B-Lymphocytes/immunology , Epitopes/immunology , Female , Mali , Carrier Proteins/immunology , Male , Adolescent
2.
Cell ; 187(18): 4964-4980.e21, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39059380

ABSTRACT

The highly conserved and essential Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) has emerged as the leading target for vaccines against the disease-causing blood stage of malaria. However, the features of the human vaccine-induced antibody response that confer highly potent inhibition of malaria parasite invasion into red blood cells are not well defined. Here, we characterize 236 human IgG monoclonal antibodies, derived from 15 donors, induced by the most advanced PfRH5 vaccine. We define the antigenic landscape of this molecule and establish that epitope specificity, antibody association rate, and intra-PfRH5 antibody interactions are key determinants of functional anti-parasitic potency. In addition, we identify a germline IgG gene combination that results in an exceptionally potent class of antibody and demonstrate its prophylactic potential to protect against P. falciparum parasite challenge in vivo. This comprehensive dataset provides a framework to guide rational design of next-generation vaccines and prophylactic antibodies to protect against blood-stage malaria.


Subject(s)
Antibodies, Monoclonal , Antibodies, Protozoan , Antigens, Protozoan , Immunoglobulin G , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Animals , Humans , Mice , Antibodies, Monoclonal/immunology , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Carrier Proteins/immunology , Epitopes/immunology , Erythrocytes/parasitology , Erythrocytes/immunology , Immunoglobulin G/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology
3.
Cell ; 185(5): 750-754, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35245476

ABSTRACT

Malaria is estimated by the World Health Organization (WHO) to have killed 627,000 individuals worldwide in 2020, with nearly 80% of deaths in African children younger than five. The recent WHO approval of the RTS,S/AS01 vaccine, which targets Plasmodium falciparum pre-erythrocytic stages, provides hope that its use combined with other interventions can help reverse the current malaria resurgence.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Child , Humans , Infant , Malaria/prevention & control , Malaria, Falciparum/prevention & control , Plasmodium falciparum
4.
Nat Immunol ; 25(9): 1530-1545, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39198635

ABSTRACT

Despite various public health strategies, malaria caused by Plasmodium falciparum parasites remains a major global health challenge that requires development of new interventions. Extended half-life human monoclonal antibodies targeting the P. falciparum circumsporozoite protein on sporozoites, the infective form of malaria parasites, prevent malaria in rodents and humans and have been advanced into clinical development. The protective epitopes on the circumsporozoite protein targeted by monoclonal antibodies have been defined. Cryogenic electron and multiphoton microscopy have enabled mechanistic structural and functional investigations of how antibodies bind to the circumsporozoite protein and neutralize sporozoites. Moreover, innovations in bioinformatics and antibody engineering have facilitated enhancement of antibody potency and durability. Here, we summarize the latest scientific advances in understanding how monoclonal antibodies to the circumsporozoite protein prevent malaria and highlight existing clinical data and future plans for how this emerging intervention can be used alone or alongside existing antimalarial interventions to control malaria across at-risk populations.


Subject(s)
Antibodies, Monoclonal , Antibodies, Protozoan , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Protozoan Proteins/immunology , Humans , Antibodies, Monoclonal/immunology , Plasmodium falciparum/immunology , Animals , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Antibodies, Protozoan/immunology , Sporozoites/immunology , Malaria Vaccines/immunology , Epitopes/immunology
5.
Immunity ; 56(2): 234-236, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36792569

ABSTRACT

The development of a transmission-blocking vaccine (TBV) against malaria is hampered by poor understanding of functional antibody responses. In this issue of Immunity, Fabra-Garcia et al., Ivanochko et al., and Tang et al. isolate human monoclonal antibodies against the two most promising TBV candidates, Pfs48/45 and Pfs230, and map the epitopes responsible for potent transmission-reducing activity.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Humans , Malaria, Falciparum/prevention & control , Protozoan Proteins , Antibodies, Protozoan , Malaria/prevention & control , Plasmodium falciparum , Antigens, Protozoan
6.
Immunity ; 56(2): 420-432.e7, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36792575

ABSTRACT

Pfs230 is essential for Plasmodium falciparum transmission to mosquitoes and is the protein targeted by the most advanced malaria-transmission-blocking vaccine candidate. Prior understanding of functional epitopes on Pfs230 is based on two monoclonal antibodies (mAbs) with moderate transmission-reducing activity (TRA), elicited from subunit immunization. Here, we screened the B cell repertoire of two naturally exposed individuals possessing serum TRA and identified five potent mAbs from sixteen Pfs230 domain-1-specific mAbs. Structures of three potent and three low-activity antibodies bound to Pfs230 domain 1 revealed four distinct epitopes. Highly potent mAbs from natural infection recognized a common conformational epitope that is highly conserved across P. falciparum field isolates, while antibodies with negligible TRA derived from natural infection or immunization recognized three distinct sites. Our study provides molecular blueprints describing P. falciparum TRA, informed by contrasting potent and non-functional epitopes elicited by natural exposure and vaccination.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Humans , Animals , Plasmodium falciparum , Epitopes , Protozoan Proteins , Antigens, Protozoan , Antibodies, Monoclonal , Antibodies, Protozoan , Malaria, Falciparum/prevention & control
7.
Immunity ; 56(2): 406-419.e7, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36792574

ABSTRACT

Malaria transmission-blocking vaccines (TBVs) aim to induce antibodies that interrupt malaria parasite development in the mosquito, thereby blocking onward transmission, and provide a much-needed tool for malaria control and elimination. The parasite surface protein Pfs48/45 is a leading TBV candidate. Here, we isolated and characterized a panel of 81 human Pfs48/45-specific monoclonal antibodies (mAbs) from donors naturally exposed to Plasmodium parasites. Genetically diverse mAbs against each of the three domains (D1-D3) of Pfs48/45 were identified. The most potent mAbs targeted D1 and D3 and achieved >80% transmission-reducing activity in standard membrane-feeding assays, at 10 and 2 µg/mL, respectively. Co-crystal structures of D3 in complex with four different mAbs delineated two conserved protective epitopes. Altogether, these Pfs48/45-specific human mAbs provide important insight into protective and non-protective epitopes that can further our understanding of transmission and inform the design of refined malaria transmission-blocking vaccine candidates.


Subject(s)
Culicidae , Malaria Vaccines , Malaria, Falciparum , Malaria , Animals , Humans , Plasmodium falciparum , Culicidae/metabolism , Protozoan Proteins , Antibodies, Monoclonal , Malaria, Falciparum/prevention & control , Antibodies, Protozoan
8.
Immunity ; 55(9): 1680-1692.e8, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35977542

ABSTRACT

Malaria transmission-blocking vaccines (TBVs) aim to elicit human antibodies that inhibit sporogonic development of Plasmodium falciparum in mosquitoes, thereby preventing onward transmission. Pfs48/45 is a leading clinical TBV candidate antigen and is recognized by the most potent transmission-blocking monoclonal antibody (mAb) yet described; still, clinical development of Pfs48/45 antigens has been hindered, largely by its poor biochemical characteristics. Here, we used structure-based computational approaches to design Pfs48/45 antigens stabilized in the conformation recognized by the most potently inhibitory mAb, achieving >25°C higher thermostability compared with the wild-type protein. Antibodies elicited in mice immunized with these engineered antigens displayed on liposome-based or protein nanoparticle-based vaccine platforms exhibited 1-2 orders of magnitude superior transmission-reducing activity, compared with immunogens bearing the wild-type antigen, driven by improved antibody quality. Our data provide the founding principles for using molecular stabilization solely from antibody structure-function information to drive improved immune responses against a parasitic vaccine target.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Animals , Antibodies, Blocking , Antibodies, Monoclonal , Antibodies, Protozoan , Antibody Formation , Antigens, Protozoan , Humans , Malaria, Falciparum/prevention & control , Membrane Glycoproteins , Mice , Plasmodium falciparum , Protozoan Proteins , Vaccination
9.
Cell ; 167(3): 610-624, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27768886

ABSTRACT

Malaria has been a major global health problem of humans through history and is a leading cause of death and disease across many tropical and subtropical countries. Over the last fifteen years renewed efforts at control have reduced the prevalence of malaria by over half, raising the prospect that elimination and perhaps eradication may be a long-term possibility. Achievement of this goal requires the development of new tools including novel antimalarial drugs and more efficacious vaccines as well as an increased understanding of the disease and biology of the parasite. This has catalyzed a major effort resulting in development and regulatory approval of the first vaccine against malaria (RTS,S/AS01) as well as identification of novel drug targets and antimalarial compounds, some of which are in human clinical trials.


Subject(s)
Host-Parasite Interactions , Malaria, Falciparum , Plasmodium falciparum/growth & development , Adaptive Immunity , Animals , Antimalarials/therapeutic use , Communicable Disease Control/methods , Culicidae/parasitology , Disease Eradication/methods , Drug Resistance , Erythrocytes/parasitology , Global Health , Host-Parasite Interactions/immunology , Humans , Life Cycle Stages , Liver/parasitology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Merozoites/growth & development , Plasmodium falciparum/immunology , Sporozoites/growth & development , Vaccines, Synthetic/immunology
10.
N Engl J Med ; 390(17): 1549-1559, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38669354

ABSTRACT

BACKGROUND: Subcutaneous administration of the monoclonal antibody L9LS protected adults against controlled Plasmodium falciparum infection in a phase 1 trial. Whether a monoclonal antibody administered subcutaneously can protect children from P. falciparum infection in a region where this organism is endemic is unclear. METHODS: We conducted a phase 2 trial in Mali to assess the safety and efficacy of subcutaneous administration of L9LS in children 6 to 10 years of age over a 6-month malaria season. In part A of the trial, safety was assessed at three dose levels in adults, followed by assessment at two dose levels in children. In part B of the trial, children were randomly assigned, in a 1:1:1 ratio, to receive 150 mg of L9LS, 300 mg of L9LS, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection, as detected on blood smear performed at least every 2 weeks for 24 weeks. A secondary efficacy end point was the first episode of clinical malaria, as assessed in a time-to-event analysis. RESULTS: No safety concerns were identified in the dose-escalation part of the trial (part A). In part B, 225 children underwent randomization, with 75 children assigned to each group. No safety concerns were identified in part B. P. falciparum infection occurred in 36 participants (48%) in the 150-mg group, in 30 (40%) in the 300-mg group, and in 61 (81%) in the placebo group. The efficacy of L9LS against P. falciparum infection, as compared with placebo, was 66% (adjusted confidence interval [95% CI], 45 to 79) with the 150-mg dose and 70% (adjusted 95% CI, 50 to 82) with the 300-mg dose (P<0.001 for both comparisons). Efficacy against clinical malaria was 67% (adjusted 95% CI, 39 to 82) with the 150-mg dose and 77% (adjusted 95% CI, 55 to 89) with the 300-mg dose (P<0.001 for both comparisons). CONCLUSIONS: Subcutaneous administration of L9LS to children was protective against P. falciparum infection and clinical malaria over a period of 6 months. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT05304611.).


Subject(s)
Antibodies, Monoclonal, Humanized , Malaria, Falciparum , Adult , Child , Female , Humans , Male , Dose-Response Relationship, Drug , Double-Blind Method , Endemic Diseases/prevention & control , Injections, Subcutaneous , Kaplan-Meier Estimate , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Mali/epidemiology , Plasmodium falciparum , Treatment Outcome , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Directly Observed Therapy , Artemether, Lumefantrine Drug Combination/administration & dosage , Artemether, Lumefantrine Drug Combination/therapeutic use , Young Adult , Middle Aged
11.
Immunity ; 47(6): 1197-1209.e10, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29195810

ABSTRACT

Antibodies against the NANP repeat of circumsporozoite protein (CSP), the major surface antigen of Plasmodium falciparum (Pf) sporozoites, can protect from malaria in animal models but protective humoral immunity is difficult to induce in humans. Here we cloned and characterized rare affinity-matured human NANP-reactive memory B cell antibodies elicited by natural Pf exposure that potently inhibited parasite transmission and development in vivo. We unveiled the molecular details of antibody binding to two distinct protective epitopes within the NANP repeat. NANP repeat recognition was largely mediated by germline encoded and immunoglobulin (Ig) heavy-chain complementarity determining region 3 (HCDR3) residues, whereas affinity maturation contributed predominantly to stabilizing the antigen-binding site conformation. Combined, our findings illustrate the power of exploring human anti-CSP antibody responses to develop tools for malaria control in the mammalian and the mosquito vector and provide a molecular basis for the structure-based design of next-generation CSP malaria vaccines.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Immunity, Humoral , Immunoglobulin Heavy Chains/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Animals , Antibodies, Protozoan/biosynthesis , Antibodies, Protozoan/chemistry , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , B-Lymphocytes/immunology , B-Lymphocytes/parasitology , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , Female , Gene Expression , Humans , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Heavy Chains/chemistry , Immunologic Memory , Malaria/immunology , Malaria/parasitology , Malaria/prevention & control , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Mice , Models, Molecular , Plasmodium berghei/immunology , Plasmodium falciparum/immunology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sporozoites/chemistry , Sporozoites/immunology
12.
PLoS Biol ; 21(4): e3002066, 2023 04.
Article in English | MEDLINE | ID: mdl-37053271

ABSTRACT

With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Plasmodium falciparum/metabolism , Actins/genetics , Actins/metabolism , Profilins/genetics , Profilins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Malaria, Falciparum/genetics , Erythrocytes/parasitology , Antimalarials/pharmacology
13.
Nature ; 585(7826): 579-583, 2020 09.
Article in English | MEDLINE | ID: mdl-32939086

ABSTRACT

Malaria has had a major effect on the human genome, with many protective polymorphisms-such as the sickle-cell trait-having been selected to high frequencies in malaria-endemic regions1,2. The blood group variant Dantu provides 74% protection against all forms of severe malaria in homozygous individuals3-5, a similar degree of protection to that afforded by the sickle-cell trait and considerably greater than that offered by the best malaria vaccine. Until now, however, the protective mechanism has been unknown. Here we demonstrate the effect of Dantu on the ability of the merozoite form of the malaria parasite Plasmodium falciparum to invade red blood cells (RBCs). We find that Dantu is associated with extensive changes to the repertoire of proteins found on the RBC surface, but, unexpectedly, inhibition of invasion does not correlate with specific RBC-parasite receptor-ligand interactions. By following invasion using video microscopy, we find a strong link between RBC tension and merozoite invasion, and identify a tension threshold above which invasion rarely occurs, even in non-Dantu RBCs. Dantu RBCs have higher average tension than non-Dantu RBCs, meaning that a greater proportion resist invasion. These findings provide both an explanation for the protective effect of Dantu, and fresh insight into why the efficiency of P. falciparum invasion might vary across the heterogenous populations of RBCs found both within and between individuals.


Subject(s)
Blood Group Antigens/genetics , Erythrocytes/cytology , Erythrocytes/parasitology , Malaria, Falciparum/pathology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/metabolism , Polymorphism, Genetic , Blood Group Antigens/classification , Blood Group Antigens/metabolism , Child , Erythrocytes/metabolism , Erythrocytes/pathology , Female , Genotype , Humans , Kenya , Ligands , Male , Merozoites/metabolism , Merozoites/pathogenicity , Microscopy, Video , Plasmodium falciparum/growth & development , Plasmodium falciparum/pathogenicity
14.
Nature ; 582(7810): 104-108, 2020 06.
Article in English | MEDLINE | ID: mdl-32427965

ABSTRACT

Malaria caused by Plasmodium falciparum remains the leading single-agent cause of mortality in children1, yet the promise of an effective vaccine has not been fulfilled. Here, using our previously described differential screening method to analyse the proteome of blood-stage P. falciparum parasites2, we identify P. falciparum glutamic-acid-rich protein (PfGARP) as a parasite antigen that is recognized by antibodies in the plasma of children who are relatively resistant-but not those who are susceptible-to malaria caused by P. falciparum. PfGARP is a parasite antigen of 80 kDa that is expressed on the exofacial surface of erythrocytes infected by early-to-late-trophozoite-stage parasites. We demonstrate that antibodies against PfGARP kill trophozoite-infected erythrocytes in culture by inducing programmed cell death in the parasites, and that vaccinating non-human primates with PfGARP partially protects against a challenge with P. falciparum. Furthermore, our longitudinal cohort studies showed that, compared to individuals who had naturally occurring anti-PfGARP antibodies, Tanzanian children without anti-PfGARP antibodies had a 2.5-fold-higher risk of severe malaria and Kenyan adolescents and adults without these antibodies had a twofold-higher parasite density. By killing trophozoite-infected erythrocytes, PfGARP could synergize with other vaccines that target parasite invasion of hepatocytes or the invasion of and egress from erythrocytes.


Subject(s)
Apoptosis/immunology , Intercellular Signaling Peptides and Proteins/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Parasites/immunology , Plasmodium falciparum/cytology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/chemistry , Antigens, Protozoan/immunology , Aotidae/immunology , Aotidae/parasitology , Caspases/metabolism , Child , Cohort Studies , DNA, Protozoan/chemistry , DNA, Protozoan/metabolism , Enzyme Activation , Erythrocytes/parasitology , Female , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Kenya , Malaria Vaccines/immunology , Malaria, Falciparum/parasitology , Male , Mice , Parasites/cytology , Parasites/growth & development , Plasmodium falciparum/growth & development , Protozoan Proteins/chemistry , Tanzania , Trophozoites/cytology , Trophozoites/growth & development , Trophozoites/immunology , Vacuoles/immunology
15.
Clin Microbiol Rev ; 37(2): e0007123, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38656211

ABSTRACT

SUMMARYMalaria remains one of the biggest health problems in the world. While significant reductions in malaria morbidity and mortality had been achieved from 2000 to 2015, the favorable trend has stalled, rather significant increases in malaria cases are seen in multiple areas. In 2022, there were 249 million estimated cases, and 608,000 malaria-related deaths, mostly in infants and children aged under 5 years, globally. Therefore, in addition to the expansion of existing anti-malarial control measures, it is critical to develop new tools, such as vaccines and monoclonal antibodies (mAbs), to fight malaria. In the last 2 years, the first and second malaria vaccines, both targeting Plasmodium falciparum circumsporozoite proteins (PfCSP), have been recommended by the World Health Organization to prevent P. falciparum malaria in children living in moderate to high transmission areas. While the approval of the two malaria vaccines is a considerable milestone in vaccine development, they have much room for improvement in efficacy and durability. In addition to the two approved vaccines, recent clinical trials with mAbs against PfCSP, blood-stage vaccines against P. falciparum or P. vivax, and transmission-blocking vaccine or mAb against P. falciparum have shown promising results. This review summarizes the development of the anti-PfCSP vaccines and mAbs, and recent topics in the blood- and transmission-blocking-stage vaccine candidates and mAbs. We further discuss issues of the current vaccines and the directions for the development of next-generation vaccines.


Subject(s)
Antibodies, Monoclonal , Malaria Vaccines , Malaria Vaccines/immunology , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Plasmodium falciparum/immunology , Malaria/prevention & control , Malaria/immunology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/immunology , Antibodies, Protozoan/immunology , Protozoan Proteins/immunology , Clinical Trials as Topic
16.
Lancet ; 403(10437): 1660-1670, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38583454

ABSTRACT

BACKGROUND: The RTS,S/AS01E malaria vaccine (RTS,S) was introduced by national immunisation programmes in Ghana, Kenya, and Malawi in 2019 in large-scale pilot schemes. We aimed to address questions about feasibility and impact, and to assess safety signals that had been observed in the phase 3 trial that included an excess of meningitis and cerebral malaria cases in RTS,S recipients, and the possibility of an excess of deaths among girls who received RTS,S than in controls, to inform decisions about wider use. METHODS: In this prospective evaluation, 158 geographical clusters (66 districts in Ghana; 46 sub-counties in Kenya; and 46 groups of immunisation clinic catchment areas in Malawi) were randomly assigned to early or delayed introduction of RTS,S, with three doses to be administered between the ages of 5 months and 9 months and a fourth dose at the age of approximately 2 years. Primary outcomes of the evaluation, planned over 4 years, were mortality from all causes except injury (impact), hospital admission with severe malaria (impact), hospital admission with meningitis or cerebral malaria (safety), deaths in girls compared with boys (safety), and vaccination coverage (feasibility). Mortality was monitored in children aged 1-59 months throughout the pilot areas. Surveillance for meningitis and severe malaria was established in eight sentinel hospitals in Ghana, six in Kenya, and four in Malawi. Vaccine uptake was measured in surveys of children aged 12-23 months about 18 months after vaccine introduction. We estimated that sufficient data would have accrued after 24 months to evaluate each of the safety signals and the impact on severe malaria in a pooled analysis of the data from the three countries. We estimated incidence rate ratios (IRRs) by comparing the ratio of the number of events in children age-eligible to have received at least one dose of the vaccine (for safety outcomes), or age-eligible to have received three doses (for impact outcomes), to that in non-eligible age groups in implementation areas with the equivalent ratio in comparison areas. To establish whether there was evidence of a difference between girls and boys in the vaccine's impact on mortality, the female-to-male mortality ratio in age groups eligible to receive the vaccine (relative to the ratio in non-eligible children) was compared between implementation and comparison areas. Preliminary findings contributed to WHO's recommendation in 2021 for widespread use of RTS,S in areas of moderate-to-high malaria transmission. FINDINGS: By April 30, 2021, 652 673 children had received at least one dose of RTS,S and 494 745 children had received three doses. Coverage of the first dose was 76% in Ghana, 79% in Kenya, and 73% in Malawi, and coverage of the third dose was 66% in Ghana, 62% in Kenya, and 62% in Malawi. 26 285 children aged 1-59 months were admitted to sentinel hospitals and 13 198 deaths were reported through mortality surveillance. Among children eligible to have received at least one dose of RTS,S, there was no evidence of an excess of meningitis or cerebral malaria cases in implementation areas compared with comparison areas (hospital admission with meningitis: IRR 0·63 [95% CI 0·22-1·79]; hospital admission with cerebral malaria: IRR 1·03 [95% CI 0·61-1·74]). The impact of RTS,S introduction on mortality was similar for girls and boys (relative mortality ratio 1·03 [95% CI 0·88-1·21]). Among children eligible for three vaccine doses, RTS,S introduction was associated with a 32% reduction (95% CI 5-51%) in hospital admission with severe malaria, and a 9% reduction (95% CI 0-18%) in all-cause mortality (excluding injury). INTERPRETATION: In the first 2 years of implementation of RTS,S, the three primary doses were effectively deployed through national immunisation programmes. There was no evidence of the safety signals that had been observed in the phase 3 trial, and introduction of the vaccine was associated with substantial reductions in hospital admission with severe malaria. Evaluation continues to assess the impact of four doses of RTS,S. FUNDING: Gavi, the Vaccine Alliance; the Global Fund to Fight AIDS, Tuberculosis and Malaria; and Unitaid.


Subject(s)
Feasibility Studies , Immunization Programs , Malaria Vaccines , Malaria, Cerebral , Humans , Ghana/epidemiology , Malawi/epidemiology , Infant , Female , Kenya/epidemiology , Malaria Vaccines/administration & dosage , Malaria Vaccines/adverse effects , Male , Child, Preschool , Malaria, Cerebral/epidemiology , Malaria, Cerebral/mortality , Prospective Studies , Malaria, Falciparum/prevention & control , Malaria, Falciparum/epidemiology , Meningitis/epidemiology , Meningitis/prevention & control
17.
N Engl J Med ; 387(5): 397-407, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35921449

ABSTRACT

BACKGROUND: New approaches for the prevention and elimination of malaria, a leading cause of illness and death among infants and young children globally, are needed. METHODS: We conducted a phase 1 clinical trial to assess the safety and pharmacokinetics of L9LS, a next-generation antimalarial monoclonal antibody, and its protective efficacy against controlled human malaria infection in healthy adults who had never had malaria or received a vaccine for malaria. The participants received L9LS either intravenously or subcutaneously at a dose of 1 mg, 5 mg, or 20 mg per kilogram of body weight. Within 2 to 6 weeks after the administration of L9LS, both the participants who received L9LS and the control participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying Plasmodium falciparum (3D7 strain). RESULTS: No safety concerns were identified. L9LS had an estimated half-life of 56 days, and it had dose linearity, with the highest mean (±SD) maximum serum concentration (Cmax) of 914.2±146.5 µg per milliliter observed in participants who had received 20 mg per kilogram intravenously and the lowest mean Cmax of 41.5±4.7 µg per milliliter observed in those who had received 1 mg per kilogram intravenously; the mean Cmax was 164.8±31.1 in the participants who had received 5 mg per kilogram intravenously and 68.9±22.3 in those who had received 5 mg per kilogram subcutaneously. A total of 17 L9LS recipients and 6 control participants underwent controlled human malaria infection. Of the 17 participants who received a single dose of L9LS, 15 (88%) were protected after controlled human malaria infection. Parasitemia did not develop in any of the participants who received 5 or 20 mg per kilogram of intravenous L9LS. Parasitemia developed in 1 of 5 participants who received 1 mg per kilogram intravenously, 1 of 5 participants who received 5 mg per kilogram subcutaneously, and all 6 control participants through 21 days after the controlled human malaria infection. Protection conferred by L9LS was seen at serum concentrations as low as 9.2 µg per milliliter. CONCLUSIONS: In this small trial, L9LS administered intravenously or subcutaneously protected recipients against malaria after controlled infection, without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 614 ClinicalTrials.gov number, NCT05019729.).


Subject(s)
Antibodies, Monoclonal , Malaria , Administration, Cutaneous , Administration, Intravenous , Adult , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Child , Child, Preschool , Humans , Malaria/prevention & control , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Parasitemia/parasitology , Plasmodium falciparum
18.
N Engl J Med ; 387(20): 1833-1842, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36317783

ABSTRACT

BACKGROUND: CIS43LS is a monoclonal antibody that was shown to protect against controlled Plasmodium falciparum infection in a phase 1 clinical trial. Whether a monoclonal antibody can prevent P. falciparum infection in a region in which the infection is endemic is unknown. METHODS: We conducted a phase 2 trial to assess the safety and efficacy of a single intravenous infusion of CIS43LS against P. falciparum infection in healthy adults in Mali over a 6-month malaria season. In Part A, safety was assessed at three escalating dose levels. In Part B, participants were randomly assigned (in a 1:1:1 ratio) to receive 10 mg of CIS43LS per kilogram of body weight, 40 mg of CIS43LS per kilogram, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection detected on blood-smear examination, which was performed at least every 2 weeks for 24 weeks. At enrollment, all the participants received artemether-lumefantrine to clear possible P. falciparum infection. RESULTS: In Part B, 330 adults underwent randomization; 110 were assigned to each trial group. The risk of moderate headache was 3.3 times as high with 40 mg of CIS43LS per kilogram as with placebo. P. falciparum infections were detected on blood-smear examination in 39 participants (35.5%) who received 10 mg of CIS43LS per kilogram, 20 (18.2%) who received 40 mg of CIS43LS per kilogram, and 86 (78.2%) who received placebo. At 6 months, the efficacy of 40 mg of CIS43LS per kilogram as compared with placebo was 88.2% (adjusted 95% confidence interval [CI], 79.3 to 93.3; P<0.001), and the efficacy of 10 mg of CIS43LS per kilogram as compared with placebo was 75.0% (adjusted 95% CI, 61.0 to 84.0; P<0.001). CONCLUSIONS: CIS43LS was protective against P. falciparum infection over a 6-month malaria season in Mali without evident safety concerns. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT04329104.).


Subject(s)
Antibodies, Monoclonal, Humanized , Antimalarials , Malaria, Falciparum , Adult , Humans , Antimalarials/adverse effects , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria, Falciparum/diagnosis , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Mali , Plasmodium falciparum , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Headache/chemically induced
19.
PLoS Pathog ; 19(5): e1011051, 2023 05.
Article in English | MEDLINE | ID: mdl-37195999

ABSTRACT

Understanding immune mechanisms that mediate malaria protection is critical for improving vaccine development. Vaccination with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) induces high level of sterilizing immunity against malaria and serves as a valuable tool for the study of protective mechanisms. To identify vaccine-induced and protection-associated responses during malarial infection, we performed transcriptome profiling of whole blood and in-depth cellular profiling of PBMCs from volunteers who received either PfRAS or noninfectious mosquito bites, followed by controlled human malaria infection (CHMI) challenge. In-depth single-cell profiling of cell subsets that respond to CHMI in mock-vaccinated individuals showed a predominantly inflammatory transcriptome response. Whole blood transcriptome analysis revealed that gene sets associated with type I and II interferon and NK cell responses were increased in prior to CHMI while T and B cell signatures were decreased as early as one day following CHMI in protected vaccinees. In contrast, non-protected vaccinees and mock-vaccinated individuals exhibited shared transcriptome changes after CHMI characterized by decreased innate cell signatures and inflammatory responses. Additionally, immunophenotyping data showed different induction profiles of vδ2+ γδ T cells, CD56+ CD8+ T effector memory (Tem) cells, and non-classical monocytes between protected vaccinees and individuals developing blood-stage parasitemia, following treatment and resolution of infection. Our data provide key insights in understanding immune mechanistic pathways of PfRAS-induced protection and infective CHMI. We demonstrate that vaccine-induced immune response is heterogenous between protected and non-protected vaccinees and that inducted-malaria protection by PfRAS is associated with early and rapid changes in interferon, NK cell and adaptive immune responses. Trial Registration: ClinicalTrials.gov NCT01994525.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Humans , Animals , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics , Vaccination , Interferons , Immunity , Sporozoites
20.
PLoS Pathog ; 19(5): e1011370, 2023 05.
Article in English | MEDLINE | ID: mdl-37228009

ABSTRACT

VAR2CSA is the Plasmodium falciparum variant surface antigen that mediates binding of infected erythrocytes to chondroitin sulfate A (CSA) and their sequestration in intervillous spaces of the placenta, leading to placental malaria (PM). Relatively high polymorphism in VAR2CSA sequences has hindered development of a vaccine that induces broadly neutralizing immunity. Recent research has highlighted that a broadly reactive human monoclonal antibody, called PAM1.4, binds to multiple conserved residues of different subfragments of VAR2CSA, forming a conformational epitope. In this short perspective, we describe evidence that residues located in the interdomain-1 fragment of VAR2CSA within the PAM1.4 binding epitope might be critical to broad reactivity of the antibody. Future investigation into broadly reactive anti-VAR2CSA antibodies may be important for the following: (1) identification of similar conformation epitopes targeted by broadly neutralizing antibodies; and (2) understanding different immune evasion mechanisms used by placenta-binding parasites through VAR2CSA polymorphism in critical epitopes.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Female , Pregnancy , Humans , Placenta/metabolism , Epitopes/genetics , Malaria, Falciparum/prevention & control , Plasmodium falciparum/metabolism , Antigens, Protozoan , Antibodies, Protozoan , Chondroitin Sulfates/metabolism , Erythrocytes/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL