Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nature ; 627(8003): 358-366, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418885

ABSTRACT

Astrocytes are heterogeneous glial cells of the central nervous system1-3. However, the physiological relevance of astrocyte diversity for neural circuits and behaviour remains unclear. Here we show that a specific population of astrocytes in the central striatum expresses µ-crystallin (encoded by Crym in mice and CRYM in humans) that is associated with several human diseases, including neuropsychiatric disorders4-7. In adult mice, reducing the levels of µ-crystallin in striatal astrocytes through CRISPR-Cas9-mediated knockout of Crym resulted in perseverative behaviours, increased fast synaptic excitation in medium spiny neurons and dysfunctional excitatory-inhibitory synaptic balance. Increased perseveration stemmed from the loss of astrocyte-gated control of neurotransmitter release from presynaptic terminals of orbitofrontal cortex-striatum projections. We found that perseveration could be remedied using presynaptic inhibitory chemogenetics8, and that this treatment also corrected the synaptic deficits. Together, our findings reveal converging molecular, synaptic, circuit and behavioural mechanisms by which a molecularly defined and allocated population of striatal astrocytes gates perseveration phenotypes that accompany neuropsychiatric disorders9-12. Our data show that Crym-positive striatal astrocytes have key biological functions within the central nervous system, and uncover astrocyte-neuron interaction mechanisms that could be targeted in treatments for perseveration.


Subject(s)
Astrocytes , Corpus Striatum , Rumination, Cognitive , mu-Crystallins , Animals , Humans , Mice , Astrocytes/metabolism , Corpus Striatum/cytology , Corpus Striatum/physiology , Gene Editing , Gene Knockout Techniques , mu-Crystallins/deficiency , mu-Crystallins/genetics , mu-Crystallins/metabolism , Rumination, Cognitive/physiology , Synaptic Transmission , CRISPR-Cas Systems , Medium Spiny Neurons/metabolism , Synapses/metabolism , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Presynaptic Terminals/metabolism , Neural Inhibition
2.
Sci Rep ; 14(1): 18258, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107568

ABSTRACT

Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.


Subject(s)
Nucleus Accumbens , Transcriptome , Animals , Humans , Mice , Rats , Cell Nucleus/metabolism , Cell Nucleus/genetics , Gene Expression Profiling , Genome-Wide Association Study , Medium Spiny Neurons/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/cytology , Single-Cell Analysis
3.
Biol Psychiatry ; 93(6): 502-511, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36253194

ABSTRACT

BACKGROUND: Over the course of chronic drug use, brain transcriptional neuroadaptation is thought to contribute to a change in drug use behavior over time. The function of the transcription factor CREB (cAMP response element binding protein) within the nucleus accumbens (NAc) has been well documented in opposing the rewarding properties of many classes of drugs, yet the gene targets through which CREB causally manifests these lasting neuroadaptations remain unknown. Here, we identify zinc finger protein 189 (Zfp189) as a CREB target gene that is transcriptionally responsive to acute and chronic cocaine use within the NAc of mice. METHODS: To investigate the role of the CREB-Zfp189 interaction in cocaine use, we virally delivered modified clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9 constructs capable of selectively localizing CREB to the Zfp189 gene promoter in the NAc of mice. RESULTS: We observed that CREB binding to the Zfp189 promoter increased Zfp189 expression and diminished the reinforcing responses to cocaine. Furthermore, we showed that NAc Zfp189 expression increased within D1 medium spiny neurons in response to acute cocaine but increased in both D1- and D2-expressing medium spiny neurons in response to chronic cocaine. CREB-mediated induction of Zfp189 potentiated electrophysiological activity of D1- and D2-expressing medium spiny neurons, recapitulating the known effect of CREB on these neurons. Finally, targeting CREB to the Zfp189 promoter within NAc Drd2-expressing neurons, but not Drd1-expressing neurons, was sufficient to diminish cocaine-conditioned behaviors. CONCLUSIONS: Together, these findings point to the CREB-Zfp189 interaction within the NAc Drd2+ neurons as a molecular signature of chronic cocaine use that is causal in counteracting the reinforcing effects of cocaine.


Subject(s)
Adaptation, Physiological , Cocaine-Related Disorders , Cocaine , Medium Spiny Neurons , Promoter Regions, Genetic , Transcription Factors , Animals , Mice , Adaptation, Physiological/genetics , Cocaine/pharmacology , Cocaine/metabolism , Cocaine-Related Disorders/genetics , Medium Spiny Neurons/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Nucleus Accumbens , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL