Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.396
Filter
1.
Nat Rev Mol Cell Biol ; 24(5): 312-333, 2023 05.
Article in English | MEDLINE | ID: mdl-36543934

ABSTRACT

Regulated cell death (RCD) relies on activation and recruitment of pore-forming proteins (PFPs) that function as executioners of specific cell death pathways: apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK) for apoptosis, gasdermins (GSDMs) for pyroptosis and mixed lineage kinase domain-like protein (MLKL) for necroptosis. Inactive precursors of PFPs are converted into pore-forming entities through activation, membrane recruitment, membrane insertion and oligomerization. These mechanisms involve protein-protein and protein-lipid interactions, proteolytic processing and phosphorylation. In this Review, we discuss the structural rearrangements incurred by RCD-related PFPs and describe the mechanisms that manifest conversion from autoinhibited to membrane-embedded molecular states. We further discuss the formation and maturation of membrane pores formed by BAX/BAK/BOK, GSDMs and MLKL, leading to diverse pore architectures. Lastly, we highlight commonalities and differences of PFP mechanisms involving BAX/BAK/BOK, GSDMs and MLKL and conclude with a discussion on how, in a population of challenged cells, the coexistence of cell death modalities may have profound physiological and pathophysiological implications.


Subject(s)
Apoptosis , bcl-2-Associated X Protein/metabolism , Cell Membrane/metabolism , Membranes/metabolism
2.
Nat Rev Mol Cell Biol ; 24(1): 63-78, 2023 01.
Article in English | MEDLINE | ID: mdl-35918535

ABSTRACT

Curved membranes are key features of intracellular organelles, and their generation involves dynamic protein complexes. Here we describe the fundamental mechanisms such as the hydrophobic insertion, scaffolding and crowding mechanisms these proteins use to produce membrane curvatures and complex shapes required to form intracellular organelles and vesicular structures involved in endocytosis and secretion. For each mechanism, we discuss its cellular functions as well as the underlying physical principles and the specific membrane properties required for the mechanism to be feasible. We propose that the integration of individual mechanisms into a highly controlled, robust process of curvature generation often relies on the assembly of proteins into coats. How cells unify and organize the curvature-generating factors at the nanoscale is presented for three ubiquitous coats central for membrane trafficking in eukaryotes: clathrin-coated pits, caveolae, and COPI and COPII coats. The emerging theme is that these coats arrange and coordinate curvature-generating factors in time and space to dynamically shape membranes to accomplish membrane trafficking within cells.


Subject(s)
Organelles , Proteins , Membranes/metabolism , Proteins/metabolism , Organelles/metabolism , Cell Membrane/metabolism , Endocytosis , Clathrin/metabolism
3.
Nat Rev Mol Cell Biol ; 21(3): 151-166, 2020 03.
Article in English | MEDLINE | ID: mdl-32034394

ABSTRACT

During division, eukaryotic cells undergo a dramatic, complex and coordinated remodelling of their cytoskeleton and membranes. For cell division to occur, chromosomes must be segregated and new cellular structures, such as the spindle apparatus, must be assembled. Pre-existing organelles, such as the nuclear envelope, endoplasmic reticulum and Golgi apparatus, must be disassembled or remodelled, distributed and reformed. Smaller organelles such as mitochondria as well as cytoplasmic content must also be properly distributed between daughter cells. This mixture of organelles and cytoplasm is bound by a plasma membrane that is itself subject to remodelling as division progresses. The lipids resident in these different membrane compartments play important roles in facilitating the division process. In recent years, we have begun to understand how membrane remodelling is coordinated during division; however, there is still much to learn. In this Review, we discuss recent insights into how these important cellular events are performed and regulated.


Subject(s)
Cell Division/physiology , Membranes/metabolism , Organelles/physiology , Animals , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Eukaryotic Cells/cytology , Golgi Apparatus/metabolism , Humans , Membranes/physiology , Microtubules/metabolism , Mitochondria/metabolism , Organelles/metabolism , Spindle Apparatus/metabolism
4.
Annu Rev Cell Dev Biol ; 31: 593-621, 2015.
Article in English | MEDLINE | ID: mdl-26566117

ABSTRACT

Microvilli are actin-based structures found on the apical aspect of many epithelial cells. In this review, we discuss different types of microvilli, as well as comparisons with actin-based sensory stereocilia and filopodia. Much is known about the actin-bundling proteins of these structures; we summarize recent studies that focus on the components of the microvillar membrane. We pay special attention to mechanisms of membrane microfilament attachment by the ezrin/radixin/moesin family and regulation of this protein family. We also discuss the NHERF family of scaffolding proteins that are found in microvilli and their role in microvilli regulation. Microvilli on cultured cells are not static structures, and their dynamics and those of their components are discussed. Finally, we mention diseases related to microvilli and outline questions that our current knowledge will allow the field to address in the near future.


Subject(s)
Epithelial Cells/physiology , Microvilli/physiology , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/physiology , Actins/metabolism , Animals , Humans , Membranes/metabolism , Membranes/physiology
5.
Proc Natl Acad Sci U S A ; 121(17): e2319476121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621120

ABSTRACT

Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases." These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far-overlooked role in membrane dynamics as scramblases.


Subject(s)
Membrane Proteins , Peptides , Cell Membrane/metabolism , Membrane Proteins/metabolism , Peptides/metabolism , Membranes/metabolism , Lipids , Lipid Bilayers/chemistry
6.
EMBO J ; 41(5): e109952, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35107832

ABSTRACT

Molecular mechanistic biology has ushered us into the world of life's building blocks, revealing their interactions in macromolecular complexes and inspiring strategies for detailed functional interrogations. The biogenesis of membraneless cellular compartments, functional mesoscale subcellular locales devoid of strong internal order and delimiting membranes, is among mechanistic biology's most demanding current challenges. A developing paradigm, biomolecular phase separation, emphasizes solvation of the building blocks through low-affinity, weakly adhesive unspecific interactions as the driver of biogenesis of membraneless compartments. Here, I discuss the molecular underpinnings of the phase separation paradigm and demonstrate that validating its assumptions is much more challenging than hitherto appreciated. I also discuss that highly specific interactions, rather than unspecific ones, appear to be the main driver of biogenesis of subcellular compartments, while phase separation may be harnessed locally in selected instances to generate material properties tailored for specific functions, as exemplified by nucleocytoplasmic transport.


Subject(s)
Macromolecular Substances/metabolism , Membranes/metabolism , Amino Acid Sequence , Organelles/metabolism
7.
EMBO Rep ; 25(2): 853-875, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182815

ABSTRACT

Membrane-bound pyrophosphatases (M-PPases) are homodimeric primary ion pumps that couple the transport of Na+- and/or H+ across membranes to the hydrolysis of pyrophosphate. Their role in the virulence of protist pathogens like Plasmodium falciparum makes them an intriguing target for structural and functional studies. Here, we show the first structure of a K+-independent M-PPase, asymmetric and time-dependent substrate binding in time-resolved structures of a K+-dependent M-PPase and demonstrate pumping-before-hydrolysis by electrometric studies. We suggest how key residues in helix 12, 13, and the exit channel loops affect ion selectivity and K+-activation due to a complex interplay of residues that are involved in subunit-subunit communication. Our findings not only explain ion selectivity in M-PPases but also why they display half-of-the-sites reactivity. Based on this, we propose, for the first time, a unified model for ion-pumping, hydrolysis, and energy coupling in all M-PPases, including those that pump both Na+ and H+.


Subject(s)
Pyrophosphatases , Sodium , Pyrophosphatases/chemistry , Pyrophosphatases/metabolism , Membranes/metabolism , Catalysis , Sodium/chemistry , Sodium/metabolism
8.
Chem Rev ; 124(6): 3284-3330, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38498932

ABSTRACT

It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.


Subject(s)
Lipid Bilayers , Membrane Lipids , Membrane Lipids/chemistry , Lipid Bilayers/chemistry , Cell Membrane/metabolism , Membranes/metabolism , Phospholipids/metabolism , Alkenes/metabolism
9.
Proc Natl Acad Sci U S A ; 120(20): e2301121120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37172014

ABSTRACT

Phospholipase C-ßs (PLCßs) catalyze the hydrolysis of phosphatidylinositol 4, 5-bisphosphate [Formula: see text] into [Formula: see text] [Formula: see text] and [Formula: see text]  [Formula: see text]. [Formula: see text] regulates the activity of many membrane proteins, while IP3 and DAG lead to increased intracellular Ca2+ levels and activate protein kinase C, respectively. PLCßs are regulated by G protein-coupled receptors through direct interaction with [Formula: see text] and [Formula: see text] and are aqueous-soluble enzymes that must bind to the cell membrane to act on their lipid substrate. This study addresses the mechanism by which [Formula: see text] activates PLCß3. We show that PLCß3 functions as a slow Michaelis-Menten enzyme ( [Formula: see text] ) on membrane surfaces. We used membrane partitioning experiments to study the solution-membrane localization equilibrium of PLCß3. Its partition coefficient is such that only a small quantity of PLCß3 exists in the membrane in the absence of [Formula: see text] . When [Formula: see text] is present, equilibrium binding on the membrane surface increases PLCß3 in the membrane, increasing [Formula: see text] in proportion. Atomic structures on membrane vesicle surfaces show that two [Formula: see text] anchor PLCß3 with its catalytic site oriented toward the membrane surface. Taken together, the enzyme kinetic, membrane partitioning, and structural data show that [Formula: see text] activates PLCß by increasing its concentration on the membrane surface and orienting its catalytic core to engage [Formula: see text] . This principle of activation explains rapid stimulated catalysis with low background activity, which is essential to the biological processes mediated by [Formula: see text], IP3, and DAG.


Subject(s)
Phosphatidylinositols , Receptors, G-Protein-Coupled , Hydrolysis , Receptors, G-Protein-Coupled/metabolism , Cell Membrane/metabolism , Phosphatidylinositols/metabolism , Membranes/metabolism
10.
Proc Natl Acad Sci U S A ; 120(33): e2303942120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549300

ABSTRACT

Legionella pneumophila grows intracellularly within the membrane-bound Legionella-containing vacuole (LCV) established by proteins translocated via the bacterial type IV secretion system (T4SS). The Sde family, one such group of translocated proteins, catalyzes phosphoribosyl-ubiquitin (pR-Ub) modification of target substrates. Mutational loss of the entire Sde family results in small defects in intracellular growth, making it difficult to identify a clear role for this posttranslational modification in supporting the intracellular lifestyle. Therefore, mutations that aggravate the loss of sde genes and caused intracellular growth defects were identified, providing a mechanistic connection between Sde function and vacuole biogenesis. These double mutants drove the formation of LCVs that showed vacuole disintegration within 2 h of bacterial contact. Sde proteins appeared critical for blocking access of membrane-disruptive early endosomal membrane material to the vacuole, as RNAi depletion of endosomal pathway components partially restored LCV integrity. The role of Sde proteins in preventing host degradation of the LCV was limited to the earliest stages of infection. The time that Sde proteins could prevent vacuole disruption, however, was extended by deletion of sidJ, which encodes a translocated protein that inactivates Sde protein active sites. These results indicate that Sde proteins act as temporally regulated vacuole guards during the establishment of the replication niche, possibly by constructing a physical barrier that blocks access of disruptive host compartments during the earliest steps of LCV biogenesis.


Subject(s)
Legionella pneumophila , Legionella pneumophila/genetics , Legionella pneumophila/metabolism , Vacuoles/metabolism , Ubiquitin/metabolism , Endosomes/metabolism , Membranes/metabolism , Bacterial Proteins/metabolism
11.
Proc Natl Acad Sci U S A ; 120(15): e2201910120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37027427

ABSTRACT

α-synuclein (αS) is an intrinsically disordered protein whose functional ambivalence and protein structural plasticity are iconic. Coordinated protein recruitment ensures proper vesicle dynamics at the synaptic cleft, while deregulated oligomerization on cellular membranes contributes to cell damage and Parkinson's disease (PD). Despite the protein's pathophysiological relevance, structural knowledge is limited. Here, we employ NMR spectroscopy and chemical cross-link mass spectrometry on 14N/15N-labeled αS mixtures to provide for the first time high-resolution structural information of the membrane-bound oligomeric state of αS and demonstrate that in this state, αS samples a surprisingly small conformational space. Interestingly, the study locates familial Parkinson's disease mutants at the interface between individual αS monomers and reveals different oligomerization processes depending on whether oligomerization occurs on the same membrane surface (cis) or between αS initially attached to different membrane particles (trans). The explanatory power of the obtained high-resolution structural model is used to help determine the mode-of-actionof UCB0599. Here, it is shown that the ligand changes the ensemble of membrane-bound structures, which helps to explain the success this compound, currently being tested in Parkinson's disease patients in a phase 2 trial, has had in animal models of PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Membranes/metabolism , Cell Membrane/metabolism , Magnetic Resonance Spectroscopy , Antiparkinson Agents/metabolism
12.
J Biol Chem ; 300(1): 105496, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013088

ABSTRACT

The yeast vacuole membrane can phase separate into ordered and disordered domains, a phenomenon that is required for micro-lipophagy under nutrient limitation. Despite its importance as a biophysical model and physiological significance, it is not yet resolved if specific lipidome changes drive vacuole phase separation. Here we report that the metabolism of sphingolipids (SLs) and their sorting into the vacuole membrane can control this process. We first developed a vacuole isolation method to identify lipidome changes during the onset of phase separation in early stationary stage cells. We found that early stationary stage vacuoles are defined by an increased abundance of putative raft components, including 40% higher ergosterol content and a nearly 3-fold enrichment in complex SLs (CSLs). These changes were not found in the corresponding whole cell lipidomes, indicating that lipid sorting is associated with domain formation. Several facets of SL composition-headgroup stoichiometry, longer chain lengths, and increased hydroxylations-were also markers of phase-separated vacuole lipidomes. To test SL function in vacuole phase separation, we carried out a systematic genetic dissection of their biosynthetic pathway. The abundance of CSLs controlled the extent of domain formation and associated micro-lipophagy processes, while their headgroup composition altered domain morphology. These results suggest that lipid trafficking can drive membrane phase separation in vivo and identify SLs as key mediators of this process in yeast.


Subject(s)
Membranes , Saccharomyces cerevisiae , Sphingolipids , Vacuoles , Membranes/metabolism , Phase Separation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sphingolipids/chemistry , Sphingolipids/genetics , Sphingolipids/metabolism , Vacuoles/metabolism , Vacuoles/ultrastructure , Lipidomics , Microscopy, Fluorescence
13.
J Cell Sci ; 136(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36655427

ABSTRACT

The lateral diffusion of transmembrane proteins on plasma membranes is a fundamental process for various cellular functions. Diffusion properties specific for individual protein species have been extensively studied, but the common features among protein species are poorly understood. Here, we systematically studied the lateral diffusion of various transmembrane proteins in the lower eukaryote Dictyostelium discoideum cells using a hidden Markov model for single-molecule trajectories obtained experimentally. As common features, all membrane proteins that had from one to ten transmembrane regions adopted three free diffusion states with similar diffusion coefficients regardless of their structural variability. All protein species reduced their mobility similarly upon the inhibition of microtubule or actin cytoskeleton dynamics, or myosin II. The relationship between protein size and the diffusion coefficient was consistent with the Saffman-Delbrück model, meaning that membrane viscosity is a major determinant of lateral diffusion, but protein size is not. These protein species-independent properties of multistate free diffusion were explained simply and quantitatively by free diffusion on the three membrane regions with different viscosities, which is in sharp contrast to the complex diffusion behavior of transmembrane proteins in higher eukaryotes.


Subject(s)
Dictyostelium , Dictyostelium/metabolism , Membrane Proteins/metabolism , Cell Membrane/metabolism , Diffusion , Membranes/metabolism
14.
J Cell Sci ; 136(13)2023 07 01.
Article in English | MEDLINE | ID: mdl-37417332

ABSTRACT

Protein translocases, such as the bacterial SecY complex, the Sec61 complex of the endoplasmic reticulum (ER) and the mitochondrial translocases, facilitate the transport of proteins across membranes. In addition, they catalyze the insertion of integral membrane proteins into the lipid bilayer. Several membrane insertases cooperate with these translocases, thereby promoting the topogenesis, folding and assembly of membrane proteins. Oxa1 and BamA family members serve as core components in the two major classes of membrane insertases. They facilitate the integration of proteins with α-helical transmembrane domains and of ß-barrel proteins into lipid bilayers, respectively. Members of the Oxa1 family were initially found in the internal membranes of bacteria, mitochondria and chloroplasts. Recent studies, however, also identified several Oxa1-type insertases in the ER, where they serve as catalytically active core subunits in the ER membrane protein complex (EMC), the guided entry of tail-anchored (GET) and the GET- and EMC-like (GEL) complex. The outer membrane of bacteria, mitochondria and chloroplasts contain ß-barrel proteins, which are inserted by members of the BamA family. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of these different types of membrane insertases and discuss their function.


Subject(s)
Escherichia coli Proteins , Membrane Transport Proteins , Membrane Transport Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/metabolism , Membranes/metabolism , Bacteria/metabolism , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism
15.
Proc Natl Acad Sci U S A ; 119(32): e2204453119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914159

ABSTRACT

Changes in the geometry and topology of self-assembled membranes underlie diverse processes across cellular biology and engineering. Similar to lipid bilayers, monolayer colloidal membranes have in-plane fluid-like dynamics and out-of-plane bending elasticity. Their open edges and micrometer-length scale provide a tractable system to study the equilibrium energetics and dynamic pathways of membrane assembly and reconfiguration. Here, we find that doping colloidal membranes with short miscible rods transforms disk-shaped membranes into saddle-shaped surfaces with complex edge structures. The saddle-shaped membranes are well approximated by Enneper's minimal surfaces. Theoretical modeling demonstrates that their formation is driven by increasing the positive Gaussian modulus, which in turn, is controlled by the fraction of short rods. Further coalescence of saddle-shaped surfaces leads to diverse topologically distinct structures, including shapes similar to catenoids, trinoids, four-noids, and higher-order structures. At long timescales, we observe the formation of a system-spanning, sponge-like phase. The unique features of colloidal membranes reveal the topological transformations that accompany coalescence pathways in real time. We enhance the functionality of these membranes by making their shape responsive to external stimuli. Our results demonstrate a pathway toward control of thin elastic sheets' shape and topology-a pathway driven by the emergent elasticity induced by compositional heterogeneity.


Subject(s)
Lipid Bilayers , Elasticity , Lipid Bilayers/chemistry , Membranes/metabolism , Normal Distribution
16.
BMC Biol ; 22(1): 46, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414038

ABSTRACT

Membranes are protein and lipid structures that surround cells and other biological compartments. We present a conceptual model wherein all membranes are organized into structural and functional zones. The assembly of zones such as receptor clusters, protein-coated pits, lamellipodia, cell junctions, and membrane fusion sites is explained to occur through a protein-lipid code. This challenges the theory that lipids sort proteins after forming stable membrane subregions independently of proteins.


Subject(s)
Carrier Proteins , Proteolipids , Proteolipids/metabolism , Membranes/metabolism , Carrier Proteins/metabolism , Cell Membrane/metabolism
17.
Biophys J ; 123(3): 273-276, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38219739

ABSTRACT

Membrane curvature is ubiquitous and essential in cell biology. Curved membranes have several distinct features, including specific protein and lipid sorting, distinct lipid ordering, and changes in transbilayer stress. Curvature also interplays with membrane tension to generate forces that change membrane shape. This research highlight summarizes recent contributions to this topic published in Biophysical Journal.


Subject(s)
Lipid Bilayers , Proteins , Lipid Bilayers/metabolism , Membranes/metabolism , Biophysics
18.
Biophys J ; 123(7): 885-900, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38433448

ABSTRACT

The specific recognition of peripheral membrane-binding proteins for their target membranes is mediated by a complex constellation of various lipid contacts. Despite the inherent complexities of the heterogeneous protein-membrane interface, the binding dependence of such proteins is, surprisingly, often reliably described by simple models such as the Langmuir Adsorption Isotherm or the Hill equation. However, these models were not developed to describe associations with two-dimensional, highly concentrated heterogeneous ligands such as lipid membranes. In particular, these models fail to capture the dependence on the lipid composition, a significant determinant of binding that distinguishes target from non-target membranes. In this work, we present a model that describes the dependence of peripheral proteins on lipid composition through an analytic expression for their association. The resulting membrane-binding equation retains the features of these simple models but completely describes the binding dependence on multiple relevant variables in addition to the lipid composition, such as protein and vesicle concentration. Implicit in this lipid composition dependence is a new form of membrane-based cooperativity that significantly differs from traditional solution-based cooperativity. We introduce the Membrane-Hill number as a measure of this cooperativity and describe its unique properties. We illustrate the utility and interpretational power of our model by analyzing previously published data on two peripheral proteins that associate with phosphatidylserine-containing membranes: The transmembrane immunoglobulin and mucin domain-containing protein 3 (TIM3) that employs calcium in its association, and milk fat globulin epidermal growth factor VIII (MFG-E8) which is completely insensitive to calcium. We also provide binding equations for systems that exhibit more complexity in their membrane-binding.


Subject(s)
Calcium , Milk Proteins , Milk Proteins/chemistry , Milk Proteins/metabolism , Proteins , Membranes/metabolism , Lipids
19.
Biophys J ; 123(3): 389-406, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38196190

ABSTRACT

Although the structural rearrangement of the membrane-bound matrix (MA) protein trimers upon HIV-1 maturation has been reported, the consequences of MA maturation on the MA-lipid interactions are not well understood. Long-timescale molecular dynamics simulations of the MA multimeric assemblies of immature and mature virus particles with our realistic asymmetric membrane model have explored MA-lipid interactions and lateral organization of lipids around MA complexes. The number of stable MA-phosphatidylserine and MA-phosphatidylinositol 4,5-bisphosphate (PIP2) interactions at the trimeric interface of the mature MA complex is observed to be greater compared to that of the immature MA complex. Our simulations identified an alternative PIP2-binding site in the immature MA complex where the multivalent headgroup of a PIP2 lipid with a greater negative charge binds to multiple basic amino acid residues such as ARG3 residues of both the MA monomers at the trimeric interface and highly basic region (HBR) residues (LYS29, LYS31) of one of the MA monomers. Our enhanced sampling simulations have explored the conformational space of phospholipids at different binding sites of the trimer-trimer interface of MA complexes that are not accessible by conventional unbiased molecular dynamics. Unlike the immature MA complex, the 2' acyl tail of two PIP2 lipids at the trimeric interface of the mature MA complex is observed to sample stable binding pockets of MA consisting of helix-4 residues. Together, our results provide molecular-level insights into the interactions of MA trimeric complexes with membrane and different lipid conformations at the specific binding sites of MA protein before and after viral maturation.


Subject(s)
HIV-1 , Molecular Dynamics Simulation , HIV-1/metabolism , Protein Binding , Membranes/metabolism , Lipids , Cell Membrane/metabolism
20.
Biophys J ; 123(8): 1006-1014, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38486451

ABSTRACT

Plasma membrane damage occurs in healthy cells and more frequently in cancer cells where high growth rates and metastasis result in frequent membrane damage. The annexin family of proteins plays a key role in membrane repair. Annexins are recruited at the membrane injury site by Ca+2 and repair the damaged membrane in concert with several other proteins. Annexin A4 (ANXA4) and ANXA5 form trimers at the bilayer surface, and previous simulations show that the trimers induce high local negative membrane curvature on a flat bilayer. The membrane-curvature-inducing property of ANXA5 is presumed to be vital to the membrane repair mechanism. A previously proposed descriptive model hypothesizes that ANXA5-mediated curvature force is utilized at the free edge of the membrane at a wound site to pull the wound edges together, resulting in the formation of a "neck"-shaped structure, which, when combined with a constriction force exerted by ANXA6, leads to membrane repair. The molecular details and mechanisms of repair remain unknown, in part because the membrane edge is a transient structure that is difficult to investigate both experimentally and computationally. For the first time, we investigate the impact of ANXA5 near a membrane edge, which is modeled by a bicelle under periodic boundary conditions. ANXA5 trimers induce local curvature on the membrane leading to global bending of the bicelle. The global curvature depends on the density of annexins on the bicelle, and the curvature increases with the ANXA5 concentration until it reaches a plateau. The simulations suggest that not only do annexins induce local membrane curvature, but they can change the overall shape of a free-standing membrane. We also demonstrate that ANXA5 trimers reduce the rate of phosphatidylserine lipid diffusion from the cytoplasmic to the exoplasmic leaflet along the edge of the bicelle. In this way, membrane-bound annexins can potentially delay the apoptotic signal triggered by the presence of phosphatidylserine lipids in the outer leaflet, thus biding time for repair of the membrane hole. Our findings provide new insights into the role of ANXA5 at the edges of the membrane (the injury site) and support the curvature-constriction model of membrane repair.


Subject(s)
Annexins , Phosphatidylserines , Annexin A5/analysis , Annexin A5/metabolism , Phosphatidylserines/metabolism , Cell Membrane/metabolism , Annexins/analysis , Annexins/chemistry , Annexins/metabolism , Membranes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL