Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Physiol Plant ; 176(2): e14226, 2024.
Article in English | MEDLINE | ID: mdl-38410873

ABSTRACT

Due to anthropogenic activities, environmental pollution of heavy metals/metalloids (HMs) has increased and received growing attention in recent decades. Plants growing in HM-contaminated soils have slower growth and development, resulting in lower agricultural yield. Exposure to HMs leads to the generation of free radicals (oxidative stress), which alters plant morpho-physiological and biochemical pathways at the cellular and tissue levels. Plants have evolved complex defense mechanisms to avoid or tolerate the toxic effects of HMs, including HMs absorption and accumulation in cell organelles, immobilization by forming complexes with organic chelates, extraction via numerous transporters, ion channels, signaling cascades, and transcription elements, among others. Nonetheless, these internal defensive mechanisms are insufficient to overcome HMs toxicity. Therefore, unveiling HMs adaptation and tolerance mechanisms is necessary for sustainable agriculture. Recent breakthroughs in cutting-edge approaches such as phytohormone and gasotransmitters application, nanotechnology, omics, and genetic engineering tools have identified molecular regulators linked to HMs tolerance, which may be applied to generate HMs-tolerant future plants. This review summarizes numerous systems that plants have adapted to resist HMs toxicity, such as physiological, biochemical, and molecular responses. Diverse adaptation strategies have also been comprehensively presented to advance plant resilience to HMs toxicity that could enable sustainable agricultural production.


Subject(s)
Metalloids , Metals, Heavy , Soil Pollutants , Agriculture , Chemical Phenomena , Metalloids/metabolism , Metalloids/toxicity , Metals, Heavy/toxicity , Plants/metabolism , Soil , Soil Pollutants/toxicity
2.
Ecotoxicology ; 33(1): 94-103, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38227083

ABSTRACT

The paper presents the results of studies on the influence of selected concentrations (10-100 mg L-1) of heavy metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Zn) and metalloids (As, Sb, Se) on the germination and root elongation of garden cress (Lepidium sativum L). There are not many studies on phytotoxicity of heavy metals and metalloids with the complex use of single plant species so far. On the basis of the germination index (GI) and inhibition concentration IC50, the following order of phytotoxicity of the tested elements was determined: Se> As> Hg> Sb > Mo > Cd> Co > Zn > Ni. The other metals showed no phytotoxicity or even stimulating effect. In our study the stimulating effect of the majority of Pb concentrations and the lowest concentrations of Cd and Hg has been revealed. These metals do not play any role in living organisms, however some authors confirm their stimulating effect on plants at low concentrations. Toxic concentration of metals and metalloids calculated as IC50 are lower than the concentration calculated as GI (not phytotoxic). It is well known that seeds are more independent and tolerant to toxicants when they contain reserve substances which are used during the germination period. On the basis of conducted research, high tolerance of L. sativum to heavy metals and metalloids was found, which may indicate its usefulness for phytotoxicity assessment of leachate from contaminated soil or waste (e.g. foundry waste) and its application for bioremediation to manage heavy metal pollution of soils or foundry wastes containing heavy metals and metalloids. The understanding of heavy metal and metalloids toxicity will facilitate bioremediation.


Subject(s)
Mercury , Metalloids , Metals, Heavy , Soil Pollutants , Lepidium sativum , Cadmium , Metalloids/toxicity , Metalloids/analysis , Lead , Metals, Heavy/toxicity , Metals, Heavy/analysis , Plants , Soil , Environmental Monitoring/methods , Soil Pollutants/toxicity , Soil Pollutants/analysis
3.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674035

ABSTRACT

In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.


Subject(s)
Metalloids , Saccharomyces cerevisiae , Stress, Physiological , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/drug effects , Metalloids/metabolism , Metalloids/toxicity , Humans , Stress, Physiological/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Arsenic/toxicity , Arsenic/metabolism , Cadmium/toxicity , Cadmium/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
4.
Environ Geochem Health ; 46(7): 226, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849664

ABSTRACT

The red deer is an ungulate and large game species. The contamination of the ecosystems by metal(loid)s may lead to the exposure of animals (as well as humans) through water and food resources. The direct contact of hunters and wild animal meat consumers with deer carcasses may be a potential contaminant source. This study aimed to determine the metal(loid)s' concentrations in the liver and kidney of red deer from two regions of Portugal (Idanha-a-Nova and Lousã), and to relate these with histopathologic lesions. Thirteen young male deer were submitted to metal(loid) determination (As, Cd, Co, Cr, Cu, Pb, and Zn) by inductively coupled plasma mass spectrophotometry (ICP-MS) and histopathology examination. Renal Cd (8.072 ± 5.766 mg/kg dw) and hepatic Pb (3.824 ± 6.098 mg/kg dw) mean values were high, considering the maximum values for consumption established by the European Commission. The hepatic mean value of Cu was significantly higher in Idanha-a-Nova (150.059 ± 33.321 mg/kg dw), and it is at the Cu toxicity limit considered for ruminants (150 mg/kg). The pollution induced by Panasqueira mines (Castelo Branco) may be a possible explanation for some of the findings, especially the higher values of hepatic Cu and Pb found in Idanha-a-Nova deer. These results have high importance under a One Health perspective, since they have implications in public health, and pose at risk the imbalance of animal populations and ecosystems.


Subject(s)
Deer , Kidney , Liver , Metals, Heavy , Animals , Metals, Heavy/analysis , Male , Liver/metabolism , Humans , Portugal , Kidney/drug effects , Metalloids/analysis , Metalloids/toxicity , Environmental Monitoring , Environmental Pollutants , Environmental Exposure
5.
Environ Res ; 238(Pt 2): 117307, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37797667

ABSTRACT

The Fundão Dam failure has been the most significant environmental disaster in Brazil. The catastrophe released large amounts of mining waste into the environment, including toxic metals/metalloids, which are recognized to induce carcinogenic effects. The urinary levels of 8-hydroxy-2'-deoxyguanosine (8OHdG), a widely accepted oxidative stress and carcinogenesis biomarker, provide a potential tool for assessing the disaster's health implications. This study investigated the association between urinary levels of some toxic metals/metalloids and 8OHdG in Brazilian individuals living in areas affected by the Fundão dam failure. Urinary concentrations of arsenic (As), cadmium (Cd), mercury (Hg), nickel (Ni), and lead (Pb) were determined using inductively coupled plasma mass spectrometry, while 8OHdG was analyzed by liquid chromatography-tandem mass spectrometry. Non-parametric bootstrap regression was used to estimate the associations between the urinary levels of toxic elements and 8OHdG. The results showed that except for Hg, urinary concentrations of all metals/metalloids analyzed here exceeded the reference ranges for the Brazilian population. The regression analysis revealed that As (0.337; CI 95%: 0.203; 0.474), Cd (0.268; CI 95%: 0.036; 0.520), and Ni (0.296; CI 950.108; 0.469) were positively associated with creatinine-adjusted urinary 8OHdG levels. Associations were not found for Hg (0.0122; CI 95%: -0.155; 0.183) and Pb (0.201; CI 95%: -0.040; 0.498). The current findings suggest that high exposure to toxic metals/metalloids might increase 8OHdG levels with potential adverse health effects. This study is the first one in which the relationship between toxic metals/metalloids and oxidative stress biomarkers is investigated in populations affected by environmental disasters. Further prospective studies are necessary to monitor exposure levels and explore additional health impacts.


Subject(s)
Arsenic , Mercury , Metalloids , Metals, Heavy , Humans , Metalloids/toxicity , Cadmium , Brazil , 8-Hydroxy-2'-Deoxyguanosine , Lead , Prospective Studies , Nickel , Oxidative Stress , Metals, Heavy/toxicity , Environmental Monitoring/methods
6.
Environ Geochem Health ; 45(6): 3155-3169, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36166169

ABSTRACT

In this study, the concentration of six metal(loid)s was examined in the fish Oreochromis aureus collected from El Comedero dam during a massive mortality event induced by a mine tailing spill. A major spill (~ 300,000 m3) of waste was released into the San Lorenzo River System following a rupture in the tailing dam of a mining plant in NW Mexico; consequently, the discharged material flowed into El Comedero dam. The accumulation of metal(oid)s in the tissues of O. aureus showed higher levels in the liver than in the guts and muscle. Concentrations in the liver were high (As, 1.1-1063; Cd, 8.9-392; Cu, 372-59,129; Hg, 0.46-19.79; Se, 8.7-748; and Zn, 116-820 µg g-1), revealing that these fish were exposed to high concentrations of these elements. The mortality of fish could have resulted from the combined effect of the six analyzed metal(loid)s, as well as other residues present in mine tailings.


Subject(s)
Metalloids , Metals, Heavy , Tilapia , Animals , Metalloids/toxicity , Metalloids/analysis , Environmental Monitoring , Metals/toxicity , Metals/analysis , Liver , Metals, Heavy/analysis
7.
Environ Geochem Health ; 45(7): 4461-4476, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36820947

ABSTRACT

The floodplain soils are often heavily enriched in metal(loid)s released from the industrial areas. A related environmental risk depends on their total concentrations and the forms and conditions conducive to mobilization. This study was aimed to examine the concentrations of metal(loid)s in the Odra floodplain soils and to assess the risk associated with their possible contamination. In this study, topsoil and deeper soil layer samples were collected from the inter- and out-of-embankment zones. Total concentrations of Pb, Zn, Cu, As, Mn and Fe, and their extractable fractions were determined in 1 M NH4NO3 (actual solubility) and by BCR sequential extraction. The environmental risk was assessed based on total concentrations, according to legal regulations, geochemical enrichment indices and extractability of elements, with considering soil morphological features. Some topsoil samples from the inter-embankment zone turned out considerably enriched in Pb, Zn, Cu, and As, as confirmed by geochemical indices. Zn and As concentrations in some samples exceeded the permissible values defined by Polish law. Zn and Mn showed a high actual solubility, but a simple experiment proved that it can be efficiently reduced by liming. BCR fractionation showed that all the elements occurred mainly in reducible forms. Therefore, the risk of their release from the layers that do not indicate redoximorphic features was assessed as negligible. The study showed that such a complementary approach is needed to assess the real environmental risk in the case of soils considerably enriched in potentially toxic elements.


Subject(s)
Metalloids , Metals, Heavy , Soil Pollutants , Soil , Metalloids/toxicity , Rivers , Lead , Soil Pollutants/toxicity , Soil Pollutants/analysis , Environmental Monitoring , Metals, Heavy/toxicity , Metals, Heavy/analysis , Risk Assessment
8.
Environ Geochem Health ; 45(7): 4353-4369, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36790726

ABSTRACT

The generation of solid waste is increasing with each passing day due to rapid urbanization and industrialization and has become a matter of concern for the international community. Leachate leakages from landfills pollute the soil and can potentially harm the human health. In this paper, inductively coupled plasma-optical emission spectrometric studies were employed to assess and analyze the composition of metals (Ba, Cd, Pb, Hg, Cu, Cr and Mn) and metalloid (As) in soil samples. Results of Cr, Mn, Cu, As, Ba, Cd, Pb and Hg from CRM (certified reference material, SRM 2709a) of San Joaquin soil were evaluated and reported in terms of percent recoveries which were in the range of 97.6-102.9% and show outstanding extraction efficiency. Other than copper, where the permitted limit set by the EU is specified as 50-140 mg/kg in soil, the average amount of all the metals in soil was found within the permissible limits provided by WHO, the European Community (EU) and US EPA. Soil contaminated with Hg (PERI = 100) and Cd (PERI = 145.50) posed an ecological risk significantly. Pollution load index (PLI) value is greater than 1, while degree of contamination (Cdeg) value is less than 32 which indicated that the soil is polluted and considerably contaminated with metals and metalloid, respectively. In terms of the average daily dosage (ADD) of soil, children received the highest doses of all metals (ADDing = 1.315 × 10-7 - 2.470 × 10-3 and ADDderm = 9.939 × 10-7 - 5.292 × 10-11), whereas ADDing (1.409 × 10-8 - 2.646 × 10-4) was found greater in adults. For all metals except for Ba, the hazard quotient (HQ) trend in both children and adults was observed to be HQing > HQderm > HQinh of soil. Children who are at the lower edge of cancer risk had a lifetime cancer risk (LCR) of 2.039 × 10-4 for Cr from various paths of soil exposure.


Subject(s)
Mercury , Metalloids , Metals, Heavy , Neoplasms , Soil Pollutants , Adult , Child , Humans , Metals, Heavy/analysis , Soil/chemistry , Copper/analysis , Environmental Monitoring/methods , Cadmium/analysis , Lead/analysis , Risk Assessment , Soil Pollutants/analysis , Mercury/analysis , Waste Disposal Facilities , Metalloids/toxicity , Metalloids/analysis , China
9.
Environ Monit Assess ; 195(9): 1032, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37561244

ABSTRACT

Ranchi is the administrative capital of Jharkhand and is located in the southern part of the Chhotanagpur Plateau. It is rich in forest and mineral resources and hence is suitable for the establishment of many large- and small-scale industries. The estimated population of Ranchi for the year 2023 is 3.54 million. These demographic characteristics make the capital more vulnerable to environmental degradation. Also, previous water quality research focused on river, water, and oceans separately; however, little or no work has been carried out on the comparison of metal or metalloid analysis in rivers, waterfalls, and lakes. Hence, the present study aims to assess the pollution status of mineral-rich and industrial hub city, Ranchi, through analysis of metals or metalloids in abiotic (water and sediment) and biotic (fish and human) components. The water, sediment, and fish (Labeo rohita and Catla catla) samples were collected from Subarnarekha river, Jumar river, Dassam fall, Getalsud dam, Hundru fall, Jonha fall, Kanke dam, and Sita fall. Samples were collected following standard methods and analyzed in inductively coupled plasma mass spectrometry (ICP-MS). Among three aquatic systems (rivers, dams, and falls), dams were highly polluted with metals or metalloids, which may be due to effluent discharge from different industries. Additionally, the high population in the city also contributed to metals or metalloids pollution. The reason may be the direct sewage disposal and agricultural and surface runoff in the water systems. It was observed that most of the aquatic systems in Ranchi were severely polluted with metals or metalloids. The fish also accumulated these metals or metalloids in their body and can be life-threatening to the human population consuming them. The THQ (above 1) and HI (2.95) values for As showed that children are more vulnerable to health risk through consumption of contaminated fish. Hence, proper planning and management are needed to overcome the metals or metalloids pollution in Ranchi.


Subject(s)
Cyprinidae , Metalloids , Metals, Heavy , Water Pollutants, Chemical , Animals , Child , Humans , Metalloids/toxicity , Metalloids/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Metals/toxicity , Metals/analysis , Water Quality , Minerals/analysis , Rivers/chemistry , Metals, Heavy/toxicity , Metals, Heavy/analysis , Risk Assessment/methods
10.
Environ Res ; 204(Pt D): 112395, 2022 03.
Article in English | MEDLINE | ID: mdl-34800529

ABSTRACT

The role of metals and metalloids beyond arsenic, copper, lead and cadmium in cardiovascular disease is not entirely clear. The aim of this study was to assess the association between 18 metal or metalloid levels in topsoil (upper soil horizon) with all-cause and specific cardiovascular mortality endpoints in Spain. We designed an ecological spatial study, to assess cardiovascular mortality in 7941 Spanish mainland towns from 2010 to 2014. The estimation of metals and metalloids concentration in topsoil came from the Geochemical Atlas of Spain from 13,317 soil samples. We also summarized the joint variability of the metals using principal components analysis (PCA). These components (PCs) were included in a Besag, York, and Mollié model to assess their association with cardiovascular mortality from all causes, coronary heart disease, cerebrovascular, hypertension, and conduction disorders. Our results showed, both in men and women, that at the lowest component scores range, PC2 (mainly reflecting Al, Be, Tl and U) was positively associated with coronary heart disease and cerebrovascular mortality. At medium/highest scores range, PC4 (mainly reflecting Hg) was positively associated with cerebrovascular mortality. For PC3 (reflecting Se), the association with coronary heart disease mortality was positive only in men at the highest PC scores range. For PC1 (partly reflecting metals such as Pb, As, Cu or Cd), we observed a strongly suggestive positive association with all-cause cardiovascular diseases mortality. Our ecological results are consistent with the available evidence supporting a cardiovascular role of excessive exposure to Se, Hg, Pb, As, Cu and Cd, but also identify Al, Be, Tl and U as potentially novel cardiovascular factors. Additional research is needed to confirm the biological relevance of our findings.


Subject(s)
Cardiovascular Diseases , Metalloids , Metals, Heavy , Soil Pollutants , Cardiovascular Diseases/epidemiology , Environmental Monitoring , Female , Humans , Male , Metalloids/analysis , Metalloids/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Spain/epidemiology
11.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232672

ABSTRACT

Plant adaptive strategies have been shaped during evolutionary development in the constant interaction with a plethora of environmental factors, including the presence of metals/metalloids in the environment. Among adaptive reactions against either the excess of trace elements or toxic doses of non-essential elements, their complexation with molecular endogenous ligands, including phenolics, has received increasing attention. Currently, the complexation of phenolics with metal(loid)s is a topic of intensive studies in different scientific fields. In spite of the numerous studies on their chelating capacity, the systemic analysis of phenolics as plant ligands has not been performed yet. Such a systematizing can be performed based on the modern approach of metallomics as an integral biometal science, which in turn has been differentiated into subgroups according to the nature of the bioligands. In this regard, the present review summarizes phenolics-metal(loid)s' interactions using the metallomic approach. Experimental results on the chelating activity of representative compounds from different phenolic subgroups in vitro and in vivo are systematized. General properties of phenolic ligands and specific properties of anthocyanins are revealed. The novel concept of metallophenolomics is proposed, as a ligand-oriented subgroup of metallomics, which is an integrated approach to study phenolics-metal(loid)s' complexations. The research subjects of metallophenolomics are outlined according to the methodology of metallomic studies, including mission-oriented biometal sciences (environmental sciences, food sciences and nutrition, medicine, cosmetology, coloration technologies, chemical sciences, material sciences, solar cell sciences). Metallophenolomics opens new prospects to unite multidisciplinary investigations of phenolic-metal(loid) interactions.


Subject(s)
Metalloids , Trace Elements , Anthocyanins , Humans , Ions , Ligands , Metalloids/toxicity , Metals/toxicity , Phenols/analysis , Plants , Trace Elements/analysis
12.
J Toxicol Environ Health B Crit Rev ; 24(7): 307-324, 2021 10 03.
Article in English | MEDLINE | ID: mdl-34092204

ABSTRACT

Widespread contamination of soil, dust, and food with toxic metal(loid)s pose a significant public health concern. Only a portion of orally ingested metal(loid) contaminants are bioavailable, which is defined as the fraction of ingested metal(loid)s absorbed across the gastrointestinal barrier and into systemic circulation. Bioaccessibility tools are a class of in vitro assays used as a surrogate to estimate risk of oral exposure and bioavailability. Although development and use of bioaccessibility tools have contributed to our understanding of the factors influencing oral bioavailability of metal(loid)s, some of these assays may lack data that support their use in decisions concerning adverse health risks and soil remediation. This review discusses the factors known to influence bioaccessibility of metal(loid) contaminants and evaluates experimental approaches and key findings of SW-846 Test Method 1340, Unified BARGE Method, Simulated Human Intestinal Microbial Ecosystem, Solubility Bioaccessibility Research Consortium assay, In Vitro Gastrointestinal model, TNO-Gastrointestinal Model, and Dutch National Institute for Public Health and the Environment bioaccessibility models which are used to assess oral absolute bioavailability and relative bioavailability in solid matrices. The aim of this review was to identify emerging knowledge gaps and research needs with an emphasis on research required to evaluate these models on (1) standardization of assay techniques and methodology, and (2) use of common criteria for assessing the performance of bioaccessibility models.


Subject(s)
Environmental Monitoring/methods , Metalloids/analysis , Metals/analysis , Animals , Biological Availability , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Pollution/adverse effects , Environmental Pollution/analysis , Food Contamination/analysis , Humans , Metalloids/toxicity , Public Health , Risk Assessment/methods , Soil Pollutants/analysis , Soil Pollutants/toxicity
13.
Ecotoxicol Environ Saf ; 215: 112165, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33773149

ABSTRACT

BACKGROUND: Exposure to metals/metalloids, including essential and nonessential elements, has been associated to male reproductive health in animals. However, findings from human studies are inconsistent. OBJECTIVES: To investigate the impact of exposure to multiple metals/metalloids at environmental levels on the conventional human semen-quality parameters. MATERIALS AND METHODS: Men living in rural or industrial areas were recruited by personalized letters. No exclusion criteria were applied. Each man provided one semen sample and one blood sample. We analyzed the semen sample both to determine conventional sperm parameters (concentration, progressive motility and normal forms) and to quantify lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As), nickel (Ni), vanadium (V) and selenium (Se) levels. The levels of these metals/metalloids were also quantified in venous blood and spermatozoa samples. Associations between the blood/seminal plasma metal/metalloid levels and semen quality parameters were assessed using confounder adjusted logistic regression models. Correlation and interactions between blood/seminal plasma and semen metal/metalloid levels were investigated using the Spearman's correlation. RESULTS: We found a positive association of seminal plasma cadmium level with lower Total count (OR = 4.48, 95%CI 0.25-80); whereas lead (OR = 4.51, 95%CI 0.86-23) and cadmium (OR = 3.45, 95%CI 0.77-16) seminal plasma levels had a positive association with progressive sperm motility. Overall, these associations remained suggestive after adjustment, though statistically unstable risks. Finally, we found weak interactions between beneficial effects of Se and detrimental ones only for Cd and Pb blood level on sperm concentration, total sperm count and progressive sperm motility. CONCLUSIONS: Our findings suggest that environmental exposure to Pb and Cd contributes to a decline in human semen quality, whereas Se can have beneficial effects. Measurements of metals/metalloids in the seminal fluid may be more predictable of semen quality than conventional blood measurements.


Subject(s)
Environmental Exposure , Metalloids/toxicity , Metals/toxicity , Semen/drug effects , Adult , Arsenic/blood , Body Fluids , Cadmium/pharmacology , Cross-Sectional Studies , Humans , Male , Mercury , Metalloids/metabolism , Metals/metabolism , Nickel/pharmacology , Selenium , Semen Analysis , Sperm Count , Sperm Motility/drug effects , Spermatozoa/drug effects , Vanadium
14.
Int J Environ Health Res ; 31(8): 915-931, 2021 Dec.
Article in English | MEDLINE | ID: mdl-31868528

ABSTRACT

Agricultural soils were collected from Mocorito river basin, to determine potentially toxic elements (PTEs) subtotal concentrations and geochemical fractionation, and evaluate their environmental and health risks. All sites showed low As and Cr concentrations. Subtotal concentrations (mg/kg) ranged between 6.8 and 25.6 for As, 1.9 and 2.5 for Cd and 22.5 and 55.1 for Cr. These values were classified as moderately contaminated for As, while a considerable contamination was presented for Cd and Cr. Geochemical partitioning revealed that PTEs are strongly linked with residual phase. Arsenic was associated with amorphous Fe-oxyhydroxides. Ecotoxicological indices showed from low (As and Cr) to considerable (Cd) potential ecological risk factors; potential non-carcinogenic risks by As, Cd and Cr, and potential carcinogenic risks by As and Cr. Lithogenic and anthropogenic sources were identified. Arsenic and Cr showed lithogenic influence, while Cd increased, caused by nearby activities, representing an environmental and health risk.


Subject(s)
Agriculture , Environmental Pollution/analysis , Soil Pollutants/analysis , Soil Pollutants/toxicity , Biological Availability , Ecotoxicology , Environmental Monitoring , Humans , Metalloids/analysis , Metalloids/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Mexico , Risk Assessment , Soil/chemistry
15.
Environ Geochem Health ; 43(11): 4719-4740, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33973140

ABSTRACT

Surface runoff is the most significant source of water in dry cities like Tehran. The surface runoff is polluted by heavy metals, which their risk level is a function of their speciation. Herein, Tehran runoff quality and the speciation of metals and metalloids were investigated. The results of quality showed that oxidation-reduction potential (Eh) and pH ranged from + 186 to + 230 mV and from 7.31 to 10.29, respectively. Cluster analysis indicated that Cr, Si, Mn, Fe, Pb, Se, Th, Ba, Ni, Li, and Sr had similar behaviors and origins, and salinity played an active role in restricting their concentrations. Eh and dissolved oxygen (DO) negatively affected the concentrations of all the studied elements. The speciation model (according to HSC Chemistry program) exhibited that all the studied elements are stable; however, in two cases, they would become unstable (pH < 7, Eh < - 480 mV or Eh > 1100 mV) and (pH > 10, Eh < - 570 mV or Eh > 970 mV). Also, Ba, Cd, Li, Mn, Al, As, Sr, Cr, Si, and Se are present in bioavailable species and As and Cd in the runoff exist in high toxic oxidation states of + 3 and + 2, respectively. The linear regression of Cu, Co, Cd, Zn, and As with Eh provided a good fit, and all of these metals were significant at levels 1 and 5%. Finally, it is recommended to continuously monitor the Eh-pH changes for investigating the potential toxicity of metals and predicting the metal pollution by regression equations in any other stations.


Subject(s)
Metalloids , Metals, Heavy , Environmental Monitoring , Iran , Metalloids/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Thermodynamics
16.
J Pharmacol Exp Ther ; 373(1): 62-71, 2020 04.
Article in English | MEDLINE | ID: mdl-31941719

ABSTRACT

The present study used human myeloid leukemia U937 cells, a versatile promonocytic cellular system that, based on its endoplasmic reticulum (ER)/mitochondria functional relationships, responds to low micromolar concentrations of arsenite with a single, defined mechanism of superoxide (O2 -.) formation. Under these conditions, we observe an initial Ca2+ mobilization from the ER associated with the mitochondrial accumulation of the cation, which is followed by Ca2+-dependent mitochondrial O2 -. (mitoO2 -.) formation. These events, which were barely detectable after 3 hours, were better appreciated at 6 hours. We found that markedly shorter exposure to arsenite and lower concentrations of arsenite are required to induce extensive O2 - formation in cells supplemented with inositol-1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR) agonists. Indeed, nanomolar arsenite induced maximal O2 -. formation after only 10 minutes of exposure, and this response was uniquely dependent on the enforced mitochondrial Ca2+ accumulation. The dramatic anticipation of and sensitization to the effects of arsenite caused by the IP3R or RyR agonists were accompanied by a parallel significant genotoxic response in the absence of detectable mitochondrial dysfunction and cytotoxicity. We conclude that the prolonged, low-micromolar arsenite exposure paradigm resulting in mitoO2 -. formation is necessary to affect Ca2+ homeostasis and accumulate the cation in mitochondria. The arsenite requirements to promote mitoO2 -. formation in the presence of sufficient mitochondrial Ca2+ were instead remarkably lower in terms of both concentration and time of exposure. These conditions were associated with the induction of extensive DNA strand scission in the absence of detectable signs of toxicity. SIGNIFICANCE STATEMENT: In respiration-proficient cells, arsenite causes mitochondrial Ca2+ accumulation and Ca2+-dependent mitochondrial superoxide formation. We now report that the second event requires remarkably lower concentrations of and time of exposure to the metalloid than the former. Indeed, a brief exposure to nanomolar levels of arsenite produced maximal effects under conditions in which the mitochondrial Ca2+ concentration ([Ca2+]m) was increased by inositol-1,4,5-trisphosphate receptor or ryanodine receptor agonists. Hence, specific substances or conditions enhancing the [Ca2+]m may potentiate the deleterious effects of arsenite by selectively increasing mitochondrial superoxide formation.


Subject(s)
Arsenites/toxicity , Endoplasmic Reticulum/drug effects , Metalloids/toxicity , Mitochondria/drug effects , Superoxides , Teratogens/toxicity , Dose-Response Relationship, Drug , Endoplasmic Reticulum/metabolism , Humans , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism , Time Factors , U937 Cells
17.
Ecotoxicol Environ Saf ; 195: 110466, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32200145

ABSTRACT

Remediation of metal(loid) polluted soils is an important area of research nowadays. In particular, one remediation technique is much studied, phytomanagement. Phytomanagement combines amendment application and plant growth in order to reduce the risk posed by contaminants. Salicaceae plants showed tolerance towards metal(loid)s and the ability to accumulate high amounts of metal(loid)s in their tissue. Amendments are often applied to counterbalance the reduced soil fertility and high metal(loid) concentrations. Two amendments gathered attention over the last decades, biochar (product of biomass pyrolysis), which can be activated for better effects, and redmud (by-product of alumina production). Those two amendments showed ability to improve soil conditions and thus plant growth, although few studied their combined application. Moreover, since metal(loid)s are known to induce the overproduction of reactive oxygen species, it is important to measure the level of oxidative stress in the plant, to which plants respond using enzymatic and non-enzymatic systems. But no studies evaluate the response of Salicaceae plants to metal(loid) stress and amendment application at the biochemical level in a real soil condition. Therefore, a mesocosm study was set up to evaluate the effect of amending a mine soil with redmud combined to diverse biochars on the soil properties and Salix triandra growth, metal(loid) accumulation and stress marker levels. Results showed that all amendment combinations improved the soil fertility, reduced metal(loid) mobility and thus ameliorated Salix triandra growth, which accumulated metal(loid)s mainly in its roots. Moreover, among the different amendment combinations, Salix triandra plants still suffered from oxidative stress when grown on PG soil amended with redmud and chemical activated carbon, showing elevated levels of phenolic compounds and salicinoids and important antioxidant and enzymatic activities. Finally, one treatment showed levels of these stress markers similar or lower than the control, the combination of redmud with steam activated carbon. In conclusion, this treatment seemed a good solution in a phytomanagement strategy using Salix triandra, improving soil conditions and plant growth and reducing oxidative stress level in the plant roots.


Subject(s)
Charcoal , Metalloids/metabolism , Metals/metabolism , Oxidative Stress , Salix/metabolism , Soil Pollutants/metabolism , Aluminum Oxide , Biodegradation, Environmental , Metalloids/toxicity , Metals/toxicity , Salix/drug effects , Salix/growth & development , Soil/chemistry , Soil Pollutants/toxicity
18.
Environ Geochem Health ; 42(11): 3731-3751, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32557130

ABSTRACT

The aim of this research was to examine the content of heavy metals and metalloids in the spring water on the territory of Belgrade City and their health risk. This paper presents results of the content and non-carcinogenic health risk assessment of aluminum, iron, chromium, manganese, nickel, copper, zinc, arsenic, cadmium, mercury and lead, as well as carcinogenic health risk assessment of arsenic, in untreated spring water on the territory of Belgrade City. 23 out of 30 registered and controlled springs in Belgrade City were sampled and examined. The analysis of all samples was done using an ICP-MS. Descriptive and multivariate statistical analysis of data was done, and based on Shapiro-Wilk test of normality, all data sets, from which mean values of heavy metals and metalloids were calculated, have normal distribution. Pearson's correlation coefficient for the examined elements was determined too, as well as spatial distribution and cluster analysis with dendrogram. Based on heavy metal and metalloid concentrations, the health risk assessment (HQ) was calculated. Although the concentrations of certain heavy metals and metalloids in untreated water were in a wide range of values and differed significantly, in a large number of springs concentrations of most of the investigated heavy metals and metalloids were lower than the maximum permissible concentrations prescribed by the legislation of the Republic of Serbia and do not show unacceptable non-carcinogenic and carcinogenic health risk.


Subject(s)
Metalloids/analysis , Metals, Heavy/analysis , Natural Springs/analysis , Environmental Exposure/adverse effects , Environmental Monitoring/methods , Fresh Water/analysis , Humans , Metalloids/toxicity , Metals, Heavy/toxicity , Risk Assessment , Serbia
19.
Environ Geochem Health ; 42(12): 4113-4124, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31520319

ABSTRACT

Active smelters release high concentration of multiple toxic metal(loid)s into the environment, degrading the soil cover and posing high risks to human health. The present study investigates Cu along with other metal(loids) such as As, Cd, Hg, Co, Mn, Pb and Zn in the soil collected from the vicinity of Cu smelter, Karabash, Russia, and potential health risks to local children and adults were assessed. The average concentrations of Cu, Zn, Pb, As, Cd, and Hg in the exposed soil were 2698, 1050, 702, 392, 9 and 2 mg kg-1, respectively, which was significantly (p < 0.05) much higher than reference soil: Cu(107), As(18), Cd(0.3), Hg(0.2), Pb(54) and Zn(125) mg kg-1. The enrichment factor (EF) for Cu, Hg, Pb and Zn showed significant enrichment, whereas very high enrichment was recorded for As (20.0) and Cd (27.6) suggesting the soil was severely affected by smelting activities. The pollution load index was tenfold higher than the acceptable level of one, whereas potential ecological risk factor showed very high potential risks of Cd and Hg, along with a considerable ecological risk of As and Cu. Very high ecological risk index of 1810 indicates severe degradation of environmental ecosystem. The results of EF, Pearson correlation and principle component analysis were complementary and suggest the anthropogenic source of contamination for Cu, As, Pb, Hg and Cd. The present result suggests As > Pb > Cu in the exposed soil were the major contributors for the health risks and account for 81%, 12% and 5%, and 77%, 12% and 8% of hazard quotient for children and adults, respectively. Noticeably, the health risks to local children dwelling in the vicinity of Cu smelter were 12 and 20 times higher than to adult and the acceptable level of one, respectively. Therefore, in order to reduce the health risk due to metal(loid)s, mitigation measures are needed to remediate the pollution of the exposed soil.


Subject(s)
Metalloids/analysis , Metallurgy , Metals, Heavy/analysis , Soil Pollutants/analysis , Copper/analysis , Copper/toxicity , Environmental Monitoring , Humans , Metalloids/toxicity , Metals, Heavy/toxicity , Risk Assessment , Russia , Soil/chemistry , Soil Pollutants/toxicity
20.
Environ Geochem Health ; 42(11): 3949-3963, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32651931

ABSTRACT

Heavy metals are the most important indicator for farmland soil; however, in China, few provincial and national scales of studies have been done on heavy metals. Herein, by retrieving published studies, we calculated the spatial distribution characters and evaluated the health risks of Cu, Zn, Cd, Ni, Pb, Cr, As, and Hg in the farmland soil of 146 cities in China. Results showed that (1) the range (mean) values of eight (metalloid) heavy metals were as follows in mg/kg: Cu 0.236-251.015 (44.604), Zn 0.151-1547.060 (154.203), Cd 0.014-39.100 (1.497), Ni 0.709-554.420 (41.968), Pb 0.327-495.400 (55.143), Cr 0.078-333.510 (70.093), As 0.836-60.000 (12.207), and Hg 0.008-12.190 (0.371). The coefficient of variation values of Cu, Cr, and As displayed moderate variation, and Zn, Cd, Ni, Pb, and Hg displayed high variation (142.148-364.960%). (2) the Igeo values of As, Cu, Cd, Ni, Zn, Cr, Pb, and Hg were - 4.329 to 1.837, - 7.166 to 2.888, - 3.378 to 8.070, - 5.831 to 3.780, - 9.527 to 3.797, - 10.120 to 1.866, - 6.899 to 3.667, and - 3.681 to 6.966, respectively; in many cities, there was some degree of heavy metal pollution of the farmland soil such as Zn in Pingdu, Pb in Huludao, and Hg in Tongguan, Funshun, Huludao, and Qinglong (Igeo > 3); there were no obvious spatial patterns of Cr, Ni, and As, and Zn, Cu, but Cd, Ni, Pb, and Hg mainly located in some cities in the southwest, central or eastern parts of China. (3) Health risk assessment showed that with the exception of Cd, Cr, and As by the respiration route and Ni, Cr, and As through skin exposure, the average amount of daily exposure of the eight (metalloid) heavy metals all showed values for children > adults, and the HQ and HI values were all lower than 1.0, indicating noncarcinogenic risks; calculation of carcinogenic risks showed there were no carcinogenic risks for As, Cr, Ni, and Cd; however, the value for Cr was the maximum and contributed 98.505% of the total.


Subject(s)
Environmental Exposure/adverse effects , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Adult , Carcinogens/analysis , Child , China , Cities , Environmental Exposure/analysis , Environmental Monitoring/methods , Farms , Humans , Metalloids/analysis , Metalloids/toxicity , Metals, Heavy/toxicity , Risk Assessment , Soil Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL