Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Nature ; 612(7941): 748-757, 2022 12.
Article in English | MEDLINE | ID: mdl-36477529

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) and several bat coronaviruses use dipeptidyl peptidase-4 (DPP4) as an entry receptor1-4. However, the receptor for NeoCoV-the closest knownĀ MERS-CoV relative foundĀ in bats-remains unclear5. Here, using a pseudotype virus entry assay, we found that NeoCoV and its close relative, PDF-2180, can efficiently bind to and use specific bat angiotensin-converting enzyme 2 (ACE2) orthologues and, less favourably, human ACE2 as entry receptors through their receptor-binding domains (RBDs) on the spike (S) proteins. Cryo-electron microscopy analysis revealed an RBD-ACE2 binding interface involving protein-glycan interactions, distinct from those ofĀ other known ACE2-using coronaviruses. We identified residues 337-342 of human ACE2 as a molecular determinant restricting NeoCoV entry, whereas a NeoCoV S pseudotyped virus containing a T510F RBD mutation efficiently entered cells expressingĀ human ACE2. Although polyclonal SARS-CoV-2 antibodies or MERS-CoV RBD-specific nanobodies did not cross-neutralize NeoCoV or PDF-2180, an ACE2-specific antibody and two broadly neutralizing betacoronavirus antibodiesĀ efficiently inhibited these two pseudotyped viruses. We describe MERS-CoV-related viruses that use ACE2 as an entry receptor, underscoring a promiscuity of receptor use and a potential zoonotic threat.


Subject(s)
Angiotensin-Converting Enzyme 2 , Chiroptera , Middle East Respiratory Syndrome Coronavirus , Receptors, Virus , Virus Internalization , Animals , Humans , Angiotensin-Converting Enzyme 2/metabolism , Chiroptera/metabolism , Chiroptera/virology , Cryoelectron Microscopy , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Middle East Respiratory Syndrome Coronavirus/metabolism , Protein Binding , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Dipeptidyl Peptidase 4/metabolism , Viral Zoonoses
2.
J Virol ; 96(15): e0095822, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35852351

ABSTRACT

The spike protein on sarbecovirus virions contains two external, protruding domains: an N-terminal domain (NTD) with unclear function and a C-terminal domain (CTD) that binds the host receptor, allowing for viral entry and infection. While the CTD is well studied for therapeutic interventions, the role of the NTD is far less well understood for many coronaviruses. Here, we demonstrate that the spike NTD from SARS-CoV-2 and other sarbecoviruses binds to unidentified glycans in vitro similarly to other members of the Coronaviridae family. We also show that these spike NTD (S-NTD) proteins adhere to Calu3 cells, a human lung cell line, although the biological relevance of this is unclear. In contrast to what has been shown for Middle East respiratory syndrome coronavirus (MERS-CoV), which attaches sialic acids during cell entry, sialic acids present on Calu3 cells inhibited sarbecovirus infection. Therefore, while sarbecoviruses can interact with cell surface glycans similarly to other coronaviruses, their reliance on glycans for entry is different from that of other respiratory coronaviruses, suggesting sarbecoviruses and MERS-CoV have adapted to different cell types, tissues, or hosts during their divergent evolution. Our findings provide important clues for further exploring the biological functions of sarbecovirus glycan binding and adds to our growing understanding of the complex forces that shape coronavirus spike evolution. IMPORTANCE Spike N-terminal domains (S-NTD) of sarbecoviruses are highly diverse; however, their function remains largely understudied compared with the receptor-binding domains (RBD). Here, we show that sarbecovirus S-NTD can be phylogenetically clustered into five clades and exhibit various levels of glycan binding in vitro. We also show that, unlike some coronaviruses, including MERS-CoV, sialic acids present on the surface of Calu3, a human lung cell culture, inhibit SARS-CoV-2 and other sarbecoviruses. These results suggest that while glycan binding might be an ancestral trait conserved across different coronavirus families, the functional outcome during infection can vary, reflecting divergent viral evolution. Our results expand our knowledge on the biological functions of the S-NTD across diverse sarbecoviruses and provide insight on the evolutionary history of coronavirus spike.


Subject(s)
Evolution, Molecular , Middle East Respiratory Syndrome Coronavirus , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Cell Line , Humans , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/metabolism , Polysaccharides/metabolism , Protein Domains , Receptors, Virus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/metabolism , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
3.
Proc Natl Acad Sci U S A ; 117(26): 15193-15199, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32522874

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses an immediate, major threat to public health across the globe. Here we report an in-depth molecular analysis to reconstruct the evolutionary origins of the enhanced pathogenicity of SARS-CoV-2 and other coronaviruses that are severe human pathogens. Using integrated comparative genomics and machine learning techniques, we identify key genomic features that differentiate SARS-CoV-2 and the viruses behind the two previous deadly coronavirus outbreaks, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), from less pathogenic coronaviruses. These features include enhancement of the nuclear localization signals in the nucleocapsid protein and distinct inserts in the spike glycoprotein that appear to be associated with high case fatality rate of these coronaviruses as well as the host switch from animals to humans. The identified features could be crucial contributors to coronavirus pathogenicity and possible targets for diagnostics, prognostication, and interventions.


Subject(s)
Betacoronavirus/genetics , Evolution, Molecular , Genome, Viral , Nucleocapsid Proteins/genetics , Spike Glycoprotein, Coronavirus/genetics , Animals , Betacoronavirus/classification , Betacoronavirus/pathogenicity , Host Specificity , Humans , Machine Learning , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Mutagenesis, Insertional , Nuclear Localization Signals/genetics , Nucleocapsid Proteins/chemistry , Phylogeny , SARS-CoV-2 , Sequence Homology , Spike Glycoprotein, Coronavirus/chemistry , Virulence/genetics
4.
Genomics ; 113(1 Pt 2): 778-784, 2021 01.
Article in English | MEDLINE | ID: mdl-33069829

ABSTRACT

The coronavirus pandemic became a major risk in global public health. The outbreak is caused by SARS-CoV-2, a member of the coronavirus family. Though the images of the virus are familiar to us, in the present study, an attempt is made to hear the coronavirus by translating its protein spike into audio sequences. The musical features such as pitch, timbre, volume and duration are mapped based on the coronavirus protein sequence. Three different viruses Influenza, Ebola and Coronavirus were studied and compared through their auditory virus sequences by implementing Haar wavelet transform. The sonification of the coronavirus benefits in understanding the protein structures by enhancing the hidden features. Further, it makes a clear difference in the representation of coronavirus compared with other viruses, which will help in various research works related to virus sequence. This evolves as a simplified and novel way of representing the conventional computational methods.


Subject(s)
Algorithms , COVID-19/virology , Genome, Viral , Music , SARS-CoV-2/classification , SARS-CoV-2/genetics , Wavelet Analysis , Amino Acid Sequence , Cluster Analysis , Coronavirus/classification , Coronavirus/genetics , Ebolavirus/classification , Ebolavirus/genetics , Humans , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Orthomyxoviridae/classification , Orthomyxoviridae/genetics , Pandemics , RNA, Viral/genetics , Severe acute respiratory syndrome-related coronavirus/classification , Severe acute respiratory syndrome-related coronavirus/genetics , Viral Proteins/genetics
5.
J Virol ; 94(15)2020 07 16.
Article in English | MEDLINE | ID: mdl-32434886

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory disease in humans. MERS-CoV strains from early epidemic clade A and contemporary epidemic clade B have not been phenotypically characterized to compare their abilities to infect cells and mice. We isolated the clade B MERS-CoV ChinaGD01 strain from a patient infected during the South Korean MERS outbreak in 2015 and compared the phylogenetics and pathogenicity of MERS-CoV EMC/2012 (clade A) and ChinaGD01 (clade B) in vitro and in vivo Genome alignment analysis showed that most clade-specific mutations occurred in the orf1ab gene, including mutations that were predicted to be potential glycosylation sites. Minor differences in viral growth but no significant differences in plaque size or sensitivity to beta interferon (IFN-Ɵ) were detected between these two viruses in vitro ChinaGD01 virus infection induced more weight loss and inflammatory cytokine production in human DPP4-transduced mice. Viral titers were higher in the lungs of ChinaGD01-infected mice than with EMC/2012 infection. Decreased virus-specific CD4+ and CD8+ T cell numbers were detected in the lungs of ChinaGD01-infected mice. In conclusion, MERS-CoV evolution induced changes to reshape its pathogenicity and virulence in vitro and in vivo and to evade adaptive immune response to hinder viral clearance.IMPORTANCE MERS-CoV is an important emerging pathogen and causes severe respiratory infection in humans. MERS-CoV strains from early epidemic clade A and contemporary epidemic clade B have not been phenotypically characterized to compare their abilities to infect cells and mice. In this study, we showed that a clade B virus ChinaGD01 strain caused more severe disease in mice, with delayed viral clearance, increased inflammatory cytokines, and decreased antiviral T cell responses, than the early clade A virus EMC/2012. Given the differences in pathogenicity of different clades of MERS-CoV, periodic assessment of currently circulating MERS-CoV is needed to monitor potential severity of zoonotic disease.


Subject(s)
Coronavirus Infections/virology , Genotype , Host-Pathogen Interactions , Middle East Respiratory Syndrome Coronavirus/physiology , Adult , Animals , Disease Models, Animal , Genome, Viral , Host-Pathogen Interactions/immunology , Humans , Interferon Type I/pharmacology , Male , Mice , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Phylogeny , RNA, Viral , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Virulence , Virus Replication/drug effects , Virus Replication/genetics , Whole Genome Sequencing
6.
Emerg Infect Dis ; 26(12): 3089-3091, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33219804

ABSTRACT

We detected Middle East respiratory syndrome coronavirus (MERS-CoV) RNA in 305/1,131 (27%) camels tested at an abattoir in Al Hasa, Eastern Province, Saudi Arabia, during January 2016-March 2018. We characterized 48 full-length MERS-CoV genomes and noted the viruses clustered in MERS-CoV lineage 5 clade B.


Subject(s)
Abattoirs , Camelus , Coronavirus Infections/veterinary , Middle East Respiratory Syndrome Coronavirus/genetics , Phylogeny , Aging , Animals , Antibodies, Viral/analysis , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Female , Male , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/isolation & purification , RNA, Viral/analysis , Saudi Arabia/epidemiology
7.
J Med Virol ; 92(6): 660-666, 2020 06.
Article in English | MEDLINE | ID: mdl-32159237

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging disease with fatal outcomes. In this study, a fundamental knowledge gap question is to be resolved by evaluating the differences in biological and pathogenic aspects of SARS-CoV-2 and the changes in SARS-CoV-2 in comparison with the two prior major COV epidemics, SARS and Middle East respiratory syndrome (MERS) coronaviruses. METHODS: The genome composition, nucleotide analysis, codon usage indices, relative synonymous codons usage, and effective number of codons (ENc) were analyzed in the four structural genes; Spike (S), Envelope (E), membrane (M), and Nucleocapsid (N) genes, and two of the most important nonstructural genes comprising RNA-dependent RNA polymerase and main protease (Mpro) of SARS-CoV-2, Beta-CoV from pangolins, bat SARS, MERS, and SARS CoVs. RESULTS: SARS-CoV-2 prefers pyrimidine rich codons to purines. Most high-frequency codons were ending with A or T, while the low frequency and rare codons were ending with G or C. SARS-CoV-2 structural proteins showed 5 to 20 lower ENc values, compared with SARS, bat SARS, and MERS CoVs. This implies higher codon bias and higher gene expression efficiency of SARS-CoV-2 structural proteins. SARS-CoV-2 encoded the highest number of over-biased and negatively biased codons. Pangolin Beta-CoV showed little differences with SARS-CoV-2 ENc values, compared with SARS, bat SARS, and MERS CoV. CONCLUSION: Extreme bias and lower ENc values of SARS-CoV-2, especially in Spike, Envelope, and Mpro genes, are suggestive for higher gene expression efficiency, compared with SARS, bat SARS, and MERS CoVs.


Subject(s)
Betacoronavirus/genetics , Cysteine Endopeptidases/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Nucleocapsid Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Animals , Base Sequence , Betacoronavirus/classification , Betacoronavirus/pathogenicity , COVID-19 , Chiroptera/microbiology , Codon Usage , Computational Biology , Coronavirus 3C Proteases , Coronavirus Envelope Proteins , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Cysteine Endopeptidases/metabolism , Eutheria/microbiology , Gene Expression , Humans , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Nucleocapsid Proteins/metabolism , Pandemics , Phosphoproteins , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , RNA-Dependent RNA Polymerase/metabolism , Severe acute respiratory syndrome-related coronavirus/classification , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Sequence Homology, Nucleic Acid , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism , Viral Nonstructural Proteins/metabolism
8.
Epidemiol Infect ; 148: e247, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33050973

ABSTRACT

Dromedary camels remain the currently identified reservoir for the Middle East respiratory syndrome coronavirus (MERS-CoV). The virus is released in the secretions of the infected camels, especially the nasal tract. The virus shedding curve through the nasal secretions was studied. Although human transmission of the virus through the respiratory tract of close contact people with dromedary reported previously, the exact mechanism of transmission is still largely unknown. The main goal of this study was to check the possibility of MERS-CoV shedding in the exhaled air of the infected camels. To achieve this goal, we conducted a follow-up study in one of the dromedary camel herds, December 2018-April 2019. We tested nasal swabs, breath samples from animals within this herd by the real-time PCR. Our results showed that some of the tested nasal swabs and breath were positive from 24 March 2019 until 7 April 2019. The phylogenetic analysis of the obtained S and N gene sequences revealed the detected viruses are clustering together with some human and camel samples from the eastern region, especially from Al-Hufuf city, as well as some samples from Qatar and Jordon. These results are clearly showing the possibility of shedding of the virus in the breath of the infected camels. This could explain, at least in part, the mechanism of transmission of MERS-CoV from animals to humans. This study is confirming the shedding of MERS-CoV in the exhaled air of the infected camels. Further studies are needed for a better understanding of the MERS-CoV.


Subject(s)
Camelus/virology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Animals , Breath Tests , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Nose/virology , Phylogeny , RNA, Viral/analysis , Virus Shedding
9.
Emerg Infect Dis ; 25(5): 958-962, 2019 05.
Article in English | MEDLINE | ID: mdl-30753126

ABSTRACT

We evaluated genetic variation in Middle East respiratory syndrome coronavirus (MERS-CoV) imported to South Korea in 2018 using specimens from a patient and isolates from infected Caco-2 cells. The MERS-CoV strain in this study was genetically similar to a strain isolated in Riyadh, Saudi Arabia, in 2017.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Cell Line , Coronavirus Infections/history , Disease Outbreaks , History, 21st Century , Humans , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Phylogeny , Republic of Korea/epidemiology , Spike Glycoprotein, Coronavirus/genetics
10.
Emerg Infect Dis ; 25(4): 753-766, 2019 04.
Article in English | MEDLINE | ID: mdl-30882305

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) shedding and antibody responses are not fully understood, particularly in relation to underlying medical conditions, clinical manifestations, and mortality. We enrolled MERS-CoV-positive patients at a hospital in Saudi Arabia and periodically collected specimens from multiple sites for real-time reverse transcription PCR and serologic testing. We conducted interviews and chart abstractions to collect clinical, epidemiologic, and laboratory information. We found that diabetes mellitus among survivors was associated with prolonged MERS-CoV RNA detection in the respiratory tract. Among case-patients who died, development of robust neutralizing serum antibody responses during the second and third week of illness was not sufficient for patient recovery or virus clearance. Fever and cough among mildly ill patients typically aligned with RNA detection in the upper respiratory tract; RNA levels peaked during the first week of illness. These findings should be considered in the development of infection control policies, vaccines, and antibody therapeutics.


Subject(s)
Antibodies, Viral/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Host-Pathogen Interactions/immunology , Middle East Respiratory Syndrome Coronavirus/physiology , Adult , Aged , Antibodies, Neutralizing , Antibodies, Viral/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Female , Genes, Viral , Humans , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus/classification , Public Health Surveillance , RNA, Viral , Saudi Arabia/epidemiology , Symptom Assessment , Viral Load
12.
J Gen Virol ; 100(11): 1523-1529, 2019 11.
Article in English | MEDLINE | ID: mdl-31592752

ABSTRACT

Middle East respiratory syndrome (MERS) is a viral respiratory illness first reported in Saudi Arabia in September 2012 caused by the human coronavirus (CoV), MERS-CoV. Using full-genome sequencing and phylogenetic analysis, scientists have identified three clades and multiple lineages of MERS-CoV in humans and the zoonotic host, dromedary camels. In this study, we have characterized eight MERS-CoV isolates collected from patients in Saudi Arabia in 2015. We have performed full-genome sequencing on the viral isolates, and compared them to the corresponding clinical specimens. All isolates were clade B, lineages 4 and 5. Three of the isolates carry deletions located on three independent regions of the genome in the 5'UTR, ORF1a and ORF3. All novel MERS-CoV strains replicated efficiently in Vero and Huh7 cells. Viruses with deletions in the 5'UTR and ORF1a exhibited impaired viral release in Vero cells. These data emphasize the plasticity of the MERS-CoV genome during human infection.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/growth & development , Middle East Respiratory Syndrome Coronavirus/genetics , Sequence Deletion , Virus Replication , 5' Untranslated Regions , Animals , Cell Line , Chlorocebus aethiops , Coronavirus Infections/virology , Genotype , Humans , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Open Reading Frames , Saudi Arabia , Whole Genome Sequencing
13.
J Virol ; 92(13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29669833

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) has represented a human health threat since 2012. Although several MERS-related CoVs that belong to the same species as MERS-CoV have been identified from bats, they do not use the MERS-CoV receptor, dipeptidyl peptidase 4 (DPP4). Here, we screened 1,059 bat samples from at least 30 bat species collected in different regions in south China and identified 89 strains of lineage C betacoronaviruses, including Tylonycteris pachypus coronavirus HKU4, Pipistrellus pipistrelluscoronavirus HKU5, and MERS-related CoVs. We sequenced the full-length genomes of two positive samples collected from the great evening bat, Ia io, from Guangdong Province. The two genomes were highly similar and exhibited genomic structures identical to those of other lineage C betacoronaviruses. While they exhibited genome-wide nucleotide identities of only 75.3 to 81.2% with other MERS-related CoVs, their gene-coding regions were highly similar to their counterparts, except in the case of the spike proteins. Further protein-protein interaction assays demonstrated that the spike proteins of these MERS-related CoVs bind to the receptor DPP4. Recombination analysis suggested that the newly discovered MERS-related CoVs have acquired their spike genes from a DPP4-recognizing bat coronavirus HKU4. Our study provides further evidence that bats represent the evolutionary origins of MERS-CoV.IMPORTANCE Previous studies suggested that MERS-CoV originated in bats. However, its evolutionary path from bats to humans remains unclear. In this study, we discovered 89 novel lineage C betacoronaviruses in eight bat species. We provide evidence of a MERS-related CoV derived from the great evening bat that uses the same host receptor as human MERS-CoV. This virus also provides evidence for a natural recombination event between the bat MERS-related CoV and another bat coronavirus, HKU4. Our study expands the host ranges of MERS-related CoV and represents an important step toward establishing bats as the natural reservoir of MERS-CoV. These findings may lead to improved epidemiological surveillance of MERS-CoV and the prevention and control of the spread of MERS-CoV to humans.


Subject(s)
Chiroptera/virology , Coronavirus Infections/veterinary , Evolution, Molecular , Genome, Viral , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Receptors, Virus/metabolism , Viral Proteins/metabolism , Amino Acid Sequence , Animals , Chiroptera/genetics , Coronavirus Infections/transmission , Coronavirus Infections/virology , Host Specificity , Humans , Middle East Respiratory Syndrome Coronavirus/classification , Phylogeny , Receptors, Virus/genetics , Sequence Homology , Viral Proteins/genetics
14.
Emerg Infect Dis ; 23(7): 1079-1084, 2017 07.
Article in English | MEDLINE | ID: mdl-28585916

ABSTRACT

We investigated the kinetics of the Middle East respiratory syndrome coronavirus (MERS-CoV) neutralizing and spike protein antibody titers over the course of 1 year in 11 patients who were confirmed by reverse transcription PCR to have been infected during the outbreak in South Korea in 2015. Robust antibody responses were detected in all survivors who had severe disease; responses remained detectable, albeit with some waning, for <1 year. The duration of viral RNA detection (but not viral load) in sputum significantly correlated with the antibody response magnitude. The MERS S1 ELISA antibody titers correlated well with the neutralizing antibody response. Antibody titers in 4 of 6 patients who had mild illness were undetectable even though most had evidence of pneumonia. This finding implies that MERS-CoV seroepidemiologic studies markedly underestimate the extent of mild and asymptomatic infection. Obtaining convalescent-phase plasma with high antibody titers to treat MERS will be challenging.


Subject(s)
Antibodies, Viral/immunology , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Coronavirus Infections/history , Coronavirus Infections/virology , Disease Outbreaks , Enzyme-Linked Immunosorbent Assay , Follow-Up Studies , History, 21st Century , Humans , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Neutralization Tests , Republic of Korea/epidemiology , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/genetics
15.
J Med Virol ; 89(3): 542-545, 2017 03.
Article in English | MEDLINE | ID: mdl-27486688

ABSTRACT

The spike glycoprotein of the Middle East respiratory coronavirus (MERS-CoV) facilitates receptor binding and cell entry. During investigation of a multi-facility outbreak of MERS-CoV in Taif, Saudi Arabia, we identified a mixed population of wild-type and variant sequences with a large 530 nucleotide deletion in the spike gene from the serum of one patient. The out of frame deletion predicted loss of most of the S2 subunit of the spike protein leaving the S1 subunit with an intact receptor binding domain. This finding documents human infection with a novel genetic variant of MERS-CoV present as a quasispecies. J. Med. Virol. 89:542-545, 2017. Ā© 2016 Wiley Periodicals, Inc.


Subject(s)
Coronavirus Infections/virology , Genetic Variation , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Sequence Deletion , Serum/virology , Spike Glycoprotein, Coronavirus/genetics , Coronavirus Infections/epidemiology , Disease Outbreaks , Humans , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Saudi Arabia/epidemiology
16.
Virol J ; 14(1): 239, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29258555

ABSTRACT

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV), which belongs to beta group of coronavirus, can infect multiple host species and causes severe diseases in humans. Multiple surveillance and phylogenetic studies suggest a bat origin. In this study, we describe the detection and full genome characterization of two CoVs closely related to MERS-CoV from two Italian bats, Pipistrellus kuhlii and Hypsugo savii. METHODS: Pool of viscera were tested by a pan-coronavirus RT-PCR. Virus isolation was attempted by inoculation in different cell lines. Full genome sequencing was performed using the Ion Torrent platform and phylogenetic trees were performed using IQtree software. Similarity plots of CoV clade c genomes were generated by using SSE v1.2. The three dimensional macromolecular structure (3DMMS) of the receptor binding domain (RBD) in the S protein was predicted by sequence-homology method using the protein data bank (PDB). RESULTS: Both samples resulted positive to the pan-coronavirus RT-PCR (IT-batCoVs) and their genome organization showed identical pattern of MERS CoV. Phylogenetic analysis showed a monophyletic group placed in the Beta2c clade formed by MERS-CoV sequences originating from humans and camels and bat-related sequences from Africa, Italy and China. The comparison of the secondary and 3DMMS of the RBD of IT-batCoVs with MERS, HKU4 and HKU5 bat sequences showed two aa deletions located in a region corresponding to the external subdomain of MERS-RBD in IT-batCoV and HKU5 RBDs. CONCLUSIONS: This study reported two beta CoVs closely related to MERS that were obtained from two bats belonging to two commonly recorded species in Italy (P. kuhlii and H. savii). The analysis of the RBD showed similar structure in IT-batCoVs and HKU5 respect to HKU4 sequences. Since the RBD domain of HKU4 but not HKU5 can bind to the human DPP4 receptor for MERS-CoV, it is possible to suggest also for IT-batCoVs the absence of DPP4-binding potential. More surveillance studies are needed to better investigate the potential intermediate hosts that may play a role in the interspecies transmission of known and currently unknown coronaviruses with particular attention to the S protein and the receptor specificity and binding affinity.


Subject(s)
Chiroptera/virology , Genome, Viral/genetics , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Phylogeny , Amino Acid Sequence , Animals , Base Sequence , Italy , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Polymerase Chain Reaction , Protein Interaction Domains and Motifs , Protein Structure, Tertiary/genetics , RNA, Viral/genetics , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
17.
Adv Exp Med Biol ; 972: 49-60, 2017.
Article in English | MEDLINE | ID: mdl-27966107

ABSTRACT

Two new zoonotic coronaviruses causing disease in humans (Zumla et al. 2015a; Hui and Zumla 2015; Peiris et al. 2003; Yu et al. 2014) have been the focus of international attention for the past 14 years due to their epidemic potential; (1) The Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) (Peiris et al. 2003) first discovered in China in 2001 caused a major global epidemic of the Severe Acute Respiratory Syndrome (SARS). (2) The Middle East respiratory syndrome coronavirus (MERS-CoV) is a new corona virus isolated for the first time in a patients who died of severe lower respiratory tract infection in Jeddah (Saudi Arabia) in June 2012 (Zaki et al. 2012). The disease has been named Middle East Respiratory Syndrome (MERS) and it has remained on the radar of global public health authorities because of recurrent nosocomial and community outbreaks, and its association with severe disease and high mortality rates (Assiri et al. 2013a; Al-Abdallat et al. 2014; Memish et al. 2013a; Oboho et al. 2015; The WHO MERS-CoV Research Group 2013; Cotten et al. 2013a; Assiri et al. 2013b; Memish et al. 2013b; Azhar et al. 2014; Kim et al. 2015; Wang et al. 2015; Hui et al. 2015a). Cases of MERS have been reported from all continents and have been linked with travel to the Middle East (Hui et al. 2015a; WHO 2015c). The World Health Organization (WHO) have held nine meetings of the Emergency Committee (EC) convened by the Director-General under the International Health Regulations (IHR 2005) regarding MERS-CoV (WHO 2015c). There is wishful anticipation in the political and scientific communities that MERS-CoV like SARS-CoV will disappear with time. However it's been nearly 4 years since the first discovery of MERS-CoV, and MERS cases continue to be reported throughout the year from the Middle East (WHO 2015c). There is a large MERS-CoV camel reservoir, and there is no specific treatment or vaccine (Zumla et al. 2015a). With 10 million people visiting Saudi Arabia every year for Umrah and/or Hajj, the potential risk of global spread is ever present (Memish et al. 2014a; McCloskey et al. 2014; Al-Tawfiq et al. 2014a).


Subject(s)
Coronavirus Infections/virology , Global Health , Middle East Respiratory Syndrome Coronavirus/classification , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Coronavirus Infections/transmission , Female , Humans , Infant , Male , Middle Aged , Risk Factors , Time Factors , Young Adult , Zoonoses
18.
Euro Surveill ; 22(11)2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28333616

ABSTRACT

A cross-sectional study was conducted in Egypt to determine the prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in imported and resident camels and bats, as well as to assess possible transmission of the virus to domestic ruminants and equines. A total of 1,031 sera, 1,078 nasal swabs, 13 rectal swabs, and 38 milk samples were collected from 1,078 camels in different types of sites. In addition, 145 domestic animals and 109 bats were sampled. Overall, of 1,031 serologically-tested camels, 871 (84.5%) had MERS-CoV neutralising antibodies. Seroprevalence was significantly higher in imported (614/692; 88.7%) than resident camels (257/339; 5.8%) (p < 0.05). Camels from Sudan (543/594; 91.4%) had a higher seroprevalence than those from East Africa (71/98; 72.4%) (p < 0.05). Sampling site and age were also associated with MERS-CoV seroprevalence (p < 0.05). All tested samples from domestic animals and bats were negative for MERS-CoV antibodies except one sheep sample which showed a 1:640 titre. Of 1,078 camels, 41 (3.8%) were positive for MERS-CoV genetic material. Sequences obtained were not found to cluster with clade A or B MERS-CoV sequences and were genetically diverse. The presence of neutralising antibodies in one sheep apparently in contact with seropositive camels calls for further studies on domestic animals in contact with camels.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Camelus/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus/isolation & purification , Disease Outbreaks/veterinary , Disease Reservoirs/virology , Zoonoses/diagnosis , Animals , Base Sequence , Cattle/blood , Coronavirus/genetics , Coronavirus Infections/diagnosis , Cross-Sectional Studies , Egypt/epidemiology , Genotype , Goats/blood , Immunoglobulin G/blood , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Molecular Sequence Data , Prevalence , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA , Seroepidemiologic Studies , Sheep/blood , Zoonoses/epidemiology , Zoonoses/virology
19.
Int J Mol Sci ; 18(10)2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29035289

ABSTRACT

While dromedary camels are the immediate animal source of MERS coronavirus (MERS-CoV) infection, the evolutionary origin of MERS-CoV remains obscure. We analyzed 219 camel and human MERS-CoV genome sequences available in GenBank. Phylogenetic analysis showed that 5 and 214 strains belong to clade A and B, respectively, with clade A further divided into lineage A1 (3 human strains) and lineage A2 (2 camel strains), and clade B divided into B1 to B6 (each containing both human and camel strains). Recombination analysis showed potential recombination events in five strains from dromedaries in Saudi Arabia, with recombination between lineage B5 and B3 in four strains, and between lineage B3 and B4 in one strain. The spike protein showed the highest number of amino acid substitutions, especially between A2 and other lineages, and contained positively selected codons. Notably, codon 1020 was positively selected among B and B5 strains, and can distinguish between clade A (Q1020) and B (R1020/H1020) strains, suggesting that this residue may play a role in the evolution of S protein during divergence of different lineages. The time of the most recent common ancestor of all MERS-CoV was dated to approximately 2010. The implications on the role of camels in the evolution of MERS-CoV are discussed.


Subject(s)
Coronavirus Infections/virology , Evolution, Molecular , Middle East Respiratory Syndrome Coronavirus/genetics , Amino Acid Sequence , Animals , Camelus/virology , Computational Biology/methods , Disease Reservoirs , Genome, Viral , Humans , Middle East Respiratory Syndrome Coronavirus/classification , Models, Biological , Open Reading Frames , Phylogeny , Phylogeography , Protein Conformation , Recombination, Genetic , Saudi Arabia , Selection, Genetic , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Structure-Activity Relationship , Whole Genome Sequencing , Zoonoses/virology
20.
Clin Microbiol Rev ; 28(2): 465-522, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25810418

ABSTRACT

The source of the severe acute respiratory syndrome (SARS) epidemic was traced to wildlife market civets and ultimately to bats. Subsequent hunting for novel coronaviruses (CoVs) led to the discovery of two additional human and over 40 animal CoVs, including the prototype lineage C betacoronaviruses, Tylonycteris bat CoV HKU4 and Pipistrellus bat CoV HKU5; these are phylogenetically closely related to the Middle East respiratory syndrome (MERS) CoV, which has affected more than 1,000 patients with over 35% fatality since its emergence in 2012. All primary cases of MERS are epidemiologically linked to the Middle East. Some of these patients had contacted camels which shed virus and/or had positive serology. Most secondary cases are related to health care-associated clusters. The disease is especially severe in elderly men with comorbidities. Clinical severity may be related to MERS-CoV's ability to infect a broad range of cells with DPP4 expression, evade the host innate immune response, and induce cytokine dysregulation. Reverse transcription-PCR on respiratory and/or extrapulmonary specimens rapidly establishes diagnosis. Supportive treatment with extracorporeal membrane oxygenation and dialysis is often required in patients with organ failure. Antivirals with potent in vitro activities include neutralizing monoclonal antibodies, antiviral peptides, interferons, mycophenolic acid, and lopinavir. They should be evaluated in suitable animal models before clinical trials. Developing an effective camel MERS-CoV vaccine and implementing appropriate infection control measures may control the continuing epidemic.


Subject(s)
Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/physiology , Zoonoses/virology , Animals , Antiviral Agents/therapeutic use , Coronavirus Infections/epidemiology , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Disease Models, Animal , Humans , Infection Control , Middle East Respiratory Syndrome Coronavirus/classification , Zoonoses/epidemiology , Zoonoses/pathology , Zoonoses/therapy , Zoonoses/transmission
SELECTION OF CITATIONS
SEARCH DETAIL