Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.715
Filter
1.
Cell ; 167(3): 722-738.e23, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27768893

ABSTRACT

A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.


Subject(s)
Energy Metabolism/genetics , Epigenesis, Genetic , Histone Acetyltransferases/metabolism , Mitochondria, Muscle/enzymology , Transcription Factors/metabolism , Transcription, Genetic , Animals , Cardiomyopathy, Hypertrophic/genetics , Cell Respiration/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , HeLa Cells , Heart Failure/genetics , Histone Acetyltransferases/genetics , Humans , Intracellular Signaling Peptides and Proteins , Mice , Mice, Knockout , Mitochondria, Heart/enzymology , Mitochondria, Heart/genetics , Mitochondria, Muscle/genetics , Myocytes, Cardiac/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Oxidative Phosphorylation , Transcription Factors/genetics
2.
Physiol Rev ; 101(4): 1561-1607, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33733879

ABSTRACT

The design of the energy metabolism system in striated muscle remains a major area of investigation. Here, we review our current understanding and emerging hypotheses regarding the metabolic support of muscle contraction. Maintenance of ATP free energy, so called energy homeostasis, via mitochondrial oxidative phosphorylation is critical to sustained contractile activity, and this major design criterion is the focus of this review. Cell volume invested in mitochondria reduces the space available for generating contractile force, and this spatial balance between mitochondria acontractile elements to meet the varying sustained power demands across muscle types is another important design criterion. This is accomplished with remarkably similar mass-specific mitochondrial protein composition across muscle types, implying that it is the organization of mitochondria within the muscle cell that is critical to supporting sustained muscle function. Beyond the production of ATP, ubiquitous distribution of ATPases throughout the muscle requires rapid distribution of potential energy across these large cells. Distribution of potential energy has long been thought to occur primarily through facilitated metabolite diffusion, but recent analysis has questioned the importance of this process under normal physiological conditions. Recent structural and functional studies have supported the hypothesis that the mitochondrial reticulum provides a rapid energy distribution system via the conduction of the mitochondrial membrane potential to maintain metabolic homeostasis during contractile activity. We extensively review this aspect of the energy metabolism design contrasting it with metabolite diffusion models and how mitochondrial structure can play a role in the delivery of energy in the striated muscle.


Subject(s)
Energy Metabolism/physiology , Muscle, Striated/metabolism , Animals , Humans , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/physiology , Muscle Cells/metabolism
3.
Mol Cell ; 79(4): 575-587.e7, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32589965

ABSTRACT

eIF3, a multi-subunit complex with numerous functions in canonical translation initiation, is known to interact with 40S and 60S ribosomal proteins and translation elongation factors, but a direct involvement in translation elongation has never been demonstrated. We found that eIF3 deficiency reduced early ribosomal elongation speed between codons 25 and 75 on a set of ∼2,700 mRNAs encoding proteins associated with mitochondrial and membrane functions, resulting in defective synthesis of their encoded proteins. To promote elongation, eIF3 interacts with 80S ribosomes translating the first ∼60 codons and serves to recruit protein quality-control factors, functions required for normal mitochondrial physiology. Accordingly, eIF3e+/- mice accumulate defective mitochondria in skeletal muscle and show a progressive decline in muscle strength. Hence, eIF3 interacts with 80S ribosomes to enhance, at the level of early elongation, the synthesis of proteins with membrane-associated functions, an activity that is critical for mitochondrial physiology and muscle health.


Subject(s)
Eukaryotic Initiation Factor-3/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Peptide Chain Elongation, Translational , Animals , Cell Membrane/genetics , Cell Membrane/metabolism , Eukaryotic Initiation Factor-3/genetics , HeLa Cells , Humans , Mice, Knockout , Mitochondria/genetics , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscle, Skeletal/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosome Subunits/genetics , Ribosome Subunits/metabolism
4.
Mol Cell ; 73(4): 775-787.e10, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30642763

ABSTRACT

Little information is available about how post-transcriptional mechanisms regulate the aging process. Here, we show that the RNA-binding protein Pumilio2 (PUM2), which is a translation repressor, is induced upon aging and acts as a negative regulator of lifespan and mitochondrial homeostasis. Multi-omics and cross-species analyses of PUM2 function show that it inhibits the translation of the mRNA encoding for the mitochondrial fission factor (Mff), thereby impairing mitochondrial fission and mitophagy. This mechanism is conserved in C. elegans by the PUM2 ortholog PUF-8. puf-8 knock-down in old nematodes and Pum2 CRISPR/Cas9-mediated knockout in the muscles of elderly mice enhances mitochondrial fission and mitophagy in both models, hence improving mitochondrial quality control and tissue homeostasis. Our data reveal how a PUM2-mediated layer of post-transcriptional regulation links altered Mff translation to mitochondrial dynamics and mitophagy, thereby mediating age-related mitochondrial dysfunctions.


Subject(s)
Aging/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Mitophagy , RNA-Binding Proteins/metabolism , Age Factors , Aging/genetics , Aging/pathology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Female , HEK293 Cells , HeLa Cells , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/pathology , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , RNA-Binding Proteins/genetics , Signal Transduction , Up-Regulation
5.
Proc Natl Acad Sci U S A ; 121(22): e2405123121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781208

ABSTRACT

Mitochondria play a central role in muscle metabolism and function. A unique family of iron-sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3-NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions.


Subject(s)
Electron Transport Complex I , Mitochondrial Proteins , Muscle, Skeletal , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/metabolism , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics , Mice, Knockout , Mitochondria, Muscle/metabolism , Humans , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/genetics
6.
Cell ; 147(4): 827-39, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-22078881

ABSTRACT

Transcriptional coregulators control the activity of many transcription factors and are thought to have wide-ranging effects on gene expression patterns. We show here that muscle-specific loss of nuclear receptor corepressor 1 (NCoR1) in mice leads to enhanced exercise endurance due to an increase of both muscle mass and of mitochondrial number and activity. The activation of selected transcription factors that control muscle function, such as MEF2, PPARß/δ, and ERRs, underpins these phenotypic alterations. NCoR1 levels are decreased in conditions that require fat oxidation, resetting transcriptional programs to boost oxidative metabolism. Knockdown of gei-8, the sole C. elegans NCoR homolog, also robustly increased muscle mitochondria and respiration, suggesting conservation of NCoR1 function. Collectively, our data suggest that NCoR1 plays an adaptive role in muscle physiology and that interference with NCoR1 action could be used to improve muscle function.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Muscle, Skeletal/metabolism , Nuclear Receptor Co-Repressor 1/metabolism , Animals , Caenorhabditis elegans Proteins/genetics , Gene Deletion , Gene Knockdown Techniques , Humans , Mice , Mitochondria, Muscle/metabolism , Muscle Development , Nuclear Receptor Co-Repressor 1/genetics , PPAR delta/metabolism , PPAR-beta/metabolism , Physical Conditioning, Animal
7.
Semin Cell Dev Biol ; 143: 46-53, 2023 07 15.
Article in English | MEDLINE | ID: mdl-35168898

ABSTRACT

The continuous dynamic reshaping of mitochondria by fusion and fission events is critical to keep mitochondrial quality and function under control in response to changes in energy and stress. Maintaining a functional, highly interconnected mitochondrial reticulum ensures rapid energy production and distribution. Moreover, mitochondrial networks act as dynamic signaling hub to adapt to the metabolic demands imposed by contraction, energy expenditure, and general metabolism. However, excessive mitochondrial fusion or fission results in the disruption of the skeletal muscle mitochondrial network integrity and activates a retrograde response from mitochondria to the nucleus, leading to muscle atrophy, weakness and influencing whole-body homeostasis. These actions are mediated via the secretion of mitochondrial-stress myokines such as FGF21 and GDF15. Here we will summarize recent discoveries in the role of mitochondrial fusion and fission in the control of muscle mass and in regulating physiological homeostasis and disease progression.


Subject(s)
Mitochondria, Muscle , Mitochondrial Dynamics , Muscle, Skeletal , Muscle, Skeletal/metabolism , Mitochondria, Muscle/physiology , Humans
8.
Semin Cell Dev Biol ; 143: 66-74, 2023 07 15.
Article in English | MEDLINE | ID: mdl-35241367

ABSTRACT

Mitochondria play a major role in apoptotic signaling. In addition to its role in eliminating dysfunctional cells, mitochondrial apoptotic signaling is implicated as a key component of myogenic differentiation and skeletal muscle atrophy. For example, the activation of cysteine-aspartic proteases (caspases; CASP's) can aid in the initial remodeling stages of myogenic differentiation by cleaving protein kinases, transcription factors, and cytoskeletal proteins. Precise regulation of these signals is needed to prevent excessive cell disassemble and subsequent cell death. During skeletal muscle atrophy, the activation of CASP's and mitochondrial derived nucleases participate in myonuclear fragmentation, a potential loss of myonuclei, and cleavage of contractile structures within skeletal muscle. The B cell leukemia/lymphoma 2 (BCL2) family of proteins play a significant role in regulating myogenesis and skeletal muscle atrophy by governing the initiating steps of mitochondrial apoptotic signaling. This review discusses the role of mitochondrial apoptotic signaling in skeletal muscle remodeling during myogenic differentiation and skeletal muscle pathological states, including aging, disuse, and muscular dystrophy.


Subject(s)
Mitochondria, Muscle , Muscle Development , Muscle, Skeletal , Muscular Atrophy , Humans , Apoptosis/physiology , Caspases/metabolism , Muscle Development/physiology , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Mitochondria, Muscle/metabolism
9.
EMBO J ; 40(9): e106491, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33847380

ABSTRACT

Exercise can alter the skeletal muscle DNA methylome, yet little is known about the role of the DNA methylation machinery in exercise capacity. Here, we show that DNMT3A expression in oxidative red muscle increases greatly following a bout of endurance exercise. Muscle-specific Dnmt3a knockout mice have reduced tolerance to endurance exercise, accompanied by reduction in oxidative capacity and mitochondrial respiration. Moreover, Dnmt3a-deficient muscle overproduces reactive oxygen species (ROS), the major contributors to muscle dysfunction. Mechanistically, we show that DNMT3A suppresses the Aldh1l1 transcription by binding to its promoter region, altering its epigenetic profile. Forced expression of ALDH1L1 elevates NADPH levels, which results in overproduction of ROS by the action of NADPH oxidase complex, ultimately resulting in mitochondrial defects in myotubes. Thus, inhibition of ALDH1L1 pathway can rescue oxidative stress and mitochondrial dysfunction from Dnmt3a deficiency in myotubes. Finally, we show that in vivo knockdown of Aldh1l1 largely rescues exercise intolerance in Dnmt3a-deficient mice. Together, we establish that DNMT3A in skeletal muscle plays a pivotal role in endurance exercise by controlling intracellular oxidative stress.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Muscle, Skeletal/metabolism , Oxidoreductases Acting on CH-NH Group Donors/genetics , Physical Endurance/genetics , Animals , Cell Line , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Gene Expression Profiling , Gene Knockout Techniques , Mice , Mitochondria, Muscle/metabolism , Oxidative Stress , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Rats , Reactive Oxygen Species/metabolism , Sequence Analysis, RNA
10.
EMBO J ; 40(23): e108428, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34661298

ABSTRACT

Mitochondrial cristae are extraordinarily crowded with proteins, which puts stress on the bilayer organization of lipids. We tested the hypothesis that the high concentration of proteins drives the tafazzin-catalyzed remodeling of fatty acids in cardiolipin, thereby reducing bilayer stress in the membrane. Specifically, we tested whether protein crowding induces cardiolipin remodeling and whether the lack of cardiolipin remodeling prevents the membrane from accumulating proteins. In vitro, the incorporation of large amounts of proteins into liposomes altered the outcome of the remodeling reaction. In yeast, the concentration of proteins involved in oxidative phosphorylation (OXPHOS) correlated with the cardiolipin composition. Genetic ablation of either remodeling or biosynthesis of cardiolipin caused a substantial drop in the surface density of OXPHOS proteins in the inner membrane of the mouse heart and Drosophila flight muscle mitochondria. Our data suggest that OXPHOS protein crowding induces cardiolipin remodelling and that remodeled cardiolipin supports the high concentration of these proteins in the inner mitochondrial membrane.


Subject(s)
Acyltransferases/physiology , Cardiolipins/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Muscle/metabolism , Mitochondrial Membranes/metabolism , Oxidative Phosphorylation , Proteins/metabolism , Animals , Cardiolipins/chemistry , Cardiolipins/genetics , Drosophila melanogaster , Fatty Acids/metabolism , Female , Liposomes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction , Saccharomyces cerevisiae
11.
FASEB J ; 38(11): e23718, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38847487

ABSTRACT

Female carriers of a Duchenne muscular dystrophy (DMD) gene mutation manifest exercise intolerance and metabolic anomalies that may be exacerbated following menopause due to the loss of estrogen, a known regulator of skeletal muscle function and metabolism. Here, we studied the impact of estrogen depletion (via ovariectomy) on exercise tolerance and muscle mitochondrial metabolism in female mdx mice and the potential of estrogen replacement therapy (using estradiol) to protect against functional and metabolic perturbations. We also investigated the effect of estrogen depletion, and replacement, on the skeletal muscle proteome through an untargeted proteomic approach with TMT-labelling. Our study confirms that loss of estrogen in female mdx mice reduces exercise capacity, tricarboxylic acid cycle intermediates, and citrate synthase activity but that these deficits are offset through estrogen replacement therapy. Furthermore, ovariectomy downregulated protein expression of RNA-binding motif factor 20 (Rbm20), a critical regulator of sarcomeric and muscle homeostasis gene splicing, which impacted pathways involving ribosomal and mitochondrial translation. Estrogen replacement modulated Rbm20 protein expression and promoted metabolic processes and the upregulation of proteins involved in mitochondrial dynamics and metabolism. Our data suggest that estrogen mitigates dystrophinopathic features in female mdx mice and that estrogen replacement may be a potential therapy for post-menopausal DMD carriers.


Subject(s)
Estrogens , Mice, Inbred mdx , Muscle, Skeletal , RNA-Binding Proteins , Animals , Female , Mice , Estrogens/metabolism , Estrogens/pharmacology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/genetics , Mice, Inbred C57BL , Ovariectomy , Mitochondria/metabolism , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/drug effects
12.
Cell ; 141(2): 280-9, 2010 Apr 16.
Article in English | MEDLINE | ID: mdl-20403324

ABSTRACT

Mitochondria are highly mobile and dynamic organelles that continually fuse and divide. These processes allow mitochondria to exchange contents, including mitochondrial DNA (mtDNA). Here we examine the functions of mitochondrial fusion in differentiated skeletal muscle through conditional deletion of the mitofusins Mfn1 and Mfn2, mitochondrial GTPases essential for fusion. Loss of the mitofusins causes severe mitochondrial dysfunction, compensatory mitochondrial proliferation, and muscle atrophy. Mutant mice have severe mtDNA depletion in muscle that precedes physiological abnormalities. Moreover, the mitochondrial genomes of the mutant muscle rapidly accumulate point mutations and deletions. In a related experiment, we find that disruption of mitochondrial fusion strongly increases mitochondrial dysfunction and lethality in a mouse model with high levels of mtDNA mutations. With its dual function in safeguarding mtDNA integrity and preserving mtDNA function in the face of mutations, mitochondrial fusion is likely to be a protective factor in human disorders associated with mtDNA mutations.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondria, Muscle/physiology , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Mutation , Animals , DNA Polymerase gamma , DNA-Directed DNA Polymerase/metabolism , Embryo, Mammalian/metabolism , Female , GTP Phosphohydrolases/metabolism , Genes, Lethal , Male , Mice , Mitochondria, Muscle/genetics , Mitochondrial Myopathies/metabolism , Mitochondrial Proteins/genetics
14.
Proc Natl Acad Sci U S A ; 119(30): e2201089119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858446

ABSTRACT

Many insects enter a state of dormancy (diapause) during winter in which they lower their metabolism to save energy. Metabolic suppression is a hallmark of diapause, yet we know little about the mechanisms underpinning metabolic suppression in winter or how it is reversed in the spring. Here, we show that metabolic suppression in dormant Colorado potato beetles results from the breakdown of flight muscle mitochondria via mitophagy. Diapausing Colorado potato beetles suppress their metabolism by 90%, and this lowered metabolic rate coincides with a similar reduction in flight muscle mitochondrial function and density. During early diapause, beetles increase the expression of mitophagy-related transcripts (Parkin and ATG5) in their flight muscle coincident with an increase in mitophagy-related structures in the flight muscle. Knocking down Parkin expression with RNA interference in diapausing beetles prevented some mitochondrial breakdown and partially restored the whole animal metabolic rate, suggesting that metabolic suppression in diapausing beetles is driven by mitophagy. In other animals and in models of disease, such large-scale mitochondrial degradation is irreversible. However, we show that as diapause ends, beetles reverse mitophagy and increase the expression of PGC1α and NRF1 to replenish flight muscle mitochondrial pools. This mitochondrial biogenesis is activated in anticipation of diapause termination and in the absence of external stimuli. Our study provides a mechanistic link between mitochondrial degradation in insect tissues over the winter and whole-animal metabolic suppression.


Subject(s)
Coleoptera , Diapause, Insect , Mitophagy , Animals , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Coleoptera/metabolism , Mitochondria/metabolism , Mitochondria, Muscle/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
15.
Am J Physiol Cell Physiol ; 326(6): C1669-C1682, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38646781

ABSTRACT

We previously showed that the transaminase inhibitor, aminooxyacetic acid, reduced respiration energized at complex II (succinate dehydrogenase, SDH) in mitochondria isolated from mouse hindlimb muscle. The effect required a reduction in membrane potential with resultant accumulation of oxaloacetate (OAA), a potent inhibitor of SDH. To specifically assess the effect of the mitochondrial transaminase, glutamic oxaloacetic transaminase (GOT2) on complex II respiration, and to determine the effect in intact cells as well as isolated mitochondria, we performed respiratory and metabolic studies in wildtype (WT) and CRISPR-generated GOT2 knockdown (KD) C2C12 myocytes. Intact cell respiration by GOT2KD cells versus WT was reduced by adding carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) to lower potential. In mitochondria of C2C12 KD cells, respiration at low potential generated by 1 µM FCCP and energized at complex II by 10 mM succinate + 0.5 mM glutamate (but not by complex I substrates) was reduced versus WT mitochondria. Although we could not detect OAA, metabolite data suggested that OAA inhibition of SDH may have contributed to the FCCP effect. C2C12 mitochondria differed from skeletal muscle mitochondria in that the effect of FCCP on complex II respiration was not evident with ADP addition. We also observed that C2C12 cells, unlike skeletal muscle, expressed glutamate dehydrogenase, which competes with GOT2 for glutamate metabolism. In summary, GOT2 KD reduced C2C12 respiration in intact cells at low potential. From differential substrate effects, this occurred largely at complex II. Moreover, C2C12 versus muscle mitochondria differ in complex II sensitivity to ADP and differ markedly in expression of glutamate dehydrogenase.NEW & NOTEWORTHY Impairment of the mitochondrial transaminase, GOT2, reduces complex II (succinate dehydrogenase, SDH)-energized respiration in C2C12 myocytes. This occurs only at low inner membrane potential and is consistent with inhibition of SDH. Incidentally, we observed that C2C12 mitochondria compared with muscle tissue mitochondria differ in sensitivity of complex II respiration to ADP and in the expression of glutamate dehydrogenase.


Subject(s)
Cell Respiration , Membrane Potential, Mitochondrial , Mitochondria, Muscle , Animals , Mice , Aspartate Aminotransferase, Mitochondrial/metabolism , Aspartate Aminotransferase, Mitochondrial/genetics , Cell Differentiation/drug effects , Cell Line , Cell Respiration/drug effects , Electron Transport Complex II/metabolism , Electron Transport Complex II/genetics , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/enzymology , Mitochondria, Muscle/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/enzymology , Oxygen Consumption/drug effects , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/genetics , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism
16.
J Physiol ; 602(1): 129-151, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38051639

ABSTRACT

The impact of training status and sex on intrinsic skeletal muscle mitochondrial respiratory capacity remains unclear. We examined this by analysing human skeletal muscle mitochondrial respiration relative to mitochondrial volume and cristae density across training statuses and sexes. Mitochondrial cristae density was estimated in skeletal muscle biopsies originating from previous independent studies. Participants included females (n = 12) and males (n = 41) across training statuses ranging from untrained (UT, n = 8), recreationally active (RA, n = 9), active-to-elite runners (RUN, n = 27) and cross-country skiers (XC, n = 9). The XC and RUN groups demonstrated higher mitochondrial volume density than the RA and UT groups while all active groups (RA, RUN and XC) displayed higher mass-specific capacity of oxidative phosphorylation (OXPHOS) and mitochondrial cristae density than UT. Differences in OXPHOS diminished between active groups and UT when normalising to mitochondrial volume density and were lost when normalising to muscle cristae surface area density. Moreover, active females (n = 6-9) and males (n = 15-18) did not differ in mitochondrial volume and cristae density, OXPHOS, or when normalising OXPHOS to mitochondrial volume density and muscle cristae surface area density. These findings demonstrate: (1) differences in OXPHOS between active and untrained individuals may be explained by both higher mitochondrial volume and cristae density in active individuals, with no difference in intrinsic mitochondrial respiratory capacity (OXPHOS per muscle cristae surface area density); and (2) no sex differences in mitochondrial volume and cristae density or mass-specific and normalised OXPHOS. This highlights the importance of normalising OXPHOS to muscle cristae surface area density when studying skeletal muscle mitochondrial biology. KEY POINTS: Oxidative phosphorylation is the mitochondrial process by which ATP is produced, governed by the electrochemical gradient across the inner mitochondrial membrane with infoldings named cristae. In human skeletal muscle, the mass-specific capacity of oxidative phosphorylation (OXPHOS) can change independently of shifts in mitochondrial volume density, which may be attributed to variations in cristae density. We demonstrate that differences in skeletal muscle OXPHOS between healthy females and males, ranging from untrained to elite endurance athletes, are matched by differences in cristae density. This suggests that higher OXPHOS in skeletal muscles of active individuals is attributable to an increase in the density of cristae. These findings broaden our understanding of the variability in human skeletal muscle OXPHOS and highlight the significance of cristae, specific to mitochondrial respiration.


Subject(s)
Mitochondria, Muscle , Muscle, Skeletal , Male , Female , Humans , Muscle, Skeletal/physiology , Mitochondria, Muscle/metabolism , Oxidative Phosphorylation , Respiration , Mitochondrial Membranes
17.
J Physiol ; 602(9): 1967-1986, 2024 May.
Article in English | MEDLINE | ID: mdl-38564214

ABSTRACT

Mitochondria within skeletal muscle cells are located either between the muscle contractile apparatus (interfibrillar mitochondria, IFM) or beneath the cell membrane (subsarcolemmal mitochondria, SSM), with several structural and functional differences reported between IFM and SSM. However, recent 3D imaging studies demonstrate that mitochondria are particularly concentrated in the proximity of capillaries embedded in sarcolemmal grooves rather than in proximity to the sarcolemma itself (paravascular mitochondria, PVM). To evaluate the impact of capillary vs. sarcolemmal proximity, we compared the structure and function of skeletal muscle mitochondria located either lateral to embedded capillaries (PVM), adjacent to the sarcolemma but not in PVM pools (SSM) or interspersed between sarcomeres (IFM). Mitochondrial morphology and interactions were assessed by 3D electron microscopy coupled with machine learning segmentation, whereas mitochondrial energy conversion was assessed by two-photon microscopy of mitochondrial membrane potential, content, calcium, NADH redox and flux in live, intact cells. Structurally, although PVM and SSM were similarly larger than IFM, PVM were larger, rounder and had more physical connections to neighbouring mitochondria compared to both IFM and SSM. Functionally, PVM had similar or greater basal NADH flux compared to SSM and IFM, respectively, despite a more oxidized NADH pool and a greater membrane potential, signifying a greater activation of the electron transport chain in PVM. Together, these data indicate that proximity to capillaries has a greater impact on resting mitochondrial energy conversion and distribution in skeletal muscle than the sarcolemma alone. KEY POINTS: Capillaries have a greater impact on mitochondrial energy conversion in skeletal muscle than the sarcolemma. Paravascular mitochondria are larger, and the outer mitochondrial membrane is more connected with neighbouring mitochondria. Interfibrillar mitochondria are longer and have greater contact sites with other organelles (i.e. sarcoplasmic reticulum and lipid droplets). Paravascular mitochondria have greater activation of oxidative phosphorylation than interfibrillar mitochondria at rest, although this is not regulated by calcium.


Subject(s)
Capillaries , Mitochondria, Muscle , Muscle, Skeletal , Sarcolemma , Sarcolemma/metabolism , Sarcolemma/ultrastructure , Sarcolemma/physiology , Animals , Capillaries/physiology , Capillaries/metabolism , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/ultrastructure , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/blood supply , Mice , Energy Metabolism/physiology , Male , Mice, Inbred C57BL , Membrane Potential, Mitochondrial/physiology
18.
J Physiol ; 602(12): 2763-2806, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761133

ABSTRACT

Hypoxia-inducible factor (HIF)-1α is continuously synthesized and degraded in normoxia. During hypoxia, HIF1α stabilization restricts cellular/mitochondrial oxygen utilization. Cellular stressors can stabilize HIF1α even during normoxia. However, less is known about HIF1α function(s) and sex-specific effects during normoxia in the basal state. Since skeletal muscle is the largest protein store in mammals and protein homeostasis has high energy demands, we determined HIF1α function at baseline during normoxia in skeletal muscle. Untargeted multiomics data analyses were followed by experimental validation in differentiated murine myotubes with loss/gain of function and skeletal muscle from mice without/with post-natal muscle-specific Hif1a deletion (Hif1amsd). Mitochondrial oxygen consumption studies using substrate, uncoupler, inhibitor, titration protocols; targeted metabolite quantification by gas chromatography-mass spectrometry; and post-mitotic senescence markers using biochemical assays were performed. Multiomics analyses showed enrichment in mitochondrial and cell cycle regulatory pathways in Hif1a deleted cells/tissue. Experimentally, mitochondrial oxidative functions and ATP content were higher with less mitochondrial free radical generation with Hif1a deletion. Deletion of Hif1a also resulted in higher concentrations of TCA cycle intermediates and HIF2α proteins in myotubes. Overall responses to Hif1amsd were similar in male and female mice, but changes in complex II function, maximum respiration, Sirt3 and HIF1ß protein expression and muscle fibre diameter were sex-dependent. Adaptive responses to hypoxia are mediated by stabilization of constantly synthesized HIF1α. Despite rapid degradation, the presence of HIF1α during normoxia contributes to lower mitochondrial oxidative efficiency and greater post-mitotic senescence in skeletal muscle. In vivo responses to HIF1α in skeletal muscle were differentially impacted by sex. KEY POINTS: Hypoxia-inducible factor -1α (HIF1α), a critical transcription factor, undergoes continuous synthesis and proteolysis, enabling rapid adaptive responses to hypoxia by reducing mitochondrial oxygen consumption. In mammals, skeletal muscle is the largest protein store which is determined by a balance between protein synthesis and breakdown and is sensitive to mitochondrial oxidative function. To investigate the functional consequences of transient HIF1α expression during normoxia in the basal state, myotubes and skeletal muscle from male and female mice with HIF1α knockout were studied using complementary multiomics, biochemical and metabolite assays. HIF1α knockout altered the electron transport chain, mitochondrial oxidative function, signalling molecules for protein homeostasis, and post-mitotic senescence markers, some of which were differentially impacted by sex. The cost of rapid adaptive responses mediated by HIF1α is lower mitochondrial oxidative efficiency and post-mitotic senescence during normoxia.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Mitochondria, Muscle , Muscle, Skeletal , Animals , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Female , Male , Muscle, Skeletal/metabolism , Mice , Mitochondria, Muscle/metabolism , Sex Characteristics , Homeostasis , Muscle Fibers, Skeletal/metabolism , Mice, Inbred C57BL , Oxygen Consumption/physiology
19.
J Physiol ; 602(5): 891-912, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38429930

ABSTRACT

Skeletal muscle cellular development requires the integrated assembly of mitochondria and other organelles adjacent to the sarcomere in support of muscle contractile performance. However, it remains unclear how interactions among organelles and with the sarcomere relates to the development of muscle cell function. Here, we combine 3D volume electron microscopy, proteomic analyses, and live cell functional imaging to investigate the postnatal reorganization of mitochondria-organelle interactions in skeletal muscle. We show that while mitochondrial networks are disorganized and loosely associated with the contractile apparatus at birth, contact sites among mitochondria, lipid droplets and the sarcoplasmic reticulum are highly abundant in neonatal muscles. The maturation process is characterized by a transition to highly organized mitochondrial networks wrapped tightly around the muscle sarcomere but also to less frequent interactions with both lipid droplets and the sarcoplasmic reticulum. Concomitantly, expression of proteins involved in mitochondria-organelle membrane contact sites decreases during postnatal development in tandem with a decrease in abundance of proteins associated with sarcomere assembly despite an overall increase in contractile protein abundance. Functionally, parallel measures of mitochondrial membrane potential, NADH redox status, and NADH flux within intact cells revealed that mitochondria in adult skeletal muscle fibres maintain a more activated electron transport chain compared with neonatal muscle mitochondria. These data demonstrate a developmental redesign reflecting a shift from muscle cell assembly and frequent inter-organelle communication toward a muscle fibre with mitochondrial structure, interactions, composition and function specialized to support contractile function. KEY POINTS: Mitochondrial network organization is remodelled during skeletal muscle postnatal development. The mitochondrial outer membrane is in frequent contact with other organelles at birth and transitions to more close associations with the contractile apparatus in mature muscles. Mitochondrial energy metabolism becomes more activated during postnatal development. Understanding the developmental redesign process within skeletal muscle cells may help pinpoint specific areas of deficit in muscles with developmental disorders.


Subject(s)
NAD , Proteomics , Humans , Adult , Infant, Newborn , NAD/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Mitochondria, Muscle/metabolism , Lipid Droplets/metabolism
20.
J Physiol ; 602(12): 2823-2838, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38748778

ABSTRACT

Skeletal muscle dysfunction is a major problem in critically ill patients suffering from sepsis. This condition is associated with mitochondrial dysfunction and increased autophagy in skeletal muscles. Autophagy is a proteolytic mechanism involved in eliminating dysfunctional cellular components, including mitochondria. The latter process, referred to as mitophagy, is essential for maintaining mitochondrial quality and skeletal muscle health. Recently, a fluorescent reporter system called mito-QC (i.e. mitochondrial quality control) was developed to specifically quantify mitophagy levels. In the present study, we used mito-QC transgenic mice and confocal microscopy to morphologically monitor mitophagy levels during sepsis. To induce sepsis, Mito-QC mice received Escherichia coli lipopolysaccharide (10 mg kg-1 i.p.) or phosphate-buffered saline and skeletal muscles (hindlimb and diaphragm) were excised 48 h later. In control groups, there was a negative correlation between the basal mitophagy level and overall muscle mitochondrial content. Sepsis increased general autophagy in both limb muscles and diaphragm but had no effect on mitophagy levels. Sepsis was associated with a downregulation of certain mitophagy receptors (Fundc1, Bcl2L13, Fkbp8 and Phbb2). The present study suggests that general autophagy and mitophagy can be dissociated from one another, and that the characteristic accumulation of damaged mitochondria in skeletal muscles under the condition of sepsis may reflect a failure of adequate compensatory mitophagy. KEY POINTS: There was a negative correlation between the basal level of skeletal muscle mitophagy and the mitochondrial content of individual muscles. Mitophagy levels in limb muscles and the diaphragm were unaffected by lipopolysaccharide (LPS)-induced sepsis. With the exception of BNIP3 in sepsis, LPS administration induced either no change or a downregulation of mitophagy receptors in skeletal muscles.


Subject(s)
Mice, Transgenic , Mitophagy , Muscle, Skeletal , Sepsis , Animals , Sepsis/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mice , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , Male , Mitochondria, Muscle/metabolism , Autophagy/physiology
SELECTION OF CITATIONS
SEARCH DETAIL